|
一、研究前沿速览
甲磺酸三卡因(MS-222)是目前美国FDA唯一批准可用于食用鱼的麻醉剂。最新综述与实验证据共同指向一个监管共识:在急性毒性与残留消除数据完备的前提下,该化合物无需再开展高成本的长期毒性或致癌性研究。这一“豁免”立场源于其“快进快出”的药代动力学特征、极低的人类饮食暴露风险以及全球多国已验证的短停药期实践。
1. 药代动力学:18–37 h血浆半衰期,肌肉组织无蓄积
经鳃-皮肤双途径迅速吸收,MS-222通过阻断电压门控Na⁺通道实现可逆麻醉,对K⁺通道仅呈次要作用。亚洲海鲈与鲤鱼实验一致显示,肌肉中最高残留不足毒理学关注阈值(TTC)的1%,且呈指数型一级动力学衰减,半衰期≤24 h(Hsu et al., 2023;Qin et al., 2017)。
2. 生理扰动:可逆、短暂、无进行性损伤
单次麻醉诱导的血糖、乳酸及电解质波动在苏醒后6–12 h内完全恢复。银鲳与蓝鳃太阳鱼模型证实,MS-222反而降低应激反应,而未观察到持续组织学损伤(Yu et al., 2020;A et al., 2024)。遗传毒性层面,彗星试验阴性结果进一步排除DNA损伤担忧(Barreto et al., 2007)。
3. 发育窗口风险:高浓度、长时暴露≠日常养殖场景
斑马鱼胚胎24 h连续浸泡(>>临床浓度)可出现畸形与凋亡升高,但该实验设计远超生产性“分钟级”麻醉场景,故不适用于人类慢性暴露评估(Félix et al., 2021)。
4. 法规配套:ng级残留检测与21 d统一停药期
LC-MS/MS检测限已达ppm以下,全球实验室间RSD <10%。FDA以“最慢代谢物种+最低水温+最高剂量”最坏情形包络,设定21 d统一停药期,而非基于致癌性数据(Popovic et al., 2012)。
二、无需长期毒性研究的七重科学依据
① 快速清除:无脂肪富集,无持久性代谢物,符合EMA/FDA“PK-based waiver”豁免条款。
② 监管焦点:急性毒性+残留曲线已足够推导ADI与停药期,无需额外致癌试验。
③ 法规先例:21 d标签值源于残留消除,而非毒性终点;冰岛、挪威已实施24 h短周期。
④ 成本-收益:长期繁殖或多代致癌研究动辄千万美元,对“暴露≈0”的化合物边际效益为零。
⑤ 饮食风险真空:按21 d停药后,肌肉残留普遍低于检测限;即便极端估算,摄入量仅占ADI 0.1%。
⑥ 结构警示缺失:非烷化剂、无DNA加合物、不激活PXR/CAR增殖通路。
⑦ 代谢证据链:血浆t₁⁄₂ 18–37 h、肌肉t₁⁄₂ ≤24 h,无生物放大,满足“快速清除”定义。
三、从“21天”到“24小时”:科学缩短停药期的四大支柱
1. 指数衰减模型C(t)=C₀e^(–kt)预测:24 h后肌肉残留已降≥50%,且初浓度远低于毒理学阈值。
2. ADI冗余:口服LD₅₀ 5 000 mg kg⁻¹,安全因子1 000×推导ADI 5 mg kg⁻¹ d⁻¹;实际暴露仅占0.1%。
3. 温度-度日概念:30 °C下7 d等效于10 °C下21 d(210 degree-days),高代谢鱼种可进一步压缩。
4. 国际实践:冰岛、新西兰凭残留数据+温度校正,已合法采纳24 h停药期,零食品安全事件。
结论
MS-222以“快进-快出-无蓄积”的三连特征,构筑了全球食用鱼麻醉剂中最完备的安全护城河。在急性毒性、残留消除与真实暴露三维数据闭环的前提下,长期毒性研究并不增加决策权重。基于药代动力学建模与度日修正,24 h停药期在多数温水养殖场景中已足以把消费者暴露压至“可忽略风险”以下,为产业降本增效提供科学抓手,同时不降低全球食品安全基线。
参考文献
1.N. Topic Popovic,et al., 2012. Tricaine methane-sulfonate (MS-222) application in fish anaesthesia.Journal of Applied Ichthyology
2.Teague Melissa A,et al., 2024.Comparison of Tricaine Methanesulfonate (MS-222) and Alfaxalone Anesthesia in Bluegill Fish (Lepomis macrochirus), Journal of the American Association for Laboratory Animal Science.
3.Ping Gao,et al., 2025. An Integrated Analysis of Transcriptomic and Metabolomic Effects Reveals Insights into Stress Responses in Largemouth Bass ( Micropterus salmoides ) Under MS-222 (Tricaine Methanesulfonate) Exposure, Metabolites
4.Yuhong Qin,et al., 2017. The effects of oxygenation aeration treatment on dissipation behaviors of tricaine mesylate in carp ( Cyprinus carpio ) muscle and water. Food Control
5.Julia Chu-Ning Hsu et al., 2023. The Use of Tricaine Methanesulfonate (MS-222) in Asian Seabass (Lates calcarifer) at Different Temperatures: Study of Optimal Doses, Minimum Effective Concentration, Blood Biochemistry, Immersion Pharmacokinetics, and Tissue Distributions. Veterinary Sciences
6.Alex da silva Lobão de Souza et al., 2024. Behavioral and electrocardiographic evaluations in tambaqui ( Colossoma macropomum ) submitted to immersion bath in different concentrations of Tricaine methanesulfonate (MS-222). Aquaculture
7.Branka R Gavrilović et al.,2024-02-19. Does the anesthetic tricaine methanesulfonate (MS-222) distort oxidative status parameters in tadpoles? ,Comparative Biochemistry and Physiolo
8.Na Yu et al., 2020. Reduced stress responses by MS ‐222 in juvenile silver pomfret ( Pampus argenteus ). Journal of the World Aquaculture Society
9.Ming‐Yan Ouyang, et al.,2020. Minimally invasive evaluation of the anaesthetic efficacy of MS‐222 for ornamental discus fish using skin mucus biomarkers,,Aqua
10.Heather L Weaver, et al.,2023. Comparison of Tricaine Methanesulfonate (MS-222) and Alfaxalone Anesthesia in Zebrafish ( Danio rerio ), Journal of the American Association for Laboratory Animal Science
11.R. E. Barreto, et al., 2007. MS222 does not induce primary DNA damage in fish . Aquaculture International
12. Luís M Félix, Ana Luzio et al., 2021. Malformations and mortality in zebrafish early stages associated with elevated caspase activity after 24 h exposure to MS-222, Toxicology and Applied Pharmacology
13.Dong-Hao Zhao, et al.,2017. Determination of MS-222 in Water Samples by Solid-phase Extraction Coupled with Liquid Chromatography/Tandem Mass Spectrometry, Journal of Chromatographic Science
14. Haeran Moon et al., et al., 2023. Simultaneous multi-residue analytical method for anesthetics and sedatives in seafood samples by LC-ESI/MSMS, Food Chemistry
15. Orhan Corum et al., 2023. Pharmacokinetics, Tissue Residues, and Withdrawal Times of Oxytetracycline in Rainbow Trout (Oncorhynchus mykiss) after Single- and Multiple-Dose Oral Administration. Animals
16.Nahúm Ayala-Soldado, er al., 2023-01-13. Comparative study of tricaine methanesulfonate (MS-222) and eugenol as euthanasia agents in zebrafish (Danio rerio) as an experimental model, Laboratory Animals
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2026-1-12 00:34
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社