||
好的智能,重要的不是快和准,而是对和Right……
人、机、环境系统之间的相互作用产生了智能,这不仅是一个科学问题,也包含非科学部分的研究(如人文艺术、哲学宗教),其中,人是复杂系统,机是相对简单的系统,环境的涨落变化非常大,所以我们研究的人机环境系统既有“确定性”,又有“随机性”,就成为“复杂的巨系统”。钱学森先生认为针对“复杂的巨系统”人类目前还没有找到解决的一般原理和方法,人机融合系统的深度态势感知理论可能就是一种有益的尝试。
有人说:没有经过人机融合合作训练过的智能系统就是弱智系统。这句话的背后隐含着这样一个事实:当前,人与机是不同的,而且,两者之间是失调、失配的。其实,人机的职责分别在于准度和精度,准度涉及方向,精度关联过程。机器具有功能,产生不了能力,所以处理不了有意义有价值的联系,也没有形成默会的知识和常识。人与人沟通时,不说出的事物常常更重要,人机交互时则不然,主要是机器不了解这些潜在的前提和线索,只好左顾右盼,插浑打科,所聊非所聊,所答非所问,就像现在的聊天、问答机器人一样,没有主体性与客体性之间的理解揣摩,没有博弈性语言学,也没有主体间一对一的语义出现,只能够陈述有限的事实,不能够判断无限的价值。总之,人机中的时空、逻辑机制不一致是引发融合困难的关键,人机融合智能的瓶颈还是如何实现有理、有利、有节的节奏和韵律。
人机融合智能系统是一个资源调度中心,一个供给侧资源调度员,将人的湿件与机器的硬件、软件匹配起来,在任务环境中进行资源的分配和控制。就如同一个单位指挥调度机构,使得人、物、环境发挥更高的工效。即使同一个人在不同阶段的逻辑也不一定完全一致,机器最好能够在人犯糊涂时进行辅助矫正。人机系统要想充分发挥功能,就需要有相应各件的支持与配合。只有进行软硬湿结合,软件硬化,硬件软化,机件人化,人件机化才能最大程度发挥人机系统资源调度的作用,这就是适配性的问题。人的智能在于事前的无数据,机器的智能在于事后的有数据,而数据的价值和意义是由人确定的,所以是可变的,所以有机无人的数据是注定无用的。智能是一种虚实融合的非物质体,有实构,也有虚构,其中“非存在的有”就是虚构的重要组成成分。就像摄影、体育、科研、生活一样……这种“非存在的有”可以或诱发或唤醒出某种某程度理解之外的理解,并通过认知迁移、旋转变异出意料之外,进而形成一系列新的感、觉、受、动、察、知……
如果把人和机的智能都看成若干智能单元构成,那么人机融合则看成智能单元之间的交换,交换通畅无碍趋于稳定,则会形成稳定的融合价。需要强调的是,人、机的智能单元不同,人的是认知智能单元,机的是计算智能单元,认知包括感性和理性,计算主要与理性有关。认知是真实世界的反映表征,计算是符号系统的仿真模拟,而所有的仿真模拟都是近似的。如何把主客观有机统一起来,这就需要更深层次的探索和思考。
主观和意识都是一种心理性存在,而不是常规意义上的物理性存在,尽管它们依托在了动物物理性存在的高级形式——生理性存在平台上存在。但是,它们终究是存在,而不是非存在。人们通过使用它们不仅可以解释说明世界,而且还可以构建改变世界。所有的科学技术、宗教信仰、人文艺术都是通过这种心理性存在与各种物理性存在相互作用而衍生出来的。机器中的软件和硬件本身就是物理性存在,是为了被使用而存在着;而人及其智能永远不会为需要它的东西现存着,它被并入了利用它的系统存在者之中。机器总是具备某种功能,是If…then…do;而人是具有某种能力,是For…then…do。如果智能拥有做什么的能力,首先是因为人拥有能力。机器可用于制造,是being,但机器本身不存在去制造的冲动,机器绝不可能先行把自己置于制造之中。与此不同,能力是“为了……”的能力,是should,能力本身引导它做什么、如何做,能力自己把自身置于自己之所为。故而能力提供了理解人及其智能的新思路。为什么会产生人的智能?因为人的能力只有借助于智能才能实现;人为什么会有能力?因为人在世界中的存在是通过人的智能实现的。机器只能在某一场景环境中执行功能,但永远不能在一个情境世界之内生成能力,而人可以。在情境世界中人们可以感知到一种“内在关系”,该关系存在于图画和一些对象之间,而非概念和概念之间。无论这种“内在关系”存在于语词、对象还是概念之间,它都不能简单地被还原为视觉性质,它超越了视觉等“感觉”的状态空间范畴,形成了联想等“知觉”趋势特征向量空间。
在人机融合过程中,这些问题将会变得很重要:怎样进行人机功能分配?人机何时何处何方式进行何分配? 当人、机速度不匹配时,以人速为准较好还是以机速为准较好?人机怎样融合学习?人机怎样融合理解?人机怎样融合决策?人机怎样融合推理?人机怎样融合感知?人机怎样融合意图?数据、信息、知识、智能、智慧之间究竟是如何相互作用并转化的?
算法的实质是建立在计算逻辑基础上的理性思维,缺少非事实或反事实想象过程,即面向事实中对象、属性、关系不断变换调整的认知动态过程。显性的(明)态势感知常常是可以计算的,隐性的(暗)态势感知往往很难形成算法,但是可以被认知的,事实上,在许多态势下,认知的价值(角度)可以改变计算的事实。
因果关系,除了有事实上的,应该还有价值上的! 当前,语言(包括形式化符号语言)的作用被无限化了,比如人们虚构了所谓的自我意识这一概念,自我就是(个性)经历,意识就是(群体)经验。实际上,真实的知识、概念、意识不是来源于语言,而是人、物、环境之间的交互,语言就是一个工具,就像科学技术、人工智能一样,它们促进了人类的进步,也束缚着文明的进一步发展,所以人类的语言会有不断的突破和发展。
形式化的逻辑与意向性的逻辑不同,一个是being逻辑,一个是should逻辑,类比就是尝试把两张逻辑统一起来,而且should的“逻辑”常常是being的非逻辑。人机融合智能本质上就是处理这两种“逻辑”协同问题。即如何建立形式化计算+意向性算计混合模型。
深度态势感知在态势感知的概念里,“势”相对比较重要,如何从各种各样的状态变量空间里及时准确地推出“势”来,是众多智能领域研究者们梦寐以求的一件事,“有态无势”的评价结论实在是令人难以接受了! 针对这个跨越,有人用跨越神经科学与神学的界限之难都不为过。其实这与大多数人的学科背景有关:偏理工少人情世故!状态空间常常与客观事实有关,但大势所趋往往与主观价值相连,比如塞翁失马是态,焉知祸福则是势。也许态、势之间的转换不仅涉及归纳与演绎,而且还可能隐藏着主客观之间的类比关系。罗素曾这样来表述类比论证,“抽象的表述看来是这样的:我们由观察我们自己知道一种‘A引起B’形式的因果规律,其中A是一种‘思想’,而B是一个物理事件。我们有时观察到某种B却不能观察到任何A,我们于是推断出一个A”(注:Rosenthal编:《心之性质》,英国牛津大学出版社1991年版,第90页。)。反之呢?如果A是一种‘物理’,而B是一个心理事件……生活中,这些心物理转化的类比比比皆是:刻舟求剑、盲人摸象、望梅止渴、守株待兔等等。哈耶克曾说,“我们的结论必定是,对我们来说心智必然永远停留在物自体王国,在那里我们只能通过直接经验了解它,而永远不能完全解释或‘引申’到其它地方。即使我们可能知道我们经验的那种精神事件能够被运转自然其它部分的同样力量所生成,我们永远不能说,哪种特定的现实事件‘对应于’某一特定的精神事件。”于是,人类不可能完全认识这个宇宙及其各种事物。结论与康德类似,但用的是哈耶克自己的逻辑。他后来的经典概念就是:“理性不及”。司马贺(西蒙)也曾用“有限的理性”去解释正常的经济活动。尤其是用理性化方法去模拟仿真真实的人机环境系统,并且缺乏感性方面的辅助和引导,就像失去了语气和语用后的人类语言只剩下干巴巴的语法一样。
在态势感知中,态就像是符合各种逻辑的语法,而势更符合非逻辑的语义和语用。由态向势的转换,实质上就是由逻辑向非逻辑的转换,就是由客观实际向主观价值的转换。也是西方哲学中讨论的一个热点:他人何在(在我的意识中,还是在之外),亦即英美分析哲学主要关心的是他人之心的认知问题,简称他心问题,也就是我们怎样知道除我们自己之外存在着具有思想、感情和其他心理属性的人的问题。事物以数据、信息、知识方式进入主体,意义是主体基于经验对事、物的关系反应,给人们产生出各种关系模型和非关系框架,并以"情感->价值 + 事实->意义"模式来整合认知世界的过程,其结果表现为通情达理或实事求是,这也是从状态空间(内外)产生出趋势目的的过程。对这种意义关系变化的理解有两个维度。一个维度,凸显的客观的真实性,用“态势”一词。一个维度,强调的主观的意向性,用“势态”一词。
在西方伦理学界一般认为伦理学的基本问题有两个基准:一个是我们应该如何行动?另一个是我们应该成为什么样的人?前者以行为为中心,属于规范伦理学研究范畴,也是休谟之问的should问题;后者以行为者为中心,属于美德伦理学研究范畴,也是休谟之问的being问题。这与智能生成的基本问题:“事实与价值能否相符”是一致的。智能的生成将涉及到主观目的与行为动机,并与情境中的客观事实变化密切相关。产生智能不仅需要形式化的计算,更需要意识性的类比。掌握事实性与价值性的因果关系,深研人机融合智能,开展深度态势感知,将是智能研究的重大突破口之一。
科学和数学中的陈述乃是描述性的being,因为它们描述了客观事实;而伦理学和美学中的陈述则是评价性的should,因为它们被用来表达感觉和态度、指导行为,而不是陈述事实。而人机融合智能中的深度态势感知就是试图把二者像石榴籽一样紧紧地抱在一起!
是非之心,智也
视频:《追问人工智能》:从剑桥到北京
https://www.bilibili.com/video/av77720101
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-25 05:33
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社