|
摩尔定律长期以来都是集成电路产业的发展引擎,驱动着整个产业的前进方向。随着摩尔定律逐步进入尾声,集成电路也开始迈入新的发展阶段,迫切需要寻找新的发展方向。目前存内计算、近存计算、光电融合、神经拟态、量子芯片等技术方向正呈现出百花齐放的格局。传统集成电路研究人员从各自特长出发,开始纷纷进入新的研究领域。以加州理工学院Ali Hajimiri教授和加州大学伯克利分校Vladimir Stojanovic教授为代表的传统集成电路设计研究人员纷纷投入到了光电融合芯片设计新领域,为集成电路设计的未来发展指明了方向。业界的NVIDIA、AMD、Broadcom、Intel也投入了光电融合芯片的研究。北美相关研究组列表如下。
1. 加州理工学院 Caltech Ali Hajimiri教授,相关研究如下
a) 体硅MOS的减材制造光子器件:C. Ives, D. Sarkar, and A. Hajimiri, “Subtractive Photonics in Bulk CMOS,” IEEE J Solid-State Circuits, vol. 58, no. 11, pp. 3030–3043, Nov. 2023.
b) 大规模串扰保护的硅光热调移相器阵列: V. Gurses, R. Fatemi, A. Khachaturian, and A. Hajimiri, “Large-Scale Crosstalk-Corrected Thermo-Optic Phase Shifter Arrays in Silicon Photonics,” Jun. 2022.
c) 基于PWM热调驱动的非均匀光学相控阵:R. Fatemi, A. Khachaturian, and A. Hajimiri, “A Nonuniform Sparse 2-D Large-FOV Optical Phased Array With a Low-Power PWM Drive,” IEEE J Solid-State Circuits, vol. 54, no. 5, pp. 1200–1215, 2019.
2. 加州理工学院 Caltech Azita Emami教授,相关研究如下
a) Hashemi Talkhooncheh et al., “A 100-Gb/s PAM4 Optical Transmitter in a 3-D-Integrated SiPh-CMOS Platform Using Segmented MOSCAP Modulators,” IEEE J Solid-State Circuits, vol. 58, no. 1, pp. 30–44, Jan. 2023.
b) F. Aghlmand, C. Y. Hu, S. Sharma, K. Pochana, R. M. Murray, and A. Emami, “A 65-nm CMOS Fluorescence Sensor for Dynamic Monitoring of Living Cells,” IEEE J Solid-State Circuits, vol. 58, no. 11, pp. 3003–3019, Nov. 2023.
3. 加州大学伯克利分校 UC Berkeley Vladimir Stojanovic教授,相关研究如下
a) 光电全集成微环收发芯片:C. Sun et al., “A 45 nm CMOS-SOI Monolithic Photonics Platform With Bit-Statistics-Based Resonant Microring Thermal Tuning,” IEEE J Solid-State Circuits, vol. 51, no. 4, pp. 893–907, Apr. 2016.
b) 量子光电融合片上系统:I. Wang et al., “Electronic-photonic quantum systems on-chip,” in Quantum 2.0 Conference and Exhibition, Washington, D.C.: Optica Publishing Group, 2022.
4. 宾夕法尼亚大学 University of Pennsylvania Firooz Aflatouni教授,相关研究如下
a) 集成PDH激光稳频系统:M. H. Idjadi and F. Aflatouni, “Integrated Pound−Drever−Hall laser stabilization system in silicon,” Nat Commun, vol. 8, no. 1, p. 1209, Dec. 2017.
b) 光学协助射频相控阵发射机:P. Sanjari and F. Aflatouni, “An integrated photonic- assisted phased array transmitter for direct fiber to mm-wave links,” Nat Commun, vol. 14, no. 1, Dec. 2023.
5. 南加州大学 USC Hossein Hashemi教授,相关研究如下
a) 单片集成硅基相控阵:S. Chung, H. Abediasl, and H. Hashemi, “A Monolithically Integrated Large-Scale Optical Phased Array in Silicon-on-Insulator CMOS,” IEEE J Solid-State Circuits, vol. 53, no. 1, pp. 275–296, Jan. 2018.
b) 具备片上校准能力的FMCW激光雷达:S. W. Chung, M. Nakai, S. Idres, Y. Ni, and H. Hashemi, “Optical Phased-Array FMCW LiDAR with On-Chip Calibration,” in IEEE International Solid-State Circuits Conference, pp. 286–288,Feb. 2021.
6. 英属哥伦比亚大学 UBC Sudip Shekhar教授,相关研究如下
a) 双偏振的硅光接收机前端:A. H. Ahmed, L. Vera, L. Iotti, R. Shi, S. Shekhar, and A. Rylyakov, “A Dual-Polarization Silicon-Photonic Coherent Receiver Front-End Supporting 528 Gb/s/Wavelength,” IEEE J Solid-State Circuits, vol. 58, no. 8, pp. 2202–2213, Aug. 2023.
b) 双偏振的硅光相干发射机:A. H. Ahmed, A. El Moznine, D. Lim, Y. Ma, A. Rylyakov, and S. Shekhar, “A Dual-Polarization Silicon-Photonic Coherent Transmitter Supporting 552 Gb/s/wavelength,” IEEE J Solid-State Circuits, vol. 55, no. 9, pp. 2597–2608, Sep. 2020.
7. 普林斯顿大学 Princeton University Kaushik Sengupta教授,相关研究如下
a) 太赫兹光电融合混合集成系统:K. Sengupta, T. Nagatsuma, and D. M. Mittleman, “Terahertz integrated electronic and hybrid electronic–photonic systems,” Nature Electronics, vol. 1, no. 12. Nature Publishing Group, pp. 622–635, Dec. 01, 2018.
b) 用于荧光微阵列的CMOS纳米等离激元与电子融合集成系统:L. Hong, H. Li, H. Yang, and K. Sengupta, “Nano-plasmonics and electronics co-integration in CMOS enabling a pill-sized multiplexed fluorescence microarray system,” Biomed Opt Express, vol. 9, no. 11, p. 5735, Nov. 2018.
8. 华盛顿大学 University of Washington Sajjad Moazeni教授,相关研究如下
a) 基于微环光学DAC的PAM-4发射机:S. Moazeni et al., “A 40-Gb/s PAM-4 Transmitter Based on a Ring-Resonator Optical DAC in 45-nm SOI CMOS,” IEEE J Solid-State Circuits, vol. 52, no. 12, pp. 3503–3516, Dec. 2017.
b) 散射光学层析成像芯片:S. Moazeni, K. Renehan, E. H. Pollmann, and K. L. Shepard, “An Integrated-Circuit Node for High-Spatiotemporal Resolution Time-Domain Near-Infrared Diffuse Optical Tomography Imaging Arrays,” IEEE J Solid-State Circuits, vol. 58, no. 5, pp. 1376–1385, May 2023.
9. 哥伦比亚大学 Columbia University Harish Krishnaswamy教授,相关研究如下
a) 用于激光雷达的连续时间电光锁相环:A. Binaie, S. Ahasan, and H. Krishnaswamy, “A Spurless and Wideband Continuous-Time Electro-Optical Phase Locked Loop (CT-EOPLL) for High Performance LiDAR,” IEEE Open Journal of the Solid-State Circuits Society, vol. 1, pp. 235–246, Oct. 2021 .
10. 维吉尼亚大学 The University of Virginia Steven M. Bowers教授,相关研究如下
a) 用于微波光子的工艺厂制备高功率光电探测器:T. C. Tzu, K. Sun, R. Costanzo, D. Ayoub, S. M. Bowers, and A. Beling, “Foundry-enabled high-power photodetectors for microwave photonics,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, no. 5, Sep. 2019.
b) 用于差分光学频率锁定的异质集成光学锁相环:X. Shen, R. Costanzo, P. Singaraju, T. N. Blalock, A. Beling, and S. M. Bowers, “Compact Heterogeneously Integrated Optical Phase-Locked Loop for 10 GHz to 40 GHz Optical Frequency Difference Locking,” Journal of Lightwave Technology, 2024.
11. 德州农工大学 Texas A&M University Sam Palermo教授,相关研究如下
a) 混合集成的混合集成硅光同源接收机:K. Yu et al., “A 25 Gb/s hybrid-integrated silicon photonic source-synchronous receiver with microring wavelength stabilization,” IEEE J Solid-State Circuits, vol. 51, no. 9, pp. 2129–2141, Sep. 2016.
b) 硅光接收机:P. Yan et al., “A 25-Gb/s 3-D Direct Bond Silicon Photonic Receiver in 12-nm FinFET,” IEEE Solid State Circuits Lett, vol. 7, pp. 34–37, 2024.
12. 伊利诺伊大学香槟分校 UIUC Pavan Kumar Hanumolu教授,相关研究如下
a) 用于光学相干接收机的载波相位恢复环路:A. E. Abdelrahman, M. G. Ahmed, M. A. Khalil, M. B. Younis, K. S. Park, and P. K. Hanumolu, “12.3 A Carrier-Phase-Recovery Loop for a 3.2pJ/b 24Gb/s QPSK Coherent Optical Receiver,” in IEEE International Solid-State Circuits Conference, 2023, pp. 208–210.
b) 高灵敏度光学接收机:M. G. Ahmed, D. Kim, R. K. Nandwana, A. Elkholy, K. R. Lakshmikumar, and P. K. Hanumolu, “A 16-Gb/s -11.6-dBm OMA Sensitivity 0.7-pJ/bit Optical Receiver in 65-nm CMOS Enabled by Duobinary Sampling,” IEEE J Solid-State Circuits, 2021.
13. 特拉华大学 University of Delaware Vishal Saxena教授,相关研究如下
a) 基于网格的可配置模拟光学处理器:M. J. Shawon and V. Saxena, “A Silicon Photonic Reconfigurable Optical Analog Processor (SiROAP) with a 4x4 Optical Mesh,” in 2023 IEEE International Solid- State Circuits Conference (ISSCC), IEEE, Feb. 2023, pp. 222–224.
b) 基于Verilog-A紧凑模型的快速光子集成回路仿真:M. J. Shawon and V. Saxena, “Rapid Simulation of Photonic Integrated Circuits Using Verilog-A Compact Models,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 10, pp. 3331–3341, Oct. 2020.
14. 罗切斯特大学 University of Rochester Hui Wu教授,相关研究如下
a) 光学相控阵的级联子阵列设计和控制方法:W. Wang et al., “Cascaded subarray design and control method for power efficient, thermal crosstalk optimized optical phased array,” Opt Express, vol. 31, no. 23, p. 37381, Nov. 2023.
b) 过耦合微环移相器及其微环协助马赫曾德尔调制器应用:M. Gong and H. Wu, “Silicon Highly Over-Coupled Microring Phase Shifter and Its Application in Ring Assisted Mach-Zehnder Modulator,” Journal of Lightwave Technology, vol. 41, no. 22, pp. 6987–6996, Nov. 2023.
15. 加州大学洛杉矶分校 UCLA Ken Yang教授,相关研究如下
a) 脉冲相干激光雷达:L.-Y. Chen, A. K. Vinod, J. McMillan, C. W. Wong, and C.-K. K. Yang, “A 9-μm Precision 5-MSa/s Pulsed-Coherent Lidar System With Subsampling Receiver,” IEEE Solid State Circuits Lett, vol. 3, pp. 262–265, 2020.
b) 脉冲相干激光雷达:L.-Y. Chen, A. K. Vinod, J. F. McMillan, H. Yang, C. W. Wong, and C.-K. K. Yang, “A Pulsed-Coherent Lidar With Sub-10 μ m Precision,” IEEE J Solid-State Circuits, vol. 57, no. 8, pp. 2486–2497, Aug. 2022.
16. 德州大学奥斯汀分校 UT Austin 教授David Pan,相关研究如下
a) 用于高速计算的光电逻辑单元:Z. Ying et al., “Electronic-photonic arithmetic logic unit for high-speed computing,” Nat Commun, vol. 11, no. 1, p. 2154, May 2020.
b) 高性能光学神经存内计算:H. Zhu et al., “ELight: Toward Efficient and Aging-Resilient Photonic In-Memory Neurocomputing,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 42, no. 3, pp. 820–833, Mar. 2023.
17. 加州大学圣地亚哥分校 UCSD Tzu-Chien Hsueh教授,相关研究如下
a) 基于光梳的单片光电融合线性代数加速器:T.-C. Hsueh, Y. Fainman, and B. Lin, “ChatGPT at the Speed of Light: Optical Comb-Based Monolithic Photonic-Electronic Linear-Algebra Accelerators,” Nov. 2024.
b) 用于下一代大规模MIMO的单片硅光线性代数加速器:T.-C. Hsueh, Y. Fainman, and B. Lin, “Monolithic Silicon-Photonics Linear-Algebra Accelerators Enabling Next-Gen Massive MIMO,” Feb. 2024.
18. 科罗拉多州立大学 Colorado State University Mahdi Nikdast教授,相关研究如下
a) 相干集成光学神经网络的剪枝技术:S. Banerjee, M. Nikdast, S. Pasricha, and K. Chakrabarty, “Pruning Coherent Integrated Photonic Neural Networks,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 29, no. 2: Optical Computing, pp. 1–13, Mar. 2023, doi: 10.1109/JSTQE.2023.3242992.
19. 蒙特利尔理工大学 Polytechnique Montréal Gabriela Nicolescu教授,相关研究如下
a) 光学非线性激活函数综述:O. Destras, S. Le Beux, F. G. De Magalhães, and G. Nicolescu, “Survey on Activation Functions for Optical Neural Networks,” ACM Comput Surv, vol. 56, no. 2, pp. 1–30, Feb. 2024.
20. 亚利桑那州立大学 Arizona State University Jiaqi Gu教授,相关研究如下
a) 具备跨层扩展能力的微环光神经网络:J. Gu et al., “SqueezeLight: A Multi-Operand Ring-Based Optical Neural Network With Cross-Layer Scalability,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 42, no. 3, pp. 807–819, Mar. 2023.
b) 基于机器学习的光学张量核:J. Gu, H. Zhu, C. Feng, Z. Jiang, R. T. Chen, and D. Z. Pan, “M3ICRO: Machine Learning-Enabled Compact Photonic Tensor Core based on PRogrammable Multi-Operand Multimode Interference,” May 2023.
21. 加拿大多伦多大学 University of Toronto Tony Chan Carusone教授,相关报道如下
a) 光电共封装:https://www.youtube.com/watch?v=Xt-GY8Pkt6g Co-Packaged Optics for our Connected Future
22. 加拿大康考迪亚大学 Concordia University Sébastien Le Beux教授,相关研究如下
a) 具有距离感知能力的近似纳米光学互连:J. Lee, C. Killian, S. Le Beux, and D. Chillet, “Distance-aware Approximate Nanophotonic Interconnect,” ACM Transact Des Autom Electron Syst, vol. 27, no. 2, pp. 1–30, Mar. 2022.
23. 超微半导体公司 AMD,相关研究如下
a) 光电融合多波长接收机:M. Raj et al., “A O.96pJ/b 7 × 50Gb/s-per-Fiber WDM Receiver with Stacked 7nm CMOS and 45nm Silicon Photonic Dies,” in IEEE International Solid- State Circuits Conference (ISSCC), Feb. 2023, pp. 11–13.
24. 国际商务机器公司 IBM,相关研究如下
a) 单片集成光电融合开关阵列:J. E. Proesel et al., “A Monolithically Integrated Silicon Photonics 8×8 Switch in 90nm SOI CMOS,” in 2020 IEEE Symposium on VLSI Circuits, IEEE, Jun. 2020, pp. 1–2.
b) 基于硅光芯片的甲烷吸收光谱仪:L. Tombez, E. J. Zhang, J. S. Orcutt, S. Kamlapurkar, and W. M. J. Green, “Methane absorption spectroscopy on a silicon photonic chip,” Optica, vol. 4, no. 11, p. 1322, Nov. 2017.
25. 博通公司 Broadcom,相关研究如下
a) 通过光电融合拓展摩尔定律:V. Raghunathan, K. Muth, B. Vinnakota, P. Venugopal, R. Schaevitz, and M. Mehta, “SCIP to the Next Generation of Computing: Extending More than Moore with Silicon Photonics Chiplets in Package (SCIP),” in 2022 23rd International Symposium on Quality Electronic Design (ISQED), IEEE, Apr. 2022, pp. 1–6.
26. 谷歌公司 Google,相关研究如下
a) 采用光学可配置的超级计算机:N. Jouppi et al., “TPU v4: An Optically Reconfigurable Supercomputer for Machine Learning with Hardware Support for Embeddings,” in Proceedings of the 50th Annual International Symposium on Computer Architecture, New York, NY, USA: ACM, Jun. 2023, pp. 1–14.
27. 因特尔公司 Intel,相关研究如下
a) 密集波分复用光电融合发射机:C. S. Levy et al., “8- λ × 50 Gbps/λ Heterogeneously Integrated Si-Ph DWDM Transmitter,” IEEE J Solid-State Circuits, vol. 59, no. 3, pp. 690–701, Mar. 2024
b) 用于光电合封的光学引擎:S. Fathololoumi et al., “1.6 Tbps Silicon Photonics Integrated Circuit and 800 Gbps Photonic Engine for Switch Co-Packaging Demonstration,” Journal of Lightwave Technology, vol. 39, no. 4, pp. 1155–1161, Feb. 2021.
28. 英伟达公司 NVIDIA,相关研究如下
a) CPO的未来展望:B. G. Lee, N. Nedovic, T. H. Greer, and C. T. Gray, “Beyond CPO: A Motivation and Approach for Bringing Optics Onto the Silicon Interposer,” Journal of Lightwave Technology, vol. 41, no. 4, pp. 1152–1162, Feb. 2023.
以上名单只是一个不完整的列表,还有不少机构可能被遗漏了。众多北美顶级大学和公司均投入了光电融合的研究。除了以上以集成电路为基础开展光电融合的研究组外,Caltech、MIT、Stanford、UC Davis、UCSB、McGill等大学还有若干研究组基于传统集成光子开展光电融合相关研究,UCSB的John Bowers教授还在今年的ISSCC会议上发表了基于量子点锁模光梳的短距数据传输文章。TSMC、ST Microelectronics、Global Foundry、IMEC等也在大力发展光电融合技术。日本、瑞士、荷兰、英国、德国、意大利、新加坡等发达国家也争相加大对该研究领域的资助。光电融合是集成电路和集成光子共同的未来。从集成电路出发发展光电融合技术是国际上的主流技术途径之一,已经在人工智能、医疗传感、量子技术、数据传输等领域展现巨大的发展潜力,光电融合芯片设计有望成为集成电路设计领域的新蓝海。
稿件来源:华科光电融合芯片实验室|www.ephic.net
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-24 06:27
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社