Nuclear Science and Techniques分享 http://blog.sciencenet.cn/u/sunhua189 NST报道核科学与技术研究领域的科学发现、技术创新和重要成果

博文

使用尖端的激光尾波场加速阐明核同质异能素的秘密

已有 1404 次阅读 2023-6-28 11:55 |系统分类:论文交流

Article title: Photonuclear production of nuclear isomers using bremsstrahlung induced by laser-wakefield electrons

文章标题:使用激光尾场加电子诱导的韧致辐射光核生产核同质异能素

DOI: 10.1007/s41365-023-01219-x

One sentence summary:

一句话概要:

This groundbreaking research unveils a novel method to investigate nuclear isomers using laser-wakefield accelerated electrons, paving the way for advancements in nuclear energy applications.

这项开创性的研究揭示了一种使用激光尾场加电子研究核同质异能素的新方法,为核能应用的进步铺平了道路。

2022_NST_Article_16_v1 科学网.jpg

Keywords:

关键词:

Photonuclear reactions; Laser plasma acceleration; Flux-averaged isomer ratio

光核反应; 激光等离子加速; 通量平均同质异能素比

The Novelty (What)

创新性(主要内容)

The study unveils a cutting-edge method for investigating nuclear isomers through the use of laser-wakefield accelerated (LWFA) electrons in photonuclear measurements, leveraging the unique environments created by the interaction between laser and target. Drawing from theoretical calculations and Geant4 simulations, researchers discovered the potential of the LWFA electron beam and its bremsstrahlung for photonuclear studies involving nuclear isomers. The main findings reveal that a stable electron beam with an energy of 78–135 MeV and a charge of 300-600 pC can be obtained from the Compact Laser Plasma Accelerator (CLAPA) laboratory experiments, enabling a new way to explore nuclear isomers and their potential applications. Additionally, a bremsstrahlung source with a peak intensity of 1019 photons/s can be generated. This innovative approach holds significant promise for future advancements in the study of nuclear isomers and further developments in their real-world applications.

本研究展示了一种借助激光尾场加LWFA)电子进行光核反应测量,从而研究核同质异能素的先进方法。该方法利用了激光与目标交互所产生的独特环境。基于理论计算和Geant4模拟,研究人员发现了LWFA电子束及其轫致辐射对于涉及核同质异能素的光核反应研究的潜力。主要发现显示,通过在CLAPA实验室进行的激光尾波加速实验,可以获得具有78-135 MeV能量和300-600 pC电荷的稳定电子束,为探索核同质异能素及其潜在应用开辟了新的途径。此外,还可以生成具有每秒1019光子峰值强度的轫致辐射源。这种创新方法对核同质异能素研究的未来进展及其实际应用的进一步发展具有重要意义。

The Background (Why)

研究背景(主要原因)

Nuclear isomers, which have been a subject of significant interest for over a century, are excited states of atomic nuclei with unique properties and potential applications. Despite their potential uses in nuclear clocks, nuclear batteries, and gamma lasers, previous research has faced limitations in the effective population and manipulation of nuclear isomers. Studying isomeric states in nuclear astrophysics can help us better understand the formation of elements in the universe and their role in the development of life. However, approaches to produce short-lived nuclear isomers are limited. This research addresses the knowledge gap by proposing a novel approach using laser-wakefield accelerated (LWFA) electrons for photonuclear measurements. The recent advancements in high intensity and high-repetition-rate laser systems have opened new research opportunities in this area, with laser-plasma interactions providing opportunities to overcome past limitations and explore the potential of nuclear isomers more effectively.

核同质异能素是原子核的激发态,具有独特的属性和潜在应用。一个多世纪以来,该研究领域已经引起了研究人员的极大关注。尽管它们在核时钟、核电池和伽玛射线激光器中有潜在的应用,但以往的研究在有效地产生和操控核同质异能素方面面临了限制。在核天体物理学中研究同质异能素可以帮助人们更深地理解宇宙中元素的形成以及它们在生活发展中的作用。然而,产生短寿命核同质异能素的方法有限。这项研究通过提出使用激光尾场加LWFA)电子进行同质异能素光核激发的新方法,解决了这一知识空白。高强度和高重复率激光系统的最新进展为该领域开辟了新的研究机会。激光-等离子体相互作用为克服过去的限制和更有效地探索核同质异能素的潜力提供了机会。

The SDG impact (Big Why)

SDG影响力(研究意义)

According to the International Energy Agency (IEA), global energy demand is projected to increase by 50% by 2050. This research can potentially lead to the development of more efficient energy sources like nuclear batteries, support advances in nuclear astrophysics to better comprehend the universe, and promote further innovations in nuclear technology. Hence, this groundbreaking study on nuclear isomers using laser-wakefield accelerated (LWFA) electrons directly contributes to SDG 7, which focuses on ensuring affordable and clean energy, by offering potential advancements in nuclear energy applications. Furthermore, the study also supports SDG 9, which aims to build resilient infrastructure, promote inclusive and sustainable industrialization, and foster innovation.

根据国际能源署(IEA)的数据,全球能源需求预计将在2050年增加50%。这项研究可能会导致开发出更高效的能源,如核电池,支持核天体物理学的进步,以更好地理解宇宙,并推动核技术的进一步创新。因此,这项使用激光尾场加LWFA)电子对核同质异能素的开创性研究直接有助于实现可持续发展目标7,侧重于确保能源的价格适中和清洁,通过提供核能应用的潜在进步。此外,该研究还支持可持续发展目标9,旨在建设有弹性的基础设施,推动包容和可持续的工业化,以及促进创新




https://blog.sciencenet.cn/blog-3474219-1393295.html

上一篇:[转载]致敬各行各业每一位科技工作者,致敬心中的每一束光
下一篇:重磅更新|NST期刊突破性进入Nuclear Science & Technology领域Q1区
收藏 IP: 121.228.208.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-26 18:01

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部