Linyuan Lü1, Jun-An Lu2, Zi-Ke Zhang1, Xiao-Yong Yan3, Ye Wu4,5,
Ding-Hua Shi6, Hai-Ping Zhou7, Jin-Qing Fang8, Tao Zhou9,10
(1. Department of Physics, University of Fribourg, Fribourg 1700, Switzerland
2. School of Mathematics and Statistics, Wuhan University, Wuhan 430072
3. Department of Transportation Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043
4. Interdisciplinary Center for Dynamics of Complex Systems, University Potsdam, Am Neuen Palais 10, D14469, Germany
5. School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
6. Department of Mathematics, Shanghai University, Shanghai 200444
7. Department of Computer Science, Guiyang College, Guiyang 550005
8. China Institute of Atomic Energy, PO Box 275-81, Beijing 102413
9. Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054
10. Department of Modern Physics, University of Science and Technology of China, Hefei 230026)
Abstract: This article summaries the discussions about the open issues and research tendency of complex networks by several active scholars. The statement covers both fundamental problems like the understanding of power-law degree distributions, the underlying connections between different flow-driven dynamics and the mechanism leading to acceleratingly growing, and the in-depth analyses like the understanding of mesoscales in complex networks. Moreover, we introduce some typical interdisciplinary studies where complex networks play a major role, including the link prediction in complex networks, recommender systems for user-object bipartite networks, the integration of cyber physical systems and complex networks, the human dynamics in the online network space, and the possibly important role of the studies of complex networks in national security.
最近读了CHAOS 20, 010202(2010)的专辑征稿文章:Announcement: Focus Issue on Mesoscales in Complex Networks,觉得复杂网络中尺度(Mesoscales)问题的确是值得十分重视的研究方向,正如征稿文章指出的“专辑的目的是通过对复杂网络中尺度层次的研究来推进非线性科学特别是复杂系统的研究”。复杂网络中尺度并不是今天才提出来的,至少在2006年文献[21]中就明确提到网络的中尺度问题,不过这方面的成果似乎不多,而这个问题又十分重要,因此值得我们深入研究。
但凡看过情景喜剧《天才也性感》(原名:The Big Bang Theory)的人,我想没有不被剧中人物谢尔顿(Shelton)的那种与生俱来的古灵精怪、单纯的性格和执着的信念所吸引的。理论物理学家这个职业的具体内容也随着谢尔顿的出色演出而逐渐被广大观众所熟知。该剧由浅入深的将我们日常生活中所存在的大量物理学现象娓娓道来,从而使得非物理专业人士也能快速理解各种生活现象背后看似深奥的原理。热传导(Heat Conduction)便是众多普遍存在的物理现象中的一种。所谓热传导,是热传递三种方式(即热传导、热对流和热辐射)中的一种。它的工作原理非常简单:当两个不同温度的物体相接触时,热量会从温度高的物体传递到温度低的物体上,直到两者的温度相同,所以热传导方法有助于提高系统中低温度物体的温度。而我们知道,在信息极为丰富的互联网中,对于用户来说,最为迫切问题就是如何帮助他们找到那些他们所感兴趣但不易找到的信息。而这也正是推荐系统所最为关注的问题之一。假设以精确性为衡量一个推荐系统好坏标准的话,那么只要将算法设计得更加容易推荐那些热门的物品即可。举个例子来说,对于一个电影网站,如果一味的倾向于向用户推荐《阿凡达》、《功夫熊猫》之类的热门大片,固然用户会喜欢,推荐的精度也会很高。但这样的推荐结果对于用户来讲是没有任何信息含量的(因为大家早就通过各种渠道了解到了)。反之,如果能够推荐一些适合用户喜好的,但鲜有人关注而用户还不知道的影片。因为长尾效应的存在,推荐那些被收藏次数少、质量高的影片反而能起到“四两拨千斤”般的“惊艳”效果,从而提高用户对系统的信任和黏着性。正是基于这些考虑,近来一些物理学家尝试将热传导的方法应用到推荐系统中来,期望可以利用热量传递的原理,合理的提高温度较低物体的温度,更有利用推荐算法来发现那些不易被用户所察觉的“冷点”信息[47,48](即被收藏次数较少的物品)。
[1] D. J. Watts, S. H. Strogatz, Collective dynamics of small-world networks, Nature 393 (1998) 440-442.
[2] A.-L. Barabási, R. Albert, Emergence of scaling in random networks, Science 286 (1999) 509-512.
[3] A.-L. Barabási, E. Ravasz, T. Vicsek, Determinic scale-free networks, Physica A 229 (2001) 559-564.
[4] I. Farkas, I. Derényi, H. Jeong, Z. Néda, Z. N. Oltvai, E. Ravasz, A. Schubert, A.-L. Barabási, T. Vicsek, Networks in life: scaling properties and eigenvalue spectra, Physica A 314 (2002) 25-34.
[5] E. Ravasz, A.-L. Barabási, Hierarchical organization in complex networks, Phys. Rev. E 67 (2003) 026112.
[6] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, A.–L. Barabási, Hierarchical organization of modularity in metabolic networks, Science 297 (2002) 1551-1555.
[7] S. N. Dorogovtsev, A. V. Gotsev, J. F. F. Mendes, Pseudofractal scale-free web, Phys. Rev. E 65 (2002) 066122.
[8] S. Jung, S. Kim, B. Kahng, Geometric fractal growth model for scale free networks, Phys. Rev. E 65 (2002) 056101.
[9] Z. Z. Zhang, L. L. Rong, S. G. Zhou, A geometric fractal growth model for pseudofractal scale-free web, Physica A 377 (2007) 329-339.
[10] J. S. Andrade, H. J. Herrmann, R. F. S. Andrade, L. R. da Silva, Apollonian networks: Simultaneously scale-free, small world, euclidean, space filling, and with matching graphs, Phys. Rev. Lett. 94 (2005) 018702.
[11] Z. Z. Zhang, L. L. Rong, S. G. Zhou, Evolving Apollonian networks with small-world scale-free topologies, Phys. Rev. E 74 (2006) 046105.
[12] J. L. Guo, Scale-free networks with self-similarity degree exponents, Chin. Phys. Lett. 27 (2010) 038901.
[13] J. S. Andrade, H. J. Herrmann, R. F. S. Andrade, L. R. da Silva, Erratum: Apollonian networks: Simultaneously scale-free, small world, euclidean, space filling, and with matching graphs, Phys. Rev. Lett. 102, 2009, 079901.
[14] L. Li, D. Alderson, J. C. Doyle, W. Willinger, Towards a theory of scale-free graphs: definitions, properties, and implications, Internet Math. 2 (2005) 431-523.
[15] A. E. Motter, C. S. Zhou, J. Kurths, Network synchronization, diffusion, and the paradox of heterogeneity, Phys. Rev. E 71 (2005) 016116.
[16] T. Nishikawa, A. E. Motter, Y. C. Lai, F. C. Hoppensteadt, Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize, Phys. Rev. Lett. 91 (2003) 014101.
[17] M. Zhao, T. Zhou, G.-R. Chen, B.-H. Wang, Enhancing the network synchronizability, Front. Phys. China 2 (2007) 460.
[18] W.-X. Wang, B.-H. Wang, C.-Y. Yin, Y.-B. Xie, T. Zhou, Traffic dynamics based on local routing protocol on scale-free networks, Phys. Rev. E 73 (2006) 026111.
[19] G. Yan, T. Zhou, B. Hu, Z.-Q. Fu, B.-H. Wang, Efficient Routing on Complex Networks, Phys. Rev. E 73 (2006) 046108.
[20]R. Yang, T. Zhou, Y.-B. Xie, Y.-C. Lai, B.-H. Wang, Optimal contact process on complex networks, Phys. Rev. E 78 (2008) 066109.
[21] A. Arenas, A. Diaz-Guilera, C. J. Perez-Vicente, Synchronization processes in complex networks, Physica D 224 (2006) 27-34.
[22] J. Gomez-Gardenes, Y. Moreno, A. Arenas,Paths to Synchronization on Complex Networks,Phys. Rev. Lett. 98 (2007) 034101.
[23] J. Chen, J.-A. Lu, X. Wu, W.-X. Zheng, Generalized synchronization of complex dynamical networks via impulsive control, Chaos 19 (2009) 043119.
[24] H. Liu, J. Chen, J.-A. Lu, M. Cao, Generalized synchronization in complex dynamical networks via adaptive couplings, Physica A 389 (2010) 1759-1770.
[25] S. N. Dorogovtsev, J. F. F. Mendes, Evolution of networks, Adv. Phys. 51 (2002) 1079.
[26] A.-L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, T. Vicsek, Evolution of the social network of scientic collaboration, Physica A 311 (2002) 590.
[27] P. Sen, Accelerated growth in outgoing links in evolving networks: Deterministic versus stochastic picture, Phys. Rev. E 69 (2004) 046107.
[28] D.-H. Shi, Q.-H. Chen, L.-M. Liu, Markov chain-based numerical method for degree distributions of growing networks, Phys. Rev. E 71 (2005) 036140.
[29] M. J. Gagen, J. S. Mattick, Accelerating, hyperaccelerating, and decelerating networks, Phys. Rev. E 72 (2005) 016123.
[31] D. M. D. Smith, J. P. Onnela, N. S. Jones, Master-equation analysis of accelerating networks, Phys. Rev. E 79 (2009) 056101.
[32] Z.-Z. Zhang, L.-J. Fang, S.-G. Zhou, J.-H. Guan, Effects of accelerating growth on the evolution of weighted complex networks, Physica A 388 (2009) 225-232.
[33] H. R. Varian, Intermediate microeconomics: a modern approach, W. W. Norton & Company New York, 2006, p. 65.
[34] L. Lü, Z.-K. Zhang, T. Zhou, Zipf’s Law Leads to Heaps’ Law : Analyzing Their Relation in Finite-Size Systems, arXiv: 1002.3861.
[35] 吕琳媛,复杂网络链路预测,电子科技大学学报(自然科学版),2010年第39卷第5期。
[36] Q.-M. Zhang, M.-S. Shang, L. Lü, Similarity-based classification in partial labeled networks, Int. J. Mod. Phys. C 21 (2010) 813.
[37] R. Guimera, M. Sales-Pardo, Missing and spurious interactions and the reconstruction of complex networks, Proc. Natl. Sci. Acad. U.S.A. 106 (2009) 22073.
[38] D. Liben-Nowell, J. Kleinberg, The Link-Prediction Problem for Social Networks, J. Am. Soc. Inform. Sci. Technol. 58 (2007) 1019.
[39] T. Zhou, L. Lü, Y.-C. Zhang, Predicting missing links via local information, Eur. Phys. J. B 71 (2009) 623.
[40] Y. Pan, D.-H. Li, J.-G. Liu, J.-Z. Liang, Detecting community structure in complex networks via node similarity, Physica A 389 (2010) 2849.
[41] Y.-L. Wang, T. Zhou, J.-J. Shi, J. Wang, D.-R. He, Emipirical analysis of dependence between stations in Chinese railway network, Physica A 388 (2009) 2949.
[42] L. Lü, C.-H. Jin, T. Zhou, Similarity index based on local paths for link prediction of complex networks, Phys. Rev. E 80 (2009) 046122.
[43] W.-P. Liu, L. Lü, Link Prediction Based on Local Random Walk, Europhys. Lett. 89 (2010) 58007.
[44] A. Clauset, C. Moore, M. E. J. Newman, Hierarchical structure and the prediction of missing links in networks, Nature 453 (2008) 98.
[45] L. Lü, T. Zhou, Link Prediction in Weighted Networks: The Role of Weak Ties, Europhys. Lett. 89 (2010) 18001.
[46] J. Leskovec, D. Huttenlocher, J. Kleinberg, Predicting Positive and Negative Links in Online Social Networks, Proc. WWW 2010, ACM, New York, 2010.
[47] Y.-C. Zhang, M. Blattner, Y.-K. Yu, Heat conduction process on community networks as a recommendation model, Phys. Rev. Lett. 99 (2007) 154301.
[48] T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J. R. Wakeling, Y.-C. Zhang, Hybrid algorithms to customize and optimize diversity and accuracy of recommendations, Proc. Natl. Aca. Sci. U.S.A. 107 (2010) 4511
[49] Y.-C. Zhang, M. Medo, J. Ren, T. Zhou, T. Li, F. Yang, Recommendation model based on opinion diffusion, EPL 80 (2007) 68003.
[50] T. Zhou, J. Ren, M. Medo, Y.-C. Zhang, Bipartite network projection and personal recommendation, Phys. Rev. E 176 (2007) 046115.
[51] T. Zhou, L.-L. Jiang, R.-Q. Su, Y.-C. Zhang, Effect of initial configuration on network-based recommendation, EPL 81 (2008) 58004
[52] Z.-K. Zhang, T. Zhou, Y.-C. Zhang, Personalized recommendation via integrated diffusion on user-item-tag tripartite graphs, Physica A 389 (2010) 179
[53] T. Zhou, R.-Q. Su, R.-R. Liu, L.-L. Jiang, B.-H. Wang, Y.-C. Zhang, Accurate and diverse recommendations via eliminating redundant correlations, New J. Phys. 11 (2009) 123008.
[54] J. Stankovic, I. Lee, A. Mok, R. Rajkumar, Opportunities and Obligations for Physical Computing Systems, IEEE Computer 38(11) (2005) 23-31.
[55] L. Edward, Cyber Physical Systems: Design Challenges, In Proc. 11th IEEE International Symposium on Object Oriented Real-Time Distributed Computing (IEEE Press, 2008).
[56] P. Mohan, V. Padmanabhan, R. Ramjee, Nericell: Rich Monitoring of Road and Traffic Conditions using Mobile Smartphones, In Proc. 6th ACM Conference on Embedded Network Sensor Systems (ACM Press, 2008).
[57] M. Wang, J. Cao, J. Li, S. Dasi, Middleware for Wireless Sensor Networks: A Survey, J. Comput. Sci. Technol. 23 (2008) 305-326.
[58] A.-L. Barabási, The origin of bursts and heavy tails in human dynamics, Nature 435 (2005) 207-211.
[59] J. G. Oliveira, A.-L. Barabási, Darwin and Einstein correspondence patterns, Nature 437 (2005) 1251.