全球变化- 杨学祥工作室分享 http://blog.sciencenet.cn/u/杨学祥 吉林大学地球探测科学与技术学院退休教授,从事全球变化研究。

博文

核试验引发气候变化及粮食减产:与深海巨震导致气候变冷原理相同

已有 868 次阅读 2024-3-2 15:46 |个人分类:全球变化|系统分类:论文交流

核试验引发气候变化及粮食减产:与深海巨震导致气候变冷原理相同

                                                                杨学祥

关键提示

       池德龙研究员最近指出,核试验引发气候变化及粮食减产:核爆中生成的放射性物质会增加大气电导率,增强大气对流。朝鲜于2024年1月19日在黄海北部的水下核试验可能触发北半球低温与粮食作物减产。

http://www.news.cn/mrdx/2024-01/20/c_1310761225.htmhttps://blog.sciencenet.cn/home.php?mod=space&uid=3474929&do=blog&id=1412371

       这与郭增建研究员提出的“深海巨震调温效应”有异曲同工之妙。水下核试验将深海冷水上翻到海洋表面,导致气温变冷和相应灾害。

https://blog.sciencenet.cn/home.php?mod=space&uid=2277&do=blog&id=1423799

20041226日印尼地震海啸后,全球低温冻害和暴雪灾害频繁发生。“潮汐调温说”和“深海巨震降温说”是一种合理的解释。根据“潮汐调温说”和“深海巨震降温说”理论,2005年以后全球气温将因为地震海啸和强潮汐南北震荡而降低。200911月至20101月低温暴雪袭击北半球,西方科学家也承认2000-2010年气候的自然变化抵消了全球气候变暖效应这一客观事实。潮汐振荡可以解释全球气温的准60年变化,海洋及其边缘的强震能够将深海冷水翻上表面,使全球气候变冷。所以,强震和强潮汐与低温密切相关。

北半球2010年初受到强烈寒流和创纪录的大雪侵袭,从中国、韩国到俄罗斯,从西欧到美国大平原,都因酷寒和暴雪而遭灾。亚洲东北部雪势最严重,使这个地区陷入六十年来最严酷的冬天,全球变暖面临空前的挑战。

 

1.       海洋对气候变化的影响

 

        计算表明,每立方米的水和空气温度降低一度所释放的能量分别为4180000J1290J,前者是后者的3240倍。这个巨大差别可从海洋性气候和大陆性气候的比较中看到。瓦伦西亚岛和赤塔同在北纬52度附近,前者位于爱尔兰的大西洋岸,属于海洋性气候,后者位于亚洲大陆内部,属于大陆性气候。虽然纬度相近,但温差在一年内的分布相差悬殊。一年内最冷和最热月份温度的差值,在瓦伦西亚只有7.9度,在赤塔则为46.1度,大于前者5.5倍之多。前者年均温度为摄氏10.3度,后者为零下3度,差值为13.3度。这说明海洋的内能多于大陆,海洋是大气热量的主要供应者[1-3]

海水因为含有平均约3.5%的盐分,所以它的最大密度约出现在摄氏负2度左右,恰好与海水开始结冰的温度很接近。两极临近结冰的海水密度最大,源源不断地沉入两极海底,自转离心力使较重的海水向赤道海底运动,形成全球巨厚的海底冷水层。由于太阳辐射不能进入这个领域,“冷”被安全地封存在海底,冷水领域还不断扩大。赤道海水表层热水在上、冷水在下,垂直方向只有热传导、没有热对流。我们称这个过程为海底藏冷效应。有证据表明,随着热幔柱喷发强度的减弱,近一亿年间海洋底层水冷却了摄氏15度,大气冷却了10~15[16]。目前海洋底层温度为摄氏2度,它为大气提供了充足的冷源[1-3]

                  

2.       强潮汐降温作用

 

在十五世纪至十七世纪的二百余年内,全球强震发生频繁,其它自然灾害也很集中,如瘟疫流行,低温冻害严重,被称为小冰期时期。这个时期也正是太阳黑子蒙德极小值时期[4],太阳活动处于低值状态,有人把它看作是小冰期气候产生的原因。

2000年查尔斯·季林(Keeling)提出,强潮汐把海洋深处的冷水带到海面,使全球气候变冷,形成的全球气候波动周期大约为1800年。季林认为,地球、月亮和太阳相对位置的变化会引起潮汐强度的逐渐变化,其周期与邦德提出的“气候周期”是一致的。当日、地、月排成一线且相互距离最小时,日月引潮力相互加强而变为最大,地球海洋潮汐规模也最大,这时就有更多来自海洋深处的冷水被带到海面。这些冷水可以冷却海洋上的空气。当日、地连成的直线与月、地连成的直线相互垂直时,太阳潮汐减弱月球潮汐,使地球海洋潮汐变小,这时海洋深处的冷水很难被带到海面,世界就变得暖和。据季林的计算,大约在1425年即小冰期的末期,潮汐达到了最大值,从那以后逐渐减弱,直到3100年潮汐又达到最大值。这个周期是过去1万年气候变迁的主要动力。这个效应使地球的温暖期从小冰期末期一直持续到24世纪,而后随着潮汐的增强,地球的气候将逐渐变冷[5-6]

潮汐高低潮还有200年左右的明显周期变化。其中,1425年、1629年两次峰值对应小冰期时期,1770年的峰值对应18世纪的低温,1974年的峰值对应20世纪70年代的气候变冷。特别是54-56年周期(太平洋十年涛动周期),在全球气候变化中有非常明显的作用[3]

目前处于1800年周期中的变暖高峰,200年周期中的变冷初期,60年周期中的30年变冷中期阶段,2020年为变冷高峰,类似20世纪60-70年代的变冷期。

 

3.       深海巨震降温

 

2002年郭增建提出“深海巨震降温说”:海洋及其周边地区的巨震产生海啸,可使海洋深处冷水迁到海面,使水面降温,冷水吸收较多的二氧化碳,从而使地球降温近20年。20世纪80年代以后的气温上升与人类活动使二氧化碳排放量增加有关,同时这一时期也没有发生巨大的海震。巨震指赤道两侧各40o范围内的8.5级和大于8.5级的海震[7]20041226日印尼地震海啸后,全球低温冻害和暴雪灾害频繁发生。郭增建的“深海巨震降温说”是一种合理的解释。

郭增建等人指出,9级和9级以上地震与北半球和我国的气温有很好的相关性。1868年以后的北半球温度下降与1868年和1877年间的智利两个Mt9.0级大地震有关。1900年以后的北半球的温度下降可能与1906年厄瓜多尔Mw8.8级大地震以及太平洋和印度洋周围大量Ms8级以上的大地震的数量特多有关。1952年之后的温度短时下降以及1960年以后的明显的长时段下降可能与1952195719601964年的4Mw9.0~9.5级的环太平洋大地震有关。由于1960年智利特大地震为Mw9.5级,1964年阿拉斯加大地震为Mw9.2级,所以1960年以后北半球和中国气温下降明显,而且持续时间也很长。1833年苏门答腊9级地震、1837年智利瓦尔的维西9.25级地震和1841年堪察加9级地震组成一个9级以上地震小高潮,对应1833年之后气温的低水平段[8]

20041226日印尼苏门答腊9.1级特大地震和海啸拉开了新一轮9级地震的序幕,200520072012年又连续发生38.5级以上地震,2011227日智利发生8.8级地震,2011311日日本发生9级地震。

我们在2008年指出,2004-2018年是全球特大地震频发期[9],目前已经得到完全证实。根据深海巨震降温说,2004-2018年的特大地震频发将导致2020年前后全球气温变冷进入高峰。

 

4.       拉马德雷冷暖周期中的海温变化

 

“拉马德雷”(Lamadre )是一种高空气压流,在气象学和海洋学上被称为“太平洋十年涛动”(PDO),其“暖位相”和“冷位相”两种形式分别交替在太平洋上空出现,每种现象持续近二十年至三十年。近一个世纪以来,Lamadre 已经出现了两个完整的周期。第一周期的“冷位相”发生在1890年—1924年,而“暖位相”发生在1925年—1945年;第二周期的“冷位相”发生在1946年—1976年,而“暖位相”发生在1977年—1999[22]2000年进入第三周期的“冷位相”。Lamadre是西班牙语“母亲”的意思,即她是El NinoLa Nina的母亲。其形成原因尚待研究。

西北太平洋十年际气候变化受PDO(亦称拉马德雷现象)支配。PDO的特点在于海水表面温度,海平面气压及风场的变化。PDO可分为暖位相(暖相)和冷位相(凉相)。PDO位于暖位相时,赤道附近及北美洲沿岸的海水表面温度异常温暖,北太平洋中部的海水表面温度则异常清凉。PDO的冷位相与暖位相的海水表面温度相反。每个PDO的位相一般持续20-30年。在PDO暖位相和冷位相时,冬天海平面温度(颜色代表),海平面气压(等线代表)以及海表风力(箭头代表)异常的典型分布,见图1

拉马德雷冷暖位相图示

     太平洋十年涛动的暖位相(暖相)和冷位相(凉相)温度、气压和风力分布

香港天文台。气候变化。香港天文台制作的《气候变化》教材。http://203.129.68.8/climate_change/resources_c.htm

          西北太平洋海温变化导致北极涛动异常,是拉马德雷冷位相时期北半球低温暴雪频发的重要原因,巨大的温差导致北极寒流南下,形成中国严重低温冻害,如1947-1976年拉马德雷冷位相时期的1954、1957、1969、1972、1976、1977年,2000-203年拉马德雷冷位相时期的2008年。它们都是拉尼娜年或厄尔尼诺年。2012年厄尔尼诺发生后,中国的低温冻害值得关注。http://blog.sciencenet.cn/blog-2277-557178.html

https://blog.sciencenet.cn/blog-2277-609964.html

 

    全球变暖导致未来特大地震会更加频繁

       世界气象组织昨日发布了初步的《2023全球气候状况报告》,宣布这是有记录以来人类历史上最热的一年。根据截至10月底的数据,2023年的平均气温比工业化前(1850-1900年)的基线高出约1.4摄氏度(不确定幅度为±0.12摄氏度)。值得一提的是,此前在2016年和2020年也被列为最热年份,但相较于这两个年份而言,2023年的升温更加严重,并且差距很大,因此最后两个月不太可能影响到排名。报告显示,地球上的温室气体水平达到了历史新高,大气中的二氧化碳水平已经比工业化前时代高出50%。与此同时,海平面也创下了历史新高,并且还在加速上升。由于海洋持续变暖以及冰川和冰盖的融化,在过去十年里(2013年至2022年),海平面上升的速度是卫星记录的第一个十年(1993年至2002年)的两倍多。

1860-2023年全球气温变化.png     

图2 1860-2023年全球气温变化

        关键的问题是,全球气温变化曲线是波动上升的,二氧化碳变化曲线是递增不减的,两者差距太大,表明温室气体不是影响全球气温的唯一因素,存在其他因素的影响(见图2)。

1850-2010年温室气体变化.jpg

      图3 1850-2010年温室气体浓度变化预测  

 

     郭增建的“深海巨震降温假说”

深海地震降温:2002年中国科学家郭增建提出了“深海巨震降温效应”,2004-2018年地球进入特大地震集中爆发时期:

郭增建的“深海巨震降温说”:海洋及其周边地区的强震产生海啸,可使海洋深处冷水迁到海面,使水面降温,冷水吸收较多的二氧化碳,从而使地球降温近20年。20世纪80年代以后的气温上升与人类活动使二氧化碳排放量增加有关,同时这一时期也没有发生巨大的海震。巨震指赤道两侧各40度范围内的8.5级和大于8.5级的海震。

太阳能量长期积累因素:杨学祥和杨冬红分别在1997-2011年提出了“海底藏冷相应”、“海洋锅炉效应”、“拉马德雷冷位相灾害链”、200年和准60年“潮汐降温效应”。

海水因为含有平均约3.5%的盐分,所以它的最大密度约出现在摄氏负2度左右,恰好与海水开始结冰的温度很接近。两极临近结冰的海水密度最大(溶解度也最大,含有大量温室气体),源源不断地沉入两极海底,自转离心力使较重的海水向赤道海底运动,形成全球巨厚的海底冷水层和温室气体贮存层。由于太阳辐射不能进入这个领域,”和温室气体被安全地封存在海底,冷水领域还不断扩大。赤道海水表层热水在上、冷水在下,垂直方向只有热传导、没有热对流。随着海洋冷水区的不断扩大和赤道海洋表层热水区的不断缩小,赤道和两极的温差也不断加大,形成中、高纬度地区的冰盖和冰川。我们称这个过程为海底藏冷效应。它是海气相互作用的典型范例,大气中的冷能”和高浓度温室气体由此而进入海洋。冰雪反射太阳辐射,随着冰雪面积的不断扩大,地表接受到的太阳能量越来越少,使大气和海洋越来越冷,冰期有一个长期的冷积累”和碳贮存过程。

  由于内核相对地壳地幔的差异旋转,太阳辐射达到最大值时使核幔角动量交换达到高峰,部分旋转动能转变为热能积累在核幔边界赤道区(此处核幔速度差最大,积累的热能最多)。超级热幔柱(羽)由核幔边界赤道热区升起,在海底赤道区喷发,加热了底层海水和冷水中的温室气体,并引发赤道和两极之间的海洋整体热循环和碳循环,降低了赤道和两极大气的温差,使两极的海温和气温逐渐上升到冰点以上,深海冷水贮存的温室气体也释放到大气,消除了海洋藏冷效应的冷源”和碳源,形成全球无冰温暖气候,产生晚白垩纪赤道海洋表层低温之谜(当时温度为摄氏21度,比现代低6.5度)。我们称这个过程为海洋锅炉效应。有证据表明,随着热幔柱喷发强度的减弱,近一亿年间海洋底层水冷却了摄氏15度,大气冷却了10~15度。这是典型的地、海、气相互作用。计算表明,一亿二千万年前形成翁通爪哇海台的海底热幔柱喷发,其释放的热量可使全球海水温度增高33度,喷发过程经历了几百万年时间。有证据表明,在古新世末不到6000年的时间内大洋底层水增温4度以上。海底火山活动引发的深海热对流在全球气候变化中的作用不容忽视[2-8]

  值得一提的是,海底热幔柱不仅给大气带来核幔边界的热量和温室气体,也带来海底碳酸盐、海底油气资源和海水中贮存的温室气体,其规模要远远大于人类燃烧化石燃料所释放的温室气体。

http://guancha.gmw.cn/content/2007-12/25/content_715516_2.htm 

http://blog.sciencenet.cn/blog-2277-736985.html

 http://blog.sciencenet.cn/blog-2277-521283.html

 

 图4  海底藏冷效应和海洋锅炉效应,伴随温室气体在海底的积累和释放

    全球进入特大地震活跃期

根据百年来地震历史记录,8.5级以上地震集中发生在拉阿德雷冷位相时期,是地震活跃的主要标志,7级或8级地震为标准分辨不出地震的活跃度(震级差一级,所释放的能量差30倍,即9级地震释放的能量是8级地震释放能量的30倍)。2006年我们给出了全球地震进入活跃期的地震分布证据: 

1  8.5级以上强震集中在拉马德雷(PDO)冷位相时期

   

1890-1924

1925-1946

1947-1976

1977-1999

2000-2030

拉马德雷

冷位相

暖位相

冷位相

暖位相

冷位相

地震次数

64

11

117

00

66

注:括号()内为国外数据,[]内数据为最新数字。

1889年以来,全球大于等于8.5级的地震共2418)次。在1889-1924PDO“冷位相发生61900年以来国外数据:4)次,在1925-1945PDO“暖位相发生11)次,在1946-1977PDO“冷位相及其边界发生11(7)次,在1978-2003PDO“暖位相发生0次,在2004-2012PDO“冷位相已发生6次。规律表明,PDO冷位相时期是全球强震的集中爆发时期和低温期。2000年进入了PDO冷位相时期,2000-2030年是全球强震爆发时期和低温期。2000-2016年是8.5级以上特大地震的活跃期。

2006年的预测已经得到证实,目前8.5级以上强震已由2006年的2次增加到6次,郭增建的深海巨震降温说PDO冷位相与低温冻害对应的物理原因。以8.5级地震为标准,很好地区分了地震活跃期和间歇期,并对地震活动的增强有预测作用,实用价值很大。

http://bbs.sciencenet.cn/home.php?mod=space&uid=2277&do=blog&id=559756

http://blog.sciencenet.cn/blog-2277-560298.html 

2  1890年以来特大地震活跃期和拉马德雷(PDO)冷位相对应关系

年代

8.5级以上地震次数

9级以上

地震次数

PDO时间位相

气候冷暖

 地震

全球

中国

1890-1924

64

1

0

1890-1924

低温期

 活跃期

1925-1945

11

0

0

1925-1946

温暖期

1946-1977

117

1

4

1957-1976

低温期

 活跃期

1978-1999

00

0

0

1977-1999

温暖期

2000-2012

66

0

2

2000-2030

低温期?

 活跃期

特大地震为Ms 8.5级以上强震,括号内为国外数据,?表示预测

我们在2006年确定的地震活跃期判定标准正在被学术界接受,得到相关部门和专家的认同。2006年的预测已经得到证实,目前8.5级以上强震已由2006年的2次增加到6次。

2023-2025年为月亮赤纬角最大值时期,2024-2025年为太阳黑子峰值,预计2023-2025年全球进入新的特大地震活跃期。

http://blog.sciencenet.cn/blog-2277-970946.html

表3 1890-2012年全球8.5级以上地震与拉马德雷冷位相和月亮赤纬角极值的对应性 

序号

地震时间

地震地点

震级

拉马德雷

月亮赤纬角

1895-1897

发生1次

冷位相

最大值

1

1896-06-15

日本

8.5

冷位相

1904-1906

发生1次

冷位相

最小值

2

1906-01-31

厄瓜多尔

8.8

冷位相

1913-1915

未发生

冷位相

最大值

1922-1924

发生2次

冷位相

最小值

3

1922-11-11

智利

8.5

冷位相

4

1923-02-03

俄罗斯堪察加半岛

8.5

冷位相

1931-1932

未发生

暖位相

最大值

5

1938-02-01

印尼班大海

8.5

暖位相

1940-1942

未发生

暖位相

最小值

1950-1952

发生2次

冷位相

最大值

6

1950-08-15

中国西藏

8.6

冷位相

最大值

7

1952-11-04

俄罗斯堪察加半岛

9.0

冷位相

最大值

8

1957-03-09

阿拉斯加

8.6

冷位相

1959-1960

发生1次

冷位相

最小值

9

1960-05-22

智利

9.5

冷位相

最小值

10

1963-10-13

俄罗斯库页岛

8.5

冷位相

11

1964-03-27

阿拉斯加威廉王子湾

9.2

冷位相

12

1965-02-04

阿拉斯加

8.7

冷位相

1968-1970

未发生

冷位相

最大值

1977-1979

未发生

暖位相

最小值

1986-1988

未发生

暖位相

最大值

1995-1997

未发生

暖位相

最小值

2005-2007

发生3次

冷位相

最大值

13

2004-12-26

印尼苏门答腊

9.1

冷位相

最大值

14

2005-03-28

印尼苏门答腊

8.6

冷位相

最大值

15

2007-09-12

印尼苏门答腊

8.5

冷位相

最大值

16

2010-02-27

智利

8.8

冷位相

17

2011-03-11

日本

9.0

冷位相

18

2012-04-11

印尼苏门答腊

8.6

冷位相

2014-2016

2023-2025

2032-2034

2041-2043

未发生

概率最大

概率大

概率最小

冷位相

冷位相

冷位相

暖位相

最小值

最大值

最小值

最大值

https://en.wikipedia.org/wiki/Lists_of_earthquakes

http://blog.sciencenet.cn/blog-2277-970946.html

http://blog.sciencenet.cn/blog-2277-1226754.html

http://blog.sciencenet.cn/blog-2277-1276175.html 

https://blog.sciencenet.cn/blog-2277-1279553.html

https://blog.sciencenet.cn/blog-2277-1316505.html 

https://blog.sciencenet.cn/blog-2277-1334614.html

https://blog.sciencenet.cn/home.php?mod=space&uid=2277&do=blog&id=1423267

       对比图1和表1-3,全球气温低值时期与特大地震和拉马德雷冷位相有很好的对应关系。但是,由于2004-2012年特大地震强度相对较弱,只是形成气温短暂的平台期,比不上1960年智利9.5级最大地震引发的全球气温骤降,导致2000-2035年拉马德雷冷位相时期的全球气温一直较高,预示后期(2024-2035年)强震将频繁发生,拉马德雷冷位相对应气温下降,这就是自然规律。

 全球变暖导致地震火山活动频繁发生

据人民网2016113日报道,近日,美国国家航空航天局(NASA)专家预测称,60年后地球上将发生世界性洪水,大洋水平面将会上升2米,导致众多大城市被淹没。

海平面的加速上升,已经或行将成为海岸带的重大灾害。过去100年中世界海平面平均升高了12厘米左右。100年后,大约到2100年,海平面将上升1米。如果不采取防护措施,首先要淹没大片土地和许多沿海城市。位于其上的许多世界名城,例如纽约、伦敦、阿姆斯特丹、威尼斯、悉尼、东京、里约热内卢、天津、上海、广洲等等都将被淹没。南太平洋和印度洋中一些低平的岛国将处于半淹没状态。

http://city.shenchuang.com/guonei/20160113/300829.shtml

气象学家指出的全球变暖10大危害是,海平面上升、全球气温升高、海水温度升高、冰盖萎缩、海水酸化、积雪覆盖面积减少、极端气候事件等等。

http://news.mydrivers.com/1/462/462185.htm

气象学家忽略了地质学上的两项重要活动:地震和火山给人类带来的灾难。

事实上,由于全球变暖,导致冰川融化和海平面上升,改变了地表的物质分布,破坏了地表的地壳均衡,引发强烈的地震火山活动,给人类带来巨大的灾难。

我们在2011年撰文指出,强震与全球气候变化关系的地球物理解释是:全球冷暖变化导致的海平面升降,破坏了地壳的重力均衡,引起加载或卸载的海洋地壳均衡下沉或上升,并导致相应的水平运动。

冰川地壳均衡理论的发展:球面垂直运动可以产生水平运动

 

根据地质学的地壳均衡理论(单位均衡面上的物质柱体质量相等),大陆冰盖融化,负载减少,大陆地壳要均衡上升;海平面上升,负载增大,海洋地壳要均衡下降。斯堪的纳维亚半岛在1万年前有2000厚的冰盖融化,已经均衡上升了500,并将继续上升200。同样,全球平均海平面上升了130,洋壳均衡下降了43(地壳与水的密度比大约为31)。所以,斯堪的纳维亚半岛并没有因为海平面上升而被淹没。对于没有冰盖的大陆,海平面的实际上升仅87,减少了三分之一。洋壳下降挤压下方岩浆流向大陆地壳底部,使沿海大陆均衡上升。由于地球表面是球面,洋壳下降,球面半径缩小,洋壳将插入到大陆地壳之下,使大陆边缘受到挤压和抬升。

气候变化导致的冰川期与温暖期交替,形成地表巨量海水(大约100-200深海水层变化)在两极冰盖、大陆冰川和大洋海盆之间往返转移,相应的地壳均衡运动迫使地下软流层发生反向流动,推动地壳运动,达到地壳重力均衡。在地球的球面上,地壳均衡不仅能产生地壳的垂直运动,而且能产生地壳水平运动。

气候变化导致的冰川期与温暖期交替,形成地表巨量海水(大约100-200深海水层变化)在两极冰盖、大陆冰川和大洋海盆之间往返转移,相应的地壳均衡运动迫使地下软流层发生反向流动,推动地壳运动,达到地壳重力均衡。在地球的球面上,地壳均衡不仅能产生地壳的垂直运动,而且能产生地壳水平运动。

由图1中可以看到,两极生成的巨厚冰盖可以压裂地壳,形成两极地壳下沉和赤道地区的最大张裂;冰盖消失后,形成两极地壳的上升和赤道地区的挤压。相同的圆心角在不同半径的球面所对应的弧长是不同的,由于海水增加,海洋地壳AB弧下降到CD弧时,圆心角变大,只能发生两种结果:

其一、大洋地壳AB弧的多余部分插入大陆地壳之下,形成俯冲消减带,是地震频发的地区,其类型为环太平洋俯冲消减带和地震火山带。

其二、大洋地壳AB弧的多余部分象楔一样劈开大陆,推动大陆向两边分离,由AB弧扩张到AE弧,其类型为大西洋两岸的快速扩张。

其三、反之,当海洋地壳CD弧上升到AB弧时,由于弧长增大,其增大部分BE弧就是海底扩张产生的新洋壳。

 

            a 大洋海水减少                            b 大洋海水增加

1-新洋壳,计算时因忽略了与陆壳连接部分,因而计算值比实际值小;

2-旧洋壳,插入大陆壳下或推动大陆分离部分。

 

     图5  重力均衡造成的垂直运动和水平运动(据杨学祥,1988;杨冬红等,2011

 

当全球变暖使海平面上升积累到一定高度时,地壳均衡使洋壳下降收缩,强烈的挤压导致环太平洋地震火山带8.5级以上强震频发,搅动海底冷水上翻,使气候变冷,形成拉马德雷冷位相;当全球变冷两极冰盖增大使海平面下降到一定高度时,地壳均衡使洋壳上升在大洋中脊处扩张,这是强震在拉马德雷暖位相较少,甚至不发生的原因。

http://blog.sciencenet.cn/blog-2277-636574.html

我们在《地震和潮汐对气候波动变化的影响》一文中指出,强震与全球气候变化关系的地球物理解释是:全球变暖导致的海平面上升,破坏了地壳的重力均衡,引起加载的海洋地壳均衡下沉,由此而引发的深海强震和海啸又将迫使深海冷水上翻到海洋表面,从而将会引发全球变冷。这就是大自然的自调节作用。文章发表在《地球物理学报》2011年第4期上。

当全球变暖使海平面上升积累到一定高度时,地壳均衡使洋壳下降收缩,强烈的挤压导致环太平洋地震带8.5级以上强震频发,形成拉马德雷冷位相;当全球变冷两极冰盖增大使海平面下降到一定高度时,地壳均衡使洋壳上升在大洋中脊处扩张,这是强震在PDO暖位相较少,甚至不发生的原因。

http://blog.sciencenet.cn/blog-2277-655232.html

 https://blog.sciencenet.cn/blog-2277-1317459.html

历史记录表明,全球变暖——冰盖融化——海平面上升——海洋地壳均衡下沉——环太平洋地震火山带剧烈活动,构成全球变化的全过程。全球变暖最终导致的超级火山喷发,使全球面临类似恐龙灭绝的巨大灾难之中。

http://blog.sciencenet.cn/blog-2277-1025573.html

https://blog.sciencenet.cn/blog-2277-1423531.html

参考文献1

1.   RichardA. Kerr. End of the Sunspot Cycle? 2011-6-14,FollowScienceNOW on Facebookand Twitter.http://news.sciencemag.org/sciencenow/2011/06/end-of-the-sunspot-cycle.html

2.   杨冬红,杨学祥全球气候变化的成因初探地球物理学进展. 2013, 28(4): 1666-1677.

Yang X X, Chen D Y. Study oncause of formation in Earth’s climatic changes. Progress in Geophysics (inChinese), 2013, 28(4): 1666-1677.

3.   杨冬红,杨学祥。全球变暖减速与郭增建的“海震调温假说”。地球物理学进展。2008Vol. 23 (6): 18131818

Yang D H, Yang XX. The hypothesis of the ocesnic earthquakes adjusting climate slowdown ofglobal warming. Progress in Geophysics (in Chinese), 2008, 23(6): 1813-1818

4.   http://blog.sciencenet.cn/blog-2277-905236.html

5.   http://blog.sciencenet.cn/blog-2277-906205.html

6.  杨冬红杨学祥.北半球冰盖融化与北半球低温暴雪的相关性[J]. 地球物理学进展, 2014, 29(2): 610-615.

YANG Dong-hong, YANG Xue-xiang. Studyon the relation between ice sheets melting and low temperature in NorthernHemisphere. Progress in Geophysics. 2014, 29 (1): 610615.

https://blog.sciencenet.cn/blog-2277-1167815.html

https://blog.sciencenet.cn/blog-2277-1317061.html

参考文献2

 

1.       杨学祥陈殿友地球差异旋转动力学,  长春:吉林大学出版社,1998

2.       张家诚。气候变迁及其原因。北京:科学出版社,1976.

3.       杨冬红,杨德彬,杨学祥。地震和潮汐对气候波动变化的影响。地球物理学报。2011544):926-934.

4.       马宗晋杜品仁现今地壳运动问题[M]. 北京地质出版社, 1995, 10: 99-102.

5.       Keeling C D, Whorf T P. The 1800-year oceanic tidal cycle: A possible cause of rapid climate change [J]. PNAS, 2000, 97(8): 3814-3819.

6.       Fred Pearce, Tidal warming: Is the moon turning up the Earth’s thermostat? New Scientist, 2000, 166 2232: 12

7.       郭增建海洋中和海洋边缘的巨震是调节气候的恒温器之一[J]. 西北地震学报. 2002, 24(3): 287

8.       郭增建郭安宁周可兴地球物理灾害链[M]. 西安地图出版社, 2007: 111-114,146-158.

9.       杨学祥杨冬红全球进入特大地震频发期百科知识2008.07,《百科知识》2008/07, 8-9. http://www.jllib.cn/library/magazine/20080707k.htm

参考文献3

1.LiGuoqing.27.3-dayand13.6-dayatmospherictideandlunar forcing on atmosphericcirculation[J]. Adv.Atmos.Sci. 2005, 22:359-374.

2. 杨冬红,杨学祥.全球变暖减速与郭增建的“海震调温假说”.地球物理学进展.2008, Vol. 23 (6): 18131818YANG Dong-hong, YANG Xue-xiang. Thehypothesisoftheocesnicearthquakesadjusting climate slowdown ofglobalwarming.ProgressinGeophysics. 2008, 23 (6):18131818.

3. 杨学祥,杨冬红。20141-2月潮汐组合与雾霾对应的检验。2014天灾预测学术研讨会议论文集。2014224-237,万方数据库。

4. 杨冬红杨学祥.北半球冰盖融化与北半球低温暴雪的相关性[J]. 地球物理学进展, 2014, 29(2): 610-615.YANGDong-hong, YANG Xue-xiang.Studyontherelationbetween ice sheets melting and lowtemperatureinNorthernHemisphere.Progressin Geophysics. 2014, 29 (1): 610615.

5. 杨冬红,杨德彬。日食诱发厄尔尼诺现象的热-动力机制。世界地质。2010294):652-657.YangDH,YangDB. Thermal dynamic mechanism of ElNino induced by solareclipse.GlobalGeology(inChinese), 2010, 29 (4):652-657.

6. 杨学祥,杨冬红。2014-2016年月亮赤纬角最小值时期雾霾进入高发期。2013天灾预测总结研讨学术会议论文集。2013,万方数据库。

7. 杨冬红,杨德彬,杨学祥。地震和潮汐对气候波动变化的影响。地球物理学报。2011544):926-934. Yang D H,Yang D B, Yang X X, Theinfluenceoftidesandearthquakes in global climatechanges. ChineseJournalofgeophysics(inChinese),2011, 54(4): 926-934

8. 杨学祥,杨冬红。2013年中国雾霾高发的气象原因初探。科学家. 2014, (3):90-91.YANGXue-xiang,YANGDong-hong.MeteorologicalAnalysis of ReasonsCausing China's FrequentSmogWeatherin 2013. Technology andlife. 2014, (3): 90-91.

9. 杨冬红,杨学祥全球气候变化的成因初探地球物理学进展. 2013, 28(4):1666-1677.YangX X, Chen D Y. Study oncauseofformationin Earth’s climaticchanges. Progressin Geophysics (inChinese),2013,28(4):1666-1677.

10. 杨冬红,杨学祥澳大利亚夏季大雪与南极海冰三个气候开关地球物理学进展,2007,22(5):1680-1685.YangDH, Yang X X. Australiasnow in summer andthreeiceregulatorsfor El Nino events.ProgressinGeophysics (inChinese),2007,22(5):1680-1685.

https://blog.sciencenet.cn/blog-2277-1098409.html

https://wap.sciencenet.cn/blog-2277-1365056.html

相关评论

       

  • 2024-3-2 14:311 楼(回复楼主)赞|回复

  • 与海洋深震导致气候变冷原理相同。

    2024-3-2 14:342 楼(回复楼主)

https://blog.sciencenet.cn/home.php?mod=space&uid=2277&do=blog&id=1423799



https://blog.sciencenet.cn/blog-2277-1423823.html

上一篇:2024年3月2日午报:太阳黑子增加使厄尔尼诺指数进入上升区间
下一篇:2024年3月2日晚报:太阳黑子增加使厄尔尼诺指数进入快速上升区间
收藏 IP: 221.9.91.*| 热度|

3 宁利中 高宏 周少祥

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-7-8 14:53

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部