psyliushen的个人博客分享 http://blog.sciencenet.cn/u/psyliushen

博文

中介效应和调节效应分析方法论文献(英文)

已有 31114 次阅读 2014-9-3 01:45 |个人分类:文献总结|系统分类:论文交流| 中介效应, 调节效应

       自从上次整理了一篇《中介效应和调节效应分析方法论文献(中文)》后,收到了一些反馈。一位潜心研究中介效应和调节效应分析方法论的国内学者给我留言说我少列举了两篇,现在补上,分别是:第一,《中介效应的检验方法和效果量测验:回顾与展望(载于《心理发展与教育》2012年第28卷第1期);第二,《基于不对称区间估计的有调节的中介效应模型检验(载于《心理科学进展》,2014年第22卷第10期)。相较于国外而言,国内关于中介效应和调节效应分析的研究可能相对有些晚,国外在该领域的发展很久并且有很多经典的文献。我初步收集了有关中介效应和调节效应分析的英文方法论文献,共计51篇。我按照国内期刊参考文献的列法顺序依次列举出来,最早的和最近的文献横跨了几十年。

 

       其次,我觉得我们在做中介效应和调节效应分析时一定要明确我们为什么要这样做,明确之后才应该是怎样做,怎样做的时候要分析做的是否科学。自从温忠麟教授团队于2004年开始大量发表中介效应和调节效应分析的文献后,很多来自各个领域和学科的学者都在引用这些方法论文献然后开始做自己的研究。这些研究在国内基本上所有自然科学和社会科学杂志上都能看见,但是这些研究中也存在一些用法失当甚至是错误的个例。温忠麟教授曾说过,在做完中介效应和调节效应分析后要向读者列出表示中介效应的量,具体可参见相关文献。究竟是部分中介效应呢还是完全中介效应呢?经常能够看到一些学者直接就是检验了三个方程的系数是否显著然后列了三线表就结束了,其实我个人觉得这不全面。在这里,我推荐大家看一篇文章《自尊在人格特质、社会支持和主观幸福感间的中介效应(载于《应用心理学》,2009年第15期第2卷)。之所以推荐这篇文献,是因为作者在分析完中介效应之后很详细地列出了中介效应量的大小、计算方式等等,业内人士可以参照一下。还有一点需要指出的是,我们在分析中介效应和调节效应时要知道这需要一些前提条件。这些条件由国外学者提出,国内学者完善了。具体可以看KashdamBreenMaterialismand diminished well-beingExperimentialavoidance as a mediating mechanism》(载于Journal of Social and Clinical Psychology2007年第26卷第5)和西南大学心理学部郑涌教授指导的硕士学位论文《控制感在物质主义和幸福感关系中的中介效应研究》(作者是王凌飞,2012年)。在这两篇文章中,学者们一致认为中介效应和调节效应分析的前提条件分别是:(1)预测变量必须与因变量相关(2)预测变量要与潜在的中介变量相关(3)潜在的中介变量要与因变量相关(4)当潜在的中介变量被控制后,预测变量和因变量之间的相关消失或显著减弱。这四个前提条件很详细,业内人士在做中介效应和调节效应分析时可以自我对照进行检查。

 

       另外,在书籍方面,国外有关中介效应和调节效应分析的书籍很多,我列举了两本比较经典的。国内有关中介效应和调节效应分析专门的书籍目前好像只有温忠麟,刘红云和侯杰泰于2012年出版的那本《调节效应和中介效应分析(Analyses of Moderatingand Mediating Effects)》。这本书是社会科学研究方法丛书中的一本,这套丛书特别好,每本都有一个侧重点。当然,想要完全掌握《调节效应和中介效应分析》这本书的内涵,必须还要先阅读由侯杰泰,温忠麟和成子娟于2004年著的那本《结构方程模型及其应用(Structural Equation Modeland Its Applications)》一书,因为两本书里面都涉及到了用LISREL软件编写程序语句的内容。

 

 

      最后,我列举的文献肯定是不全的,希望业内人士能够批评指正。

 

1.Baron R. M.& Kenny D. A. (1986). The moderator-mediator variable distinction in social psychological researchConceptualstrategicand statistical considerations. Journal of Personality and Social Psychology511173–1182.

The Moderator-Mediator Variable Distinction in Social Psychological Research:Co.pdf

2.Bauer D. J.Preacher K. J.& Gil K. M. (2006).Conceptualizing and testing random indirect effectsand moderated mediation in multilevel modelsNew procedures and recommendations. Psychological Methods11142–163.

Conceptualizing and Testing Random Indirect Effects and Moderated Mediation in M.pdf

3.Edwards J. R.& Lambert L. S. (2007). Methods for integrating moderation andmediationA general analytical framework using moderated path analysis. Psychological Methods121–22.

Methods for Integrating Moderation and Mediation: A General Analytical Framewor.pdf

4.Fairchild A. J.MacKinnon D. P.Taborga, M. P.& Taylor A. B. (2009). R2 effect-size measures for mediation analysis. Behavior Research Methods41486–498.

R2 effect-size measures for mediation analysis.pdf

5.Fairchild A. J.&McQuillin S. D. (2010). Evaluating mediation and moderation effects in school psychologyA presentation of methods and review of current practice.Journal of School Psychology48(1)53–84.

Evaluating mediation and moderation effects in school psychology:A presentation.pdf

6.Feinberg F.M.(2012).Mediation analysis and categorical variablessome further frontiers.Journal of Consumer Psychology22595-598.

Mediation analysis and categorical variables:Some further frontiers.pdf

7.Fiedler K.Schott M.& Meiser T.(2011).What mediation analysis can(not) do.Journal of Experimental Social Psychology471231-1236.

What mediation analysis can (not) do.pdf

8.Fritz M. S.,& MacKinnon D. P. (2007).Required sample size to detect the mediated effect. Psychological Science18233–239.

Required sample size to detect the mediated effect.pdf

9.Fritz M. S.Taylor A. B.& MacKinnon D. P. (2012).Explanation of two anomalous results instatistical mediation analysis. MultivariateBehavioral Research4761–87.

Explanation of two anomalous results in statistical.pdf

10.Gelfand L.A.Mensinger J.L.& Tenhave T.(2009).Meidiation analysisA restrospective snapshot of practice andmore recent directions.The Journal ofGeneral Psychology136(2)153-176.

Meidiation analysis:A restrospective snapshot of practice and more recent directions.pdf

11.Hayes A. F. (2009). Beyond Baron andKennyStatistical mediation analysis in the new millennium. CommunicationMonographs76408–420.

Beyond Baron and Kenny:Statistical Mediation Analysis in the New Millennium.pdf

12.Iacobucci D. (2012). Mediation analysis and categorical variablesThe final frontier. Journal ofConsumer Psychology22582–594.

Mediation analysis and categorical variables:The ?nal frontier.pdf

13.Imai K.Keele L.& Tingley D. (2010). A general approach to causal mediation analysis. Psychological Methods15309–334.

A general approach to causal mediation analysis.pdf

14.Imai K.Keele L.& Yamamoto T.(2010).Identificationinference and sensitivity analysis for casual mediation effects.Statistical Science25(1)51-71.

Identification, Inference and Sensitivity Analysis for Causal Mediation Effects.pdf

15.James L. R.&Brett J. M. (1984). Mediatorsmoderatorsand tests for mediation. Journal of Applied Psychology69307–321.

Mediators, moderators, and tests for mediation.pdf

16.Kenny D. A.Korchmaros J. D.& Bolger N. (2003).Lower level mediation in multilevel models.Psychological Methods8115–128.

Lower level mediation in multilevel models.pdf

17.Krull J. L.& MacKinnon D. P. (2001). Multilevel modeling of individual and group level mediated effects.MultivariateBehavioral Research36(2)249–277.

Multilevel modeling of individual and group level mediated effects..pdf

18.Li Y.Bienias J.L.& Bennett D.A.(2007).Confounding in the estimation of mediation effects.Computational Statistics & Data Analysis513173-3186.

Confounding in the estimation of mediation effects.pdf

19.Lockwood C. M.& MacKinnon D. P. (1998).Bootstrapping the standard error of the mediated effect.Proceedingsof the 23rd annual meeting of SAS UsersGroup International (pp. 997−1002). CaryNCSAS Institute.

Bootstrapping the standard error of the mediated effect.pdf

20.MacKinnon D. P.Warsi G.& Dwyer J. H. (1995). A simulation study of mediated effect measures.Multivariate Behavioral Research3041–62.

A simulation study of mediated effect measures.pdf

21.MacKinnon D. P.Krull J. L.& Lockwood C. M. (2000).Equivalence of the mediationconfoundingand suppression effect. PreventionScience1173–181.

Equivalence of the mediation,confounding,and suppression effect.pdf

22.MacKinnon D. P.Lockwood C. M.Hoffman J. M.West S. G.& Sheets V. (2002). A comparison of methods to test mediation andother intervening variable effects.PsychologicalMethods783–104.

A comparison of methods to test mediation and other intervening variable effects.pdf

23.MacKinnon D. P.Lockwood C. M.& Williams J. (2004). Confidence limitsfor the indirect effectDistribution of the product and resampling methods. MultivariateBehavioral Research3999–128.

Confidence limits for the indirect effect:Distribution of the product and resam.pdf

24.MacKinnon D. P.Lockwood C. M.Brown C. H.Wang W.& Hoffman J. M. (2007). The intermediate endpoint effect in logisticand probit regression. ClinicalTrials4499–513.

The intermediate endpoint effect in logistic and probit regression.pdf

25.Mackinnon D. P.Fairchild A. J.& Fritz M. S. (2007).Mediation analysis. Annual Review ofPsychology58593–614.

Mediation analysis.pdf

26.MacKinnon D. P.Fritz M, S.Williams J.& Lockwood C.M. (2007). Distribution of the product confidence limits forthe indirect effectProgram PRODCLIN. BehaviorResearch Methods39384–389.

Distribution of the product confidence limits for the indirect effect:Program P.pdf

27.MacKinnon D. P.& Fairchild A. J. (2009). Current directionsin mediation analysis. CurrentDirections inPsychological Science1816-20.

Current directions in mediation analysis.pdf

28.MacKinnonD. P.Coxe S.& Baraldi A. N. (2012). Guidelines for the investigation of mediating variables in business research. Journal of Business and Psychology27(1)1–14.

Guidelines for the investigation of mediating variables in business research.pdf

29.Mathieu J. E.& Taylor S. R. (2006). Clarifying conditions and decision points for mediational type inferences in Organizational Behavior. Journal of OrganizationalBehavior 271031–1056.

Clarifying conditions and decision points for mediational type inferences in Org.pdf

30.Muller D.Judd C. M.& Yzerbyt V. Y. (2005). When moderation is mediated and mediation is moderated.Journal of Personality and Social Psychology89(6)852–863.

When moderation is meditated and when mediation is moderated.pdf

31.Preacher K. J.& Hayes A. F. (2004). SPSS and SAS proceduresfor estimating indirect effects in simple mediation models. Behavior Research MethodsInstruments, & Computers36717–731.

SPSS and SAS procedures for estimating indirect effects in simple mediation models.pdf

32.Preacher K.J,& Hayes A.F.(2007).Contemporary approaches to assessing mediation in communication research.Advanced Data Analysis Methods for Communication Research,10,1-42.

Contemporary approaches to assessing mediation in communication research.pdf

33.Preacher K. J.Rucker D. D.& Hayes A. F. (2007).Addressing moderated mediation hypotheses Theorymethodsand prescriptions. Multivariate Behavioral Research42185–227.

Addressing moderated mediation hypotheses:Theory,methods,and prescriptions.pdf

34.Preacher K. J.& Hayes A. F. (2008a). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediatormodels. Behavior ResearchMethods40879–891.

Asymptotic and resampling strategies for assessing and comparing indirect effect.pdf

35.Preacher K. J.,& Hayes A. F.(2008b). Contemporary approaches to assessing mediation in communication research.In A. F. Hayes M. D. Slater and L. B. Snyder(Eds)The Sagesourcebook of advanced data analysismethods for communication research (pp. 13–54).Thousand OaksCASage Publications.

Contemporary approaches to assessing mediation in communication research.pdf

36.Preacher K. J.Zyphur M. J.& Zhang Z. (2010). A general multilevel SEM framework for assessing multilevel mediation. Psychological Methods15209–233.

A general multilevel SEM framework for assessing multilevel mediation.pdf

37.Preacher K. J.&Kelley K. (2011).Effect size measures for mediation models: Quantitative strategies for communicating indirect effects. Psychological Methods1693–115.

Effect size measures for mediation models:Quantitative strategies for communica.pdf

38.Preacher K. J.Zhang Z.& Zyphur M. J. (2011).Alternative methods for assessing mediation inmultilevel dataThe advantages of multilevel SEM. StructuralEquation Modeling18161–182.

Alternative methods for assessing mediation in multilevel data:The advantages o.pdf

39.Preacher K.J.& Selig J.P.(2012).Advantages of monte carloconfidence intervals for indirect effects. Communication Methods and Measures677-98.

Advantages of Monte Carlo Con?dence Intervals for Indirect Effects.pdf
40.Rosapa P.J.& Stone-Romero E.F.(2008).Problems with detecting assumed mediation using the hierarchical multiple regressionstragety.Human Resource Management Review18194-310.

Problems with detecting assumed mediation using the hierarchical multiple.pdf

41.Rucker D. D.Preacher K. J.Tormala Z. L.& Petty R. E.(2011). Mediation analysis in social psychologyCurrent practices and new recommendations. Social andPersonality Psychology Compass5359–371.

Mediation analysis in social psychology:Current practices and new recommendations.pdf

42.Shrout P. E.& Bolger N. (2002). Mediation in experimental and nonexperimental studiesNew procedures and recommendations. Psychological Methods7422–445.

Mediation in experimental and nonexperimental studies:New.pdf

43.Sobel M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. InS.Leinhardt (Ed.)Sociological methodology (pp. 290–312).WashingtonDCAmerican Sociological Association.

Asymptotic confidence interval for indirect effects in structural equation models.pdf

44.Spencer S. J.Zanna M. P.& Fong G. T. (2005).Establishing a causal chain: Why experiments are often more effective than mediational analyses in examining psychologicalprocesses. Journal ofPersonality andSocial Psychology89845–851.

Establishing a causal chain:Why experiments are often more effective than media.pdf

45.Tofighi D.& MacKinnon D. P. (2011). RmediationAn R package for mediation analysis confidence intervals.Behavior Research Methods43692–700.

Rmediation:An R package for mediation analysis confidence intervals.pdf

46.Valeri L.&VanderWeele T. J. (2013). Mediation analysis allowing for exposure-mediatori nteractions and causal interpretationTheoretical assumptions and implementation withSAS and SPSS macros. PsychologicalMethods18137–150.

Mediation analysis allowing for exposure-mediator interactions and causal interp.pdf

47.Williams J.&MacKinnon D. P. (2008). Resampling and distribution of the product methods for testingindirect effects in complex models. Structural Equation Modeling1523–51.

Resampling and distribution of the product methods for testing indirect effects .pdf

48.Wood R. E.Goodman J. S.Beckmann N.& Cook A.(2008). Mediation Testing in Management ResearchA Review and Proposals. OrganizationalResearch Methods11(2)270–295.

Mediation Testing in Management Research:A Review and Proposals.pdf

49.Yuan Y.& MacKinnon D. P. (2009). Bayesian mediation analysis. Psychological Methods14301–322.

Bayesian mediation Analysis.pdf

50.Zhang Z.Zyphur M. J.& Preacher K. J. (2009). Testing multilevel mediation usinghierarchical linear modelsProblems and solutions. OrganizationalResearch Methods12695–719.

Testing multilevel mediation using hierarchical linear models:Problems and solutions.pdf

51.Zhao X.LynchJr.J. G.& Chen Q. (2010). Reconsidering Baron and KennyMyths andtruths about mediation analysis. Journalof Consumer Research37197–206.

Reconsidering Baron and Kenny:Myths and truths about mediation analysis.pdf

 




https://blog.sciencenet.cn/blog-1761771-824464.html

上一篇:中介效应和调节效应分析方法论文献(中文)
下一篇:“第一次”组会暨“搬砖”81天心得
收藏 IP: 60.8.44.*| 热度|

5 何浩宇 赵宇翔 范会勇 zjhs111 rosejump

该博文允许注册用户评论 请点击登录 评论 (3 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-2-22 18:32

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部