||
客观地讲,小麦白粉病远比赤霉病防控起来要容易的多。小麦对白粉病的抗性分为两种:水平抗性(即广谱抗性,或者成株抗性)和垂直抗性(粗略地讲,一个白粉病生理小种对应一个抗性基因),前者是数量性状基因控制着的,后者是由单显性基因控制的。我们对发表于2015年10月以前的关于小麦抗白粉病基因定位的文章进行了总结,共发现了至少102个主效抗白粉病基因或等位基因,这些基因中有54个基因被命名(Pm1-Pm54),其中7个基因含有多个等位基因,即Pm1 (Pm1a-1e), Pm2 (Pm2a-2c), Pm3 (Pm3a-3j), Pm4 (Pm4a-4d), Pm5 (Pm5a-5e), Pm8 (Pm8 and Pm17)和Pm24 (Pm24a-24b),分别位于7A、5D、1A、4A、7B、1R和1D。根据紧密连锁分子标记的物理定位信息,对上述102个抗病基因或等位基因进行物理定位分析,确定了57个基因或等位基因在小麦染色体上的大致物理位置,这一信息对于聚合不同抗病基因创制多基因聚合的小麦新种质具有重要参考价值。另外,对成株型抗病基因定位结果进行总结,共报道了140个抗白粉病QTL,分布于小麦21条染色体上,其中4个QTL已被证实且已在部分地区或单位广泛应用,即Pm38/Lr34/Yr18/Sr57(7DS), Pm46/Lr67/Yr46/Sr55(4DL), Pm?/Lr27/Yr30/Sr2(3BS)和Pm39/Lr46/Yr29(1BL),为兼抗性小麦新品种选育提供了理论依据。
以上是我们总结的小麦抗白粉病基因定位研究进展,全文详见如下链接:
https://www.researchgate.net/profile/Jun_Guo53/publication/318814778_Molecular_and_physical_mapping_of_Pm_resistance_genes-A_review/links/598015240f7e9b8802ed2e53/Molecular-and-physical-mapping-of-Pm-resistance-genes-A-review.pdf
目前已经定位了这么多的抗病基因或QTL,究竟有多少真正能够应用到育种工作中?Bernardo这样总结道“While scientists have certainly learned how to map QTL routinely in crops, the ability to utilize the favorable alleles in breeding is not fully developed.”无论是新基因挖掘还是新种质创新,农业科研工作都是为新品种培育服务。
image-20180711174139499Fig. 2img上面命名的基因只到PM54,下面补上PM55,PM56,PM57,PM58,PM59,PM60。PM61是今天的第一条推送。
PM60以前我们推送过,生命的机制是多样的-由Pm60克隆想到的。
PM59, Characterization of Pm59, a novel powdery mildew resistance gene in Afghanistan wheat landrace PI 181356 (https://doi.org/10.1007/s00122-018-3067-9)
image-20180711170241276PM58, Identification of Pm58 from Aegilops tauschii (https://doi.org/10.1007/s00122-017-2874-8)
image-20180711170550956PM57,Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat.(https://doi.org/10.1007/s00122-017-2855-y)
image-20180711170713571PM56, Introgression of powdery mildew resistance gene Pm56 on rye chromosome arm 6RS into wheat(https://www.frontiersin.org/articles/10.3389/fpls.2018.01040/abstract)
image-20180711171341726Powdery mildew, caused by the fungus Blumeria graminis f. sp. tritici, represents a yield constraint in many parts of the world. Here, the introduction of a resistance gene carried by the cereal rye cv. Qinling chromosome 6R was transferred into wheat in the form of spontaneous balanced translocation induced in plants doubly monosomic for chromosomes 6R and 6A. The translocation, along with other structural variants, was detected using in situ hybridization and genetic markers. The differential disease response of plants harboring various fragments of 6R indicated that a powdery mildew resistance gene(s) was present on both arms of rye chromosome 6R. Based on karyotying, the short arm gene, designated Pm56, was mapped to the subtelomere region of the arm. The Robertsonian translocation 6AL•6RS can be exploited by wheat breeders as a novel resistance resource.
Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat.
image-20180711172037086已经克隆的白粉病抗病基因有PM2, PM3b,PM8, PM21,PM60.如果有遗漏还请留言补充。
下面是3篇2017年的毕业论文,供参考,可以在知网上下载。
1 杨立军 武汉大学 博士 《小麦品种抗白粉病和条锈病性评价及其抗性QTL定位》
2 徐晓丹 中国农业大学 博士 《5份小麦农家品种的抗白粉病基因分析及定位》
3 赵鹏宇 西北农林科技大学 硕士《两个小麦新种质抗白粉病基因的遗传分析和染色体定位》
最后,最重要的是随手再送给大家一个链接(https://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp)。
应该有不少人知道,但是应该还有更多人不知道。
参考文献
Guo, J., Zhao, Z., Song, J., Liu, C., Zhai, S., Li, H., et al. 2017. Molecular and physical mapping of powdery mildew resistance genes and QTLs in wheat: A Review. Agricultural Science & Technology: 18(6), 965-970.
Bernardo, R. 2008. Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Sci. 48:1649-1664.