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K is an executable semantic framework in which programming languages, calculi, as well

as type systems or formal analysis tools can be defined, making use of configurations, com-

putations and rules. Configurations organize the system/program state in units called cells,

which are labeled and can be nested. Computations carry “computational meaning” as spe-

cial nested list structures sequentializing computational tasks, such as fragments of program;

in particular, computations extend the original language or calculus syntax. K (rewrite) rules

generalize conventional rewrite rules by making explicit which parts of the term they read,

write, or do not care about. This distinction makes K a suitable framework for defining truly

concurrent languages or calculi, even in the presence of sharing. Since computations can

be handled like any other terms in a rewriting environment, that is, they can be matched,

moved from one place to another in the original term, modified, or even deleted, K is partic-

ularly suitable for defining control-intensive language features such as abrupt termination,

exceptions, or call/cc.

This paper gives an overview of the K framework: what it is, how it can be used, and

where it has been used so far. It also proposes and discusses the K definition of Challenge,

a programming language that aims to challenge and expose the limitations of existing se-

mantic frameworks.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

This paper is a gentle introduction to K, a rewriting-based semantic definitional framework. K was introduced by the first

author in the lecture notes of a programming language course at the University of Illinois at Urbana-Champaign (UIUC) in

Fall 2003 [34], as a means to define executable concurrent languages in rewriting logic using Maude [7]. Since 2003, K has

been used continuously in teaching programming languages at UIUC, in seminars in Spain and Romania, as well as in several

research initiatives. A more formal description of K can be found in [35,36].

The introduction and development of K was largely motivated by the observation that after more than 40 years of

systematic research in programming language semantics, the following important (multi-)question remains largely open to

the working programming language designer, but also to the entire research community:

Is there any language definitional framework which, at the same time,

1. Gives a unified approach to define not only languages but also language-related abstractions, such as type checkers,

type inferencers, abstract interpreters, safety policy or domain-specific checkers, etc.? The current state-of-the art is

that language designers use different approaches or styles to define different aspects of a language, sometimes even

to define different components of the same aspect.

2. Can define arbitrarily complex language features, including, obviously, all those found in existing languages, capturing

also their intended computational granularity? For example, features like call-with-current-continuation and true

concurrency are hard or impossible to define in many existing frameworks.
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3. Is modular, i.e., adding new language features does not require modifying existing definitions of unrelated features?

Modularity is crucial for scalability and reuse.

4. Supports non-determinism and concurrency, at any desired granularity?

5. Is generic, that is, not tied to any particular programming language or paradigm?

6. Is executable, so one can “test” language or formal analyzer definitions, as if one already had an interpreter or a compiler

for one’s language? Efficient executability of language definitions may even eliminate the need for interpreters or

compilers.

7. Has state-exploration capabilities, including exhaustive behavior analysis (e.g., model-checking), when one’s language

is non-deterministic or/and concurrent?

8. Has a corresponding initial-model or axiomatic semantics (to allow inductive or Hoare-style proofs), so that one can

formally reason about programs?

The list above contains a minimal set of desirable features that an ideal language definitional framework should have.

There are additional desirable requirements of an ideal language definitional framework that are more subjective and

thus more difficult to quantify. For example, it should be simple and easy to understand, teach and use by mainstream

enthusiastic language designers, not only by language experts—in particular, an ideal framework should not require its users

to have advanced understanding of category theory, logics, or type theory in order to use it. Also, it should have good data

representation capabilities and should allow proofs of theorems about programming languages that are easy to comprehend.

Additionally, a framework providing support for parsing programs directly in the desired language syntax may be desirable,

so that an external parser is not needed.

The requirements above are nevertheless ambitious. Proponents of existing language definitional frameworks may

argue that their favorite framework has these properties; however, a careful analysis of existing language definitional

frameworks reveals that they actually fail to satisfy some of these ideal features (detailed discussion on how the current

approaches fail to satisfy the requirements above can be found in [35,36] and to some extent in Section 2). Others

may argue that their favorite framework has some of the properties above, the “important ones”, declaring the other

properties either “not interesting” or “something else”. For example, one may say that what is important in one’s

framework is to achieve a dynamic semantics of a language, but that defining type systems, proving properties about

programs, model checking, etc., are “something else” and therefore are allowed to require a different “encoding” of the

language. Our position is that an ideal language definitional framework should not compromise any of the

requirements above.

Whether K satisfies all the requirements above or not is, and probably will always be, open. What we can mention

with regards to this aspect, though, is that K was motivated and stimulated by the observation that the existing

language definitional frameworks fail to fully satisfy these minimal requirements; consequently, K’s design and

development were conducted aiming explicitly to fulfill all requirements discussed above, promoting none of them at the

expense of others.

The K framework consists of two components: K rewriting, discussed in Section 4; and the K technique, discussed in

Section 5. Like a term rewrite system, a K-system consists of a signature for building terms and of a set of rules for iteratively

rewriting terms. Like in rewriting logic [25], K rules can be applied concurrently and unrestricted by context. Moreover, K

rules contain information about what part of the matched term is left unchanged by the rule (called the read-only part),

similar to interfaces in graph rewriting [9]. Besides offering a more compact notation for the rewrite rules, identifying

the read-only part can also potentially enhance the concurrency: now two overlapping rules can be applied in parallel if

they only overlap on their read-only part, similar to the concept of parallel independence in graph rewriting [9]. How-

ever, if one is not interested in the degree of concurrency allowed by a K definition, one can safely ignore the information

regarding the read-only part, and view K rules as an alternative notation for rewrite rules. Our prototype implementation

[41] takes this approach, to benefit from the existing infrastructure and analysis tools provided by the Maude [7]

rewrite engine.

A rewriting formalism, be it rewriting logic or K rewriting, can be very general and flexible, but it does not tell how one

can define a programming language or a calculus. In particular, even though the underlying framework might offer support

for concurrency, a bad definition may partially or totally inhibit the framework’s concurrency potential. The K technique

discussed in Section 5 proposes an approach and supporting notation to make the use of K rewriting, or even rewriting in

general, convenient when formally defining programming languages and calculi.

This paper is structured as follows: Section 2 discusses related programming language semantic approaches, their limi-

tations, and how they relate to K. Section 3 discusses the K framework intuitively, by means of defining a simple imperative

language and an extension of it; this section should give the reader quite a clear feel for what K is about and how it

operates. Section 4 describes the intuition behind K rewriting, that is, how K rules can increase concurrency. Section 5

presents the K technique, explaining essentially how rewriting can be used to define programming language semantics

by means of nested-cell configurations, computations and rewrite rules. Section 6 shows K at work: it introduces and

shows how to give a K semantics to Challenge, a programming language containing various features known to be prob-

lematic to define in some frameworks. Challenge was conceived as a means to provoke the various language definitional

frameworks and to expose their limitations. Section 7 concludes the paper, lists some recent research based on K, and gives

future directions.
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2. Existing approaches and their limitations for programming language semantics

Since K was motivated by the need for a semantic framework satisfying the requirements discussed in Section 1, it is

important to understand the limitations of the existing approaches as semantic frameworks for programming languages. In

this section we group the relevant existing approaches into two categories: structural operational semantics frameworks

and rewriting frameworks. For each approach we list main characteristics, limitations, and relationship with K.

2.1. Structural operational semantics (SOS) frameworks

We here discuss the most common SOS approaches, namely big-step and small-step SOS, their modular variant MSOS,

and reduction semantics with evaluation contexts.

Big-step SOS. Introduced as natural semantics [22], also named relational/evaluation semantics [27], big-step semantics is

“the most denotational” of the operational semantics. One can view big-step definitions as definitions of relations interpreting

each language construct in an appropriate domain. Deterministic (or functional) big-step operational semantics can be easily

and efficiently interpreted/implemented. It is particularly useful for defining type systems.

Limitations: Due to its monolithic, single-step evaluation, it is hard to debug or trace big-step semantic definitions. If the

program is wrong, no information is given about where the failure occurred. Divergence is not observable in the evaluation

relation. It may be hard or impossible to model concurrent features. It is not modular, e.g., to add side effects to expressions,

one must redefine the rules to allow expressions to evaluate to pairs (value-store). It is inconvenient (and non-modular) to

define complex control statements.

Relationship to K: The transitive closure of the K rewrite relation can be seen as a big-step relation.

Small-step SOS. Introduced by Plotkin [33], also called transition (or reduction) semantics, small-step semantics captures

the notion of one computational step. Therefore, it stops at errors, pointing them out. It is easy to trace and debug. It gives

interleaving semantics for concurrency.

Limitations: Like big-step, it is non-modular. It does not give a “true concurrency” semantics: one has to choose a certain

interleaving (no two rules can be applied on the same term at the same time), mainly because reduction is forced to occur

only at the top. It is still hard to deal with control—one has to add corner cases (additional rules) to each statement to

propagate control changing information. Each small step traverses the entire program to find the next redex; since the

size of the program may grow unbounded (e.g., through loop/fixed-point unrolling), each small step may take unbounded

resources in the worst case, making it difficult to interpret efficiently.

Relationship to K: K’s rewriting is small-step in spirit; however, K rewrite rules can apply anywhere and concurrently, while

SOS transitions only apply at the top of the term, interleaved.

Modular SOS (MSOS). Mosses [28,29] introduced MSOS to deal with the non-modularity of existing SOS styles. The MSOS

solution involves moving the non-syntactic state components into the labels on transitions, plus a discipline of only selecting

needed attributes from the states.

Limitations: Being inherently an SOS, MSOS can still only define interleaving semantics to concurrent languages. While the use

of labels gives MSOS the ability to modularly deal with some forms of control, such as abrupt termination, at our knowledge

it still cannot support the definition of arbitrarily complex control-intensive features such call/cc. Also, MSOS is driven by

the structure of the syntax and appears to have no escape mechanism to reflectively traverse, mark, modify and/or store

arbitrary syntax in labels, which makes it hard or impossible to modularly define language constructs for code generation

(e.g., quote/unquote/eval—see Section 6).

Relationship to K: Both MSOS and K make use of labeled information to achieve modularity. MSOS uses labels as record

fields on the transition relation, while K uses labels as cell names in the configuration. In both MSOS and K one can use the

labels in semantic rules only to refer to configuration items of interest, which is crucial for modularity. MSOS’ labels have

an additional role, to yield labeled transition systems, while K’s cell names are not intended to be used for that. One can

label K rules as we did with the rules ρr and ρw in Section 4, and, in principle, one can incorporate in K the same complex

rule labeling of rewrite logic [25]. However, we have not done that. So far, we used additional cells in the configuration to

represent/store the emitted signals.

Reduction semantics with evaluation contexts. Introduced by Felleisen and colleagues (see, e.g., [43]), the evaluation

contexts style improves over small-step SOS in two ways: (1) it gives a more compact semantics to context-sensitive reduc-

tion, by using parsing (rather than small-step SOS rules) to find the next redex; and (2) it provides the possibility to also

modify the context in which a reduction occurs, making it much easier to deal with control-intensive features, in particular

to define constructs like call/cc. Additionally, one can also incorporate the configuration as part of the evaluation context,

and thus have full access to semantic information “by need”.

Limitations: It still only allows “interleaving semantics” for concurrency. It is too “rigid to syntax”, in that it is hard or

impossible to define semantics in which values are more than plain syntax; for example, one cannot give a syntactic semantics
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to a functional language based on closures for functions (instead of substitution), because one needs special, non-syntactic

means to handle and recover environments (as we do in K, see Section 6). Although context-sensitive rewriting might

seem to be easily implementable by rewriting, in fact one has to perform an amount of “parsing” polynomial (linear best

case, quadratic worst-case) in the size of the program for each computational step.However, one might obtain efficient

implementations for restricted forms of context-reduction definitions by applying refocusing techniques [8].

Relationship to K: Both reduction semantics and K make use of evaluation contexts and can store or modify them. Reduction

semantics “splits/plugs” syntax into contexts, while K “heats/cools” syntax into computations. The former is achieved by an

implicit “advanced” parsing of syntax into a context and a redex,while the latter is achieved using rewrite rules.

2.2. Rewriting frameworks

We here discuss some rewriting approaches which have been used or have the potential to be used for programming

language semantics.

Term rewriting and rewriting logic. Rewriting logic was proposed by Meseguer [25] as a logical formalism generalizing

both equational logic and term rewriting, so it is more suitable for language semantics than plain term rewriting. The

rewriting logic semantics (RLS) project [23,24] is an initiative aiming at using rewriting logic for various semantic aspects of

programming languages; a substantial body of work on RLS, both of theoretical and practical nature, is discussed in [23,24],

which we do not repeat here. It is worth mentioning that all the various SOS semantic approaches in Section 2.1 (and others

not discussed here) can be framed as particular definitional styles in rewriting logic and then executed using the Maude

rewrite engine [40].

Limitations: Rewriting logic is a general-purpose computational framework, which provides the infrastructure but no hints

on how to define a language semantics as a rewrite system. Definitional styles, such as those in Section 2.1, need to be

represented within rewriting as shown in [40]. Additionally, rule instances cannot overlap, which results in an enforcement

of interleaving in some situations where one would like to have true concurrency. For example, two threads reading from a

shared store have to interleave the store operations even if they act on different locations, because the corresponding rule

instances overlap on the store; some hints are given in [26] on how to use equations in an ingenious way to still achieve

theoretical true concurrency in the presence of sharing, but at the expense of losing executability of definitions.

Relationship to K: Like rewriting logic, K is a computational framework that aims at maximizing the amount of concurrency

that can be achieved by means of term rewriting. However, one K concurrent rewrite step may take several interleaved

rewriting logic steps.

Graph rewriting. Graph rewriting [9] extends the intuitions of term rewriting to arbitrary graphs, by developing a match-

and-apply mechanism which can work directly on graphs.

Limitations: Graph rewriting is rather complex and we are not aware of works using it for programming language semantics.

Part of the reason could be the notorious difficulty of graph rewriting in dealing with structure copying and equality testing,

operations which are crucial for programming language semantics and relatively easy to provide in term rewriting systems.

Finally, in spite of decades of research, to our knowledge there are still no graph rewriting engines comparable in performance

to term rewrite engines.

Relationship to K: The K rules, like those in graph-rewriting, have both read-only components, which could be shared among

rule instances to maximize concurrency, and read–write components.

The chemical abstract machine (CHAM). Berry and Boudol [5] introduced CHAM to give language semantics within the

Gamma model [3], a multiset-rewriting model of computation. The CHAM views a distributed state as a “solution” where

“molecules” float, and understands concurrent transitions as “reactions” that can occur simultaneously in many points of

the solution.

Limitations: While chemistry as a model of computation sounds attractive, technically speaking the CHAM is in fact a restricted

case of rewriting logic [25]. Moreover, some of the chemical “intuitions”, such as the airlock operation which imposes a

particular chemical “discipline” to access molecules inside a solution, inhibit the potential for the now well-understood and

efficient matching and rewriting modulo associativity and commutativity. In fact, to our knowledge, there is no competitive

implementation of the CHAM. Although this solution-molecule paradigm seems to work for languages with simple state

structure, it is not clear how one could represent the state for complex languages with threads, locks, environments, etc.

Finally, CHAMs provide no mechanism to freeze the current molecular structure as a “value”, and then to store or retrieve

it, as we would need in order to to define language features like call/cc. It would therefore seem hard to define complex

control-intensive language features in CHAM.

Relationship to K: Like the CHAM, K also organizes the configuration of the program or system as a potentially nested structure

of molecules (called cells and potentially labeled in K). Like in CHAM, the configuration is also rewritten until it “stabilizes”.

Unlike in CHAM, the K rules can match and write inside and across multiple cells in one parallel step. Also, unlike in CHAM

(and in rewriting logic), K rewrite rules can apply concurrently even in cases when they overlap.
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P-systems. Păun’s membrane systems (or P-systems) [31] are computing devices abstracted from the structure and the

functioning of the living cell. In classical transition P-systems, the main ingredients of such a system are the membrane

structure, in the compartments of which multisets of symbol-objects evolve according to given evolution rules. The rules are

localized, associated with the membranes and they are used in a nondeterministic maximally parallel manner.

Limitations: When looked at from a programming language semantics perspective, the P-systems have a series of limitations

that have been addressed in K, such as: (1) lack of structure for non-membrane terms, which are plain constants; and (2)

strict membrane locality (even stricter than in the CHAM), which allows a very limited kind of rules (symport/antiport [32])

to match and rewrite within multiple membranes at the same time. Regarding (1), programming languages often handle

complex data-structures or make use of complex semantic structures, such as environments mapping variables to values,

or closures holding code as well as environments, etc., which would be hard or impossible to properly encode using just

constants. Regarding (2), strict membrane locality would require one to write many low-level rules and introduce and

implement by local rules artificial “cross-membrane communication protocols”. For example, the semantics of variable

lookup involves acquiring the location of the variable from the environment cell (which holds a map), then the value at that

location in the store cell (which holds another map), and finally the rewrite of the variable in the code cell into that value.

All these require the introduction of encoding constants and rules in several membranes and many computation steps.

Relationship to K: K-systems share with P-systems the ideas of cell structures and the aim to maximize concurrency; for

example the read-only parts of a K rule play a similar role to promotors/inhibitors [6] from P-systems. However, K rules

can span across multiple cells at a time, and the objects contained in a cell can have a rich algebraic structure (as opposed

to being constants, as in P-systems). An in-depth comparison between the two formalisms, showing how one can use K to

model P-systems can be found in [42].

There are several other biology-inspired computational frameworks, such as the Calculus of Looping Sequences [4] and

MGS [13], which share with K the aims for concurrency and use one form or another of rewriting as their evolution mechanism.

3. K overview by example

The role of this section is threefold: (1) it gives the reader a better understanding of the K framework before we proceed

to define it rigorously in the remainder of the paper; (2) it shows how K avoids some of the limitations of other semantic

approaches; and (3) it shows that K is actually easy to use. In this section we make no distinction between K rewriting

(presented in Section 4) and the K technique (detailed in Section 5), referring to these collectively as “the K framework”, or

more simply just “K”. Here we briefly describe the K framework, what it offers and how it can be used. We use as concrete

examples the IMP language, a very simple imperative language, and IMP++, an extension of IMP with: (1) increment to

exhibit side-effects for expressions; (2) input and output; (3) halt, to show how K deals with abrupt termination; and (3)

spawning of threads, to show how concurrency is handled. We define both an executable semantics and a type system

for these languages. The type system is included mainly for demonstration purposes, to show that one can use the same

framework, K, to define both dynamic and static semantics of languages.

Programming languages, calculi, as well as type systems or formal analyzers can be defined in K by making use of special,

potentially nested (K) cell structures, and (K) (rewrite) rules. There are two types of K rules: computational rules, which count

as computational steps, and structural rules, which do not count as computational steps. The role of the structural rules is

to rearrange the term so that the computational rules can apply. K rules are unconditional (they may have ordinary side

conditions, though, as rule schemata), and they are context-insensitive, so K rules apply concurrently as soon as they match,

without any contextual delay or restrictions.

Computations. One sort has a special meaning in K, namely the sort K of computations. The intuition for terms of sort K

is that they have computational contents, such as programs or fragments of programs have; indeed, computations extend

the syntax of the original language. Computations have a list structure, capturing the intuition of computation sequen-

tialization, with list constructor _ � _ (read “followed by”) and unit “·” (the empty computation). Computations give an

elegant and uniform means to define and handle evaluation contexts [43] and/or continuations [12]. Indeed, a computation

“v � C” can be thought of as “C[v], that is, evaluation context C applied to v” or as “passing v to continuation C”. Com-

putations can be handled like any other term in a rewriting environment, that is, they can be matched, moved from one

place to another, modified, or even deleted. A term may contain an arbitrary number of computations, which can evolve

concurrently; they can be thought of as execution threads. Rules corresponding to inherently sequential operations (such

as lookup/assignment of variables in the same thread) must be designed with care, to ensure that they are applied only at

the top of computations.

The distinctive feature of K compared to other term rewriting approaches in general and to rewriting logic in particular,

is that K allows rewrite rules to apply concurrently even in cases when they overlap, provided that they do not change

the overlapped portion of the term. This allows for truly concurrent semantics. For example, two threads can read the

same location of memory concurrently, even though the corresponding rules overlap on the store location being read. The

distinctive feature of K compared to other frameworks for true concurrency, like chemical abstract machines [5] or membrane

systems [31], is that rewrite rules can match across and inside multiple cells and thus perform changes many places at the

same time, in one concurrent step.
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K achieves, in one uniform framework, the benefits of both the chemical abstract machines (or CHAMs) and reduction

semantics with evaluation contexts, at the same time avoiding what might be called the “rigidity to chemistry” of the former

and the “rigidity to syntax” of the latter. Like other semantic approaches that can be represented in rewrite logic [40], K can

also be represented in rewrite logic and thus K definitions can be executed on existing rewrite engines, thus providing “in-

terpreters for free” directly from formal language definitions; additionally, general-purpose formal analysis techniques and

tools developed for rewrite logic, such as state space exploration for safety violations or model-checking, give us correspond-

ing techniques and tools for the defined languages, at no additional development cost. Unlike the other operational semantic

approaches whose representations in rewrite logic are faithful, in that the resulting rewrite logic theories are step-for-step

equivalent with the original definitions, K cannot be captured faithfully by rewrite logic in any natural way; more precisely,

the resulting rewrite logic theory may need more interleaved steps to capture one concurrent step in the original K definition.

3.1. K semantics of IMP

Fig. 1 shows the complete K definition of IMP, except for the configuration; the IMP configuration is explained separately

below. The left column gives the IMP syntax. The middle column contains special syntax K annotations, called strictness

attributes, stating the evaluation strategy of some language constructs. Finally, the right column gives the semantic rules.

K makes intensive use of the context-free grammar (CFG) notation for syntax and for configurations, extended with

specialized “algebraic” notation for lists, sets, multisets (bag) and maps. For any sort S, the sort List†
.[S] (or Bag†

.[S], or

Set†
.[S]) defines the .-separated lists (or bags, or sets) of elements of sort S, with identity †. If unspecified, by default . is

_, _ for lists and _ _ for bags and sets, and † is “·”. For example, List[S] defines comma-separated lists of elements of type S,

and could be expressed with the lower-level CFG productions List[S] ::= · | S(, S)∗. Similarly, sort Map†
.[S1 �→ S2] contains

a set of mappings source �→ target, with source of sort S1 and target of sort S2, separated by . and with identity †; be default,

. is _ _ and † is “·”.

Like in the CHAM, program or system configurations in K are organized as potentially nested structures of cells (we call

them cells instead of molecules to avoid confusion with terminology in CHAM and chemistry). However, unlike the CHAM

which only provides multisets (or bags), K also provides list, set and map cells in addition to multiset cells; K’s cells may be

labeled to distinguish them from each other. We use angle brackets as cell wrappers.

The K configuration of IMP can be defined as:

ConfigurationIMP ≡ 〈〈K〉k 〈Map[Id �→ Int]〉state〉�
In words, IMP configurations consist of a top cell 〈〉� containing two other cells inside: a cell 〈〉k which holds a term of sort

K (terms of sort K are called computations and extend the original language syntax as explained in the next paragraph) and

a cell 〈〉state which holds a map from variables to integers. For example, “〈〈x = 1; y = x + 1;〉k 〈·〉state〉�” is a configuration

holding program “x = 1; y = x + 1;” and empty state, and “〈〈x = 1; y = x + 1;〉k 〈x �→ 0, y �→ 1〉state〉�” is a configuration

holding the same program and a state mapping x to 0 and y to 1.

K provides special notational support for computational structures, or simply computations. Computations have the sort

K , which is therefore built-in in the K framework; the intuition for terms of sort K is that they have computational contents,

such as, for example, a program or a fragment of program has. Computations extend the original language/calculus/system

syntax with special “�”-separated lists “T1 � T2 � · · · � Tn” comprising (computational) tasks, thought of as having to

be “processed” sequentially (“�” reads “followed by”). The identity of the “�” associative operator is “·”. Like in reduction

semantics with evaluation contexts, K allows one to define evaluation contexts over the language syntax. However, unlike

in reduction semantics, parsing does not play any crucial role in K, because K replaces the hard-to-implement split/plug

operations of evaluation contexts by plain, context-insensitive rewriting. Therefore, instead of defining evaluation contexts

using context-free grammars and relying on splitting syntactic terms (via parsing) into evaluation contexts and redexes,

in K we define evaluation contexts using special rewrite rules. For example, the evaluation contexts of sum, comparison

and conditional in IMP can be defined as follows, by means of structural rules (the sum “+” is non-deterministic, i.e., the

evaluation procedure for its arguments is not fixed and the comparison “<=" is sequential):

a1 + a2 � a1 � � + a2

a1 + a2 � a2 � a1 + �
a1 <= a2 � a1 � � <= a2

i1 <= a2 � a2 � i1 <= �
if b then s1 else s2 � b � if � then s1 else s2

The symbol � stands for two structural rules, one left-to-right and another right-to-left.

The right-hand sides of the structural rules above contain, besides the task sequentialization operator �, freezer operators

containing � in their names, such as “�+_”, “_+�”, etc. The first rule above says that in any expression of the form “a1 + a2”,
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Fig. 1. K definition of IMP: syntax (left), annotations (middle) and semantics (right); x ∈ Id, xs ∈ List[Id], i, i1, i2 ∈ Int, t ∈ Bool, b ∈ BExp, s, s1, s2 ∈ Stmt

(b, s, s1, s2 can also be in K).

a1 can be scheduled for processing while a2 is being held for future processing. Since the rules above are bi-directional, they

can be used at will to structurally re-arrange the computations for processing. Thus, when iteratively applied left-to-right

they fulfill the role of splitting syntax into an evaluation context (the tail of the resulting sequence of computational tasks)

and a redex (the head of the resulting sequence), and when applied right-to-left they fulfill the role of plugging syntax into

context. Such structural rules are called heating/cooling rules in K, since they are reminiscent of the CHAM heating/cooling

rules; for example, a1+a2 is “heated” into a1 � � + a2, while a1 � � + a2 is “cooled” into a1+a2. A language definition

can use structural rules not only for heating/cooling but also to give the semantics of some language constructs; this will be

discussed later in this section.

To avoid writing obvious heating/cooling structural rules like the above, we prefer to use the strictness attribute syntax

annotations in K, as shown in the middle column in Figs. 1 and 2: “strict” means non-deterministically strict in all enlisted

arguments (given by their positions) or by default in all arguments if none enlisted, meaning that all specified arguments

must be evaluated before evaluating the construct itself, and “seqstrict” is like strict but each argument is fully processed

before moving to the next one (see the second structural rule of “<=” above).

The structural rules corresponding to strictness attributes (or the heating/cooling rules) decompose and eventually push

the tasks that are ready for processing to the top (or the left) of the computation. Semantic rules then tell how to process

the atomic tasks. The right column in Fig. 1 shows the semantic K rules of IMP. To understand them, let us first discuss the

important notion of a K rule, which is a strict generalization of the usual notion of a rewrite rule. To take full advantage of

K’s support for concurrency, K rules explicitly mention the parts of the term that they read, write, or do not care about. The

underlined parts are those which are written by the rule; the term underneath the line is the new subterm replacing the

one above the line.

All writes in a K rule are applied in one parallel step, and, with some reasonable restrictions discussed in Section 4 (that

avoid read/write and write/write conflicts), writes in multiple K rule instances can also apply in parallel. The operations which

are not underlined represent the read-only part of the term: they need to stay unchanged during the application of the rule.

The anonymous variables “_” represent parts of the term that the current rule does not care about and, consequently, are

allowed to be concurrently modified by other rules. By convention, when mentioning anonymous variables at the beginning

or the end of cells, the list/bag/set/map constructor can be omitted. For example, the lookup rule (the first rule in Fig. 1)

says that once program variable x reaches the top of the computation, it is replaced by the value to which it is mapped in

the state, regardless of the remaining computation or the other mappings in the state. Similarly, the assignment rule says

that once the assignment statement “x = i;” reaches the top of the computation, the value of x in the store is replaced by i

and the statement dissolves; “·” is the unit (or empty) computation (“·” tends to be used in K as a polymorphic unit of most

if not all list, set and multiset structures). The rule for variable declarations in Fig. 1 (last one) expects an empty state and

allocates and initializes with 0 all the declared variables; the dotted or dashed lines signify that the rule is structural, which

is discussed next.

K rules are split in two categories: computational rules and structural rules. Computational rules capture the intuition

of computational steps in the execution of the defined system or language, while structural rules capture the intuition of

structural rearrangement, rather than computational evolution, of the system. We use dashed or dotted lines in the structural
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Fig. 2. K definition of IMP++ (extends that of IMP in Fig. 1, without changing anything).

rules to convey the idea that they are lighter-weight than the computational rules. Ordinary rewrite rules are a special case

of K rules, when the entire term is replaced; in this case, we prefer to use the standard notation l → r as syntactic sugar for

computational rules and the notation l ⇁ r or l ⇀ r as syntactic sugar for structural rules. We have seen several structural

rules at the beginning of this section, namely the heating/cooling rules corresponding to the strictness attributes. Fig. 1 shows

three more: s1 s2 is rearranged as s1 � s2, loops are unrolled when they reach the top of the computation (unconstrained

unrolling would lead to undesirable non-termination), and declared variables are allocated in the state. There are no rigid

requirements on when rules should be computational versus structural and, in the latter case, on when one should use l ⇁ r

or l ⇀ r as syntactic sugar. We (subjectively) prefer to use structural rules for desugaring (like for sequential composition),

loop unrolling and declarations, and we prefer to use “⇀” when syntax is split into computational tasks and “⇁” when

computational tasks are put back into the original syntax.

Each K rule can be “desugared” into a standard term rewrite rule by combining all its changes into one top-level change.

The relationship between K rules and conventional term rewriting and rewriting logic is discussed in Section 4. The main

point is that the resulting conventional rewrite system associated to a K-system lacks the potential for concurrency of the

original K-system.

3.2. K semantics of IMP++

Fig. 2 shows how the K semantics of IMP can be seamlessly extended into a semantics for IMP++. To accommodate input

and output, two new cells need to be added to the configuration:

ConfigurationIMP++ ≡ 〈〈K〉k 〈Map[Id �→ Int]〉state 〈List[Int]〉out 〈List[Int]〉in〉�

However, note that none of the existing IMP rules needs to change, because each of them only matches what it needs from the

configuration. The increment construct “++_” introduces side effects for expressions: it increments the value of the identifier

and evaluates to that value. The rule for the read construct uses the first element from the 〈〉input cell (and replaces it by

the unit “·”) to replace the read expression. The print construct is strict and its rule adds the value of its argument to the

end of the 〈〉out buffer (matches and replaces the unit “·” at the end of the buffer). The rule for haltThread dissolves the

current computation, and the rule for spawn creates a new 〈〉k cell initialized with the spawned statement. The code in this

new cell will be processed concurrently with the other threads. The last rule “cools” down a terminated thread by simply

dissolving it; it is a structural rule because, again, we do not want it to count as a computation.

We conclude this section with a discussion on the concurrency of the K definition of IMP++. Since in K rule instances can

share read-only data, various instances of the look up rule can apply concurrently, in spite of the fact that they overlap on the

state. Similarly, since the rules for variable assignment and increment do not update anything else in the 〈〉state cell except

the mapping corresponding to the variable, multiple assignments, increments and reads of distinct variables can happen

concurrently. However, if two threads want to write the same variable, or if one wants to write it while another wants to

read it, then the two corresponding rules need to interleave, because the two rule instances are in a concurrency conflict.

Note also that the rules for read/printmatch and change the beginning/end of the 〈〉in/〈〉out cell. That means, in particular,

that multiple read/print statements by various threads need to be interleaved for the same reason as above; however, one

read could be executed in parallel with one print command. On the other hand, the rule for spawn matches any empty

top-level position and replaces it by the new thread, so threads can spawn threads concurrently. Similarly, multiple threads

can be dissolved concurrently when they are done (last “cooling” structural rule). These desirable concurrency aspects of

IMP++ are possible to define formally thanks to the specific nature of the K rules. If we used standard rewrite rules instead of

K rules, then many of the concurrent steps above would need to be interleaved because rewrite rule instances which overlap

cannot be applied concurrently.
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Fig. 3. K type system for IMP++ (and IMP).

3.3. K type system for IMP/IMP++

The K semantics of IMP/IMP++ discussed above can be used to execute even ill-typed IMP/IMP++ programs, which

may be considered undesirable by some language designers. Indeed, one may want to define a type checker for a desired

typing policy, and then use it to discard as inappropriate programs that do not obey the desired typing policy. We next

show how to define a type system for IMP/IMP++ using the very same K framework. The type system is defined like an

(executable) semantics of the language, but one in the more abstract domain of types rather than in the concrete domain

of values. The technique is general and has been used to define more complex type systems, such as higher-order

polymorphic ones [10].

The typing policy that we want to enforce on IMP/IMP++ programs is easy: all variables in a program have by default

integer type and must be declared, arithmetic/Boolean operations are applied only on expressions of corresponding types,

etc. Since programs and fragments of programs are now going to be rewritten into their types, we need to add to computations

some basic types. Also, in addition to the computation to be typed, configurations must also hold the declared variables.

Thus, we define the following (the “…” in the definition of K includes all the default syntax of computations, such as the

original language syntax, “�”, freezers, etc.):

K ::= . . . | int | bool | stmt | pgm

Configuration
Type
IMP++ ≡ 〈〈K〉k 〈Set[Id ]〉vars〉�

Fig. 3 shows the IMP/IMP++ type system as a K system over such configurations. Constants reduce to their types, and types

are propagated through each language construct in a straightforward manner. Note that almost each language construct is

strict now, because we want to type all its arguments in almost all cases in order to apply the typing policy of the construct.

Two constructs are exceptions, namely the increment and the assignment. The typing policy of these constructs is that they

take precisely a variable and not something that types to int. If we defined, e.g., the assignment strict and with rule int = int,

then our type system would allow ill-formed programs like “x + y = 0;”. Note how we defined the typing policy of programs

“var xl; s”: the declared variables xl are stored into the 〈〉vars cell (expected to be initially empty) and the statement is

scheduled for typing (using a structural rule), placing a “reminder” in the computation that the pgm type is eventually

expected; once/if the statement is correctly typed, the type pgm is generated.
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4. K rewriting

Rewriting logic deduction [25] is very useful in capturing concurrent computations as they occur in distributed systems,

that is without sharing of data. Indeed, if each process has its own state and communication is realized through message

passing, then the rules of the system need to only apply inside a process state, or to match a process together with a message

addressed to it. However, this is not the case when modeling parallelism with sharing of data. In this case, it is conceivable

that one would like to allow situations like the one-writer/multiple-readers pattern, in which multiple rules would be

allowed to simultaneously read the same parts of the global state, provided that they do not modify them. Take for example

the following rules for reading/writing a variable in the state (obtained by translating the corresponding IMP++ rules into

rewrite rules):

〈x � k〉k 〈σ x �→ i〉state → 〈i � k〉k 〈σ x �→ i〉state and

〈x = i′; � k〉k 〈σ x �→ i〉state → 〈k〉k 〈σ x �→ i′〉state
The 〈〉k cell is a unary operation 〈_〉k that holds a �-separated list of tasks (i.e., � is associative and has identity “·”). The

〈〉state cell holds a map, i.e. a set of bindings of names to integers, constructed with the associative and commutative (AC)

concatenation operation “_ _”, having identity “·”. The topmost concatenation operation “_ _” (used to put cells together) is

also an AC operator with identity “·”. x, k, σ , i, and i′ are variables, x standing for a name, k for the rest of the computation,

σ for the remainder of the state, and i, i′ for integers.

Consider a system containing only these rules, and let 〈a〉k 〈a〉k 〈b = 3;〉k 〈a �→ 1 b �→ 2〉state be the (ground) term to

be rewritten, i.e., two threads 〈a〉k whose tasks are to read a from the state, and a thread 〈b = 3;〉k updating the value of b. All

threads could advance simultaneously: the first two by reading the value of a (since a is shared), and the third by updating

the value of b (since the location of b is independent of that of a). However, this is impossible with the deduction rules of

rewriting logic because “the same object cannot be shared by two simultaneous rewrites” [26].

One reason is that traditional matching modulo axioms requires that the term be rearranged to fit the pattern, and thus it

limits concurrency where sharing is allowed: there is no way to re-arrange the term so that any two of the rule instances match

simultaneously. To address that, we propose a special treatment for matching operators governed by axioms (Section 4.4).

Another, more fundamental reason, is that the top set constructor operation and the state itself need to be shared for the

rules to apply. The K rules (Section 4.2) address this issue by distinguishing the read-only part of a rule pattern, which can

be shared, and by making the change local to the exact position in which the update must be applied.

4.1. Preliminaries

A signature � is a pair (S, F) where S is a set of sorts and F is a set of operations f : w → s, where f is an operation

symbol, w ∈ S∗ is its arity, and s ∈ S is its result sort. If w is the empty word ε then f is a constant. The universe of terms T�
associated to a signature � contains all the terms which can be formed by iteratively applying symbols in F over existing

terms (using constants as basic terms, to initiate the process), matching the arity of the symbol being applied with the result

sorts of the terms it is applied to. Given an S-sorted set of variables X , the universe of terms T�(X )with operation symbols

from F and variables from X consists of all terms in T�(X ), where�(X ) is the signature obtained by adding the variables in

X as constants to�, each to its corresponding sort. One can associate a signature to any CFG, so that well-formed words in

the CFG language are associated corresponding terms in the signature (their AST).

Substitutions. A substitution is a mapping yielding terms (possibly with variables) for variables. Any substitutionψ : X →
T�(Y) naturally extends to terms, yielding a homonymous mapping ψ : T�(X ) → T�(Y). When X is finite and small, the

application of substitution ψ : {x1, . . . , xn} → T�(Y) to term t can be written as t[ψ(x1)/x1, . . . , ψ(xn)/xn] ::= ψ(t).
This notation allows one to use substitutions by need, without formally defining them.

Contexts. Given an ordered set of variables, W = {�1, . . . ,�n}, named context variables, or holes, a W-context over�(X )
(assume that X ∩W = ∅) is a term C ∈ T�(X ∪W)which is linear in W (i.e., each hole appears exactly once). The instantiation

of a W-context C with an n-tuple t = (t1, . . . , tn), written C[t] or C[t1, . . . , tn], is the term C[t1/�1, . . . , tn/�n]. One can

alternatively regard t as a substitution t : W → T�(X), defined by t(�i) = ti, in which case C[t] = t(C). A �-context is a

W context over� where W is a singleton.

Term rewriting. A rewrite system over a term universe T� consists of rewrite rules, which can be locally matched and

applied at different positions in a �-term to gradually transform it. For simplicity, we only discuss unconditional rewrite

rules. A �-rewrite rule is a triple (X , l, r), written (∀X ) l → r, where X is a set of variables and l and r are T�(X )-terms,

named the left-hand-side (lhs) and the right-hand-side (rhs) of the rule, respectively. A rewrite rule (∀X ) l → r matches

a �-term t using �-context C and substitution θ , iff t = C[θ [l]]. If that is the case, then the term t rewrites to C[θ [r]]. A

(�-)rewrite-system R = (�, R) is a set R of�-rewrite rules.
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4.2. K rules and K-systems

K rules are schemata describing how a term can be transformed in another term by altering some of its parts. They share

the idea of match-and-replace of standard term rewriting; however, each rule identifies a read-only pattern, the local context

of the rule. This pattern is used to glue together read–write patterns, that is, subparts to be rewritten. Moreover, through

its variables, it also provides information which can be used and shared by the read–write patterns. To some extent, the

read-only pattern plays here the same role played by interfaces in graph rewriting [9].

Similar in spirit with the distinction between equations and rules in rewriting logic, K rules are of two types: structural

(which rearrange the term without altering the flow of computation) and computational (which advance the state of the

system). This distinction is purely semantical and the concurrent machine needs not be aware of it. Therefore, we will not

distinguish between structural and computational rules in this section.

Definition 1. A K rule ρ : (∀X ) p[ L

R

] over a signature� = (S, F) is a tuple (X , p, L, R), where:

• X is an S-sorted set, called the variables of the rule ρ;
• p is a W-context over�(X ), called the rule pattern, where W are the holes of p; p can be thought of as the “read-only”

part of ρ;
• L, R : W → T�(X ) associate to each hole in W the original term and its replacement term, respectively; L, R can be

thought of as the “read–write” part of ρ .

We may write (∀X ) p[ l1
r1

, . . . , ln
rn

] instead of (∀X ) p[ L

R

] whenever W = {�1, · · · ,�n} and L(�i) = li and R(�i) = ri;

this way, the holes are implicit and need not be mentioned.

A set of K rules K is called a K-system.

The variables in W are only used to formally identify the positions in p where rewriting takes place; in practice we

typically use the compact notation above, that is, underline the to-be-rewritten subterms in place and write their replacement

underneath. When the set of variables X is clear, it can be omitted. Structural variables, that is, variables which are only

introduced for putting the relevant terms into context, and thus are neither used in R(w) for any w ∈ W , nor constrained

in any other way (like occurring multiple times among the variables of the terms in {p} ∪ {L(w) | w ∈ W}), are termed

anonymous or nameless variables. We take the liberty to denote all anonymous variables by the “_” symbol (like in Prolog),

but recall that they are all distinct.

For example, the following two K rules precisely capture the intuition we have about reading (ρr) or writing (ρw) a

variable in the state, respectively:

ρr : 〈x

i

� _〉k 〈_ x �→ i〉state ρw : 〈x = i′;
·

� _〉k 〈_ x �→ _

i′
〉state

ρr states that x is replaced with its corresponding value, while the rest of the context stays unchanged, allowing it to be shared

with other rules. Similarly, ρw specifies that the value corresponding to x in the state should be updated to the new value i′,
and the assignment statement should be consumed (specified by replacing it with “·”, the unit for “�”), again leaving the

rest of the context unchanged. If we want to identify the anonymous variables, these rules could be alternatively written as:

ρr : 〈x

i

� k〉k 〈σ x �→ i〉state ρw : 〈x = i′;
·

� k〉k 〈σ x �→ i

i′
〉state

When formalizing these rules according to Definition 1, we obtain the following K rules:

ρr : (∀Xr) pr[ Lr

Rr

] ρw : (∀Xw) pw[ Lw

Rw

]

Xr = {x, i, k, σ }
Wr = {�}
pr = 〈� � k〉k 〈σ x �→ i〉state
Lr(�) = x

Rr(�) = i

Xw = {x, i, i′, k, σ }
Ww = {�1,�2}
pw = 〈�1 � k〉k 〈σ x �→ �1〉state
L(�1) = x = i′; and L(�2) = i

R(�1) = · and R(�2) = i′
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4.3. Relation to rewrite rules

Here we analyze the relationship between rewrite rules and K rules, showing that the latter are a conservative extension

of the former. Consider the two mappings defined below:

R2K((∀X ) l → r) = (∀X ) l

r

K2R((∀X ) p[ L

R

]) = (∀X ) L(p) → R(p)

R2K associates to each rewrite rule a K rule quantified by the same variables, having as the read-only pattern just a hole

� which is mapped by L and R to the left-hand-side and right-hand-side of the rewrite rule, respectively. Conversely, K2R

associates to each K-rule a rewrite rule by forgetting the additional information contained by the K rule and flattening it by

applying L and R to the read-only pattern to obtain the lhs and the rhs of the rewrite rule, respectively.

K rules faithfully capture conventional rewrite rules, since K2R(R2K(
)) = 
 for any rewrite rule 
. Note, however, that

the opposite does not hold, that is, K rules are strictly more informative than their corresponding rewrite rules, because the

latter lose their “locality” of the changes; in particular, it is impossible to recover the K rule from the obtained rewrite rule,

because it is not always straightforward to determine what should be shared and what not.

How much to share. Another possible transformation from rewrite rules to K rules is one that would enforce maximal

data-sharing. Let us formally define such a transformation, say R2Kmax. Given a rewrite rule 
 : (∀X ) l → r, the maximally
sharing K rule associated to 
 is R2Kmax(
) = (∀X ) p[ L

R

] satisfying that K2R(R2Kmax(
)) = 
, and that, for any other K

rule ρ′ : (∀X ) p′[ L′
R′ ] such that K2R(ρ′) = 
, p′ is a specialization of p, that is, there exists a substitution θ : vars(p) →

T�(X ∪ vars(p′)) such that p′ = θ(p).
It might seem that maximal sharing is always desirable; however maximal sharing does not always model the intended

behavior. Consider the rewrite rule a ∗ → b ∗, where a, b, and ∗ are constants of sort s and “_ _ : ss → s” is an associative

and commutative (AC) operation composing elements of sort s. If the desired behavior is that ∗ is a catalyst allowing the

transformation from a to b to happen, and therefore we want it to be potentially read by other rules, then the corresponding
K rule is a

b

∗; as seen shortly, such a rule allows a term a a ∗ to rewrite in one concurrent step to b b ∗. However, if ∗ is to

be regarded as a token ensuring mutual exclusion, then the corresponding K rule is a ∗
b ∗

; as seen shortly, such rules cannot

be applied concurrently on a a ∗, requiring, due to the overlapping of the token “∗”, two interleaved steps.

The remainder of this section gives a theoretical account of the K rewriting method, arguing that the read-only information

contained in K rules can be used to enhance the potential of parallelism of rewriting. Nevertheless, K-Maude [41], our current

prototype implementation of the K framework, simply reduces K rules to rewrite rules through the K2R transformation, to

make them directly executable in the Maude rewrite engine.

4.4. Matching K rules

One could give a straightforward definition for what it means for a K rule to match a term: one K rule matches a term if

and only if its corresponding rewrite rule matches it:

Definition 2. A K rule ρ : (∀X ) p[ L

R

] matches a�-term t using context C and substitution θ if and only if its corresponding

rewrite rule K2R(ρ)matches term t using the same context C and substitution θ , that is, if t = C[θ(L(p))].
Hence, when analyzed in isolation, a K rule is no more special than its corresponding rewrite rule. Only when trying to

apply rules in parallel we can observe the benefits of the K rules.

As seen in Section 3, the K framework employs lists, sets, bags, and maps to give semantics. Moreover, it is precisely the

bag structure of the configuration that allows K to give truly concurrent semantics to languages (partly seen in the semantics

of IMP++ in Section 3, and heavily used in Section 6). However, concurrent matching modulo (ACU) axioms in the presence

of sharing appears to be a rather difficult problem. Recall the motivating example from the beginning of Section 4, in which

we attempted to concurrently read and write in the state. The structure of K-rules introduced above, explicitly representing

read-only parts of the rules, allows multiple rules to overlap on the 〈〉store cell at the same time. However, the problem of

matching multiple rules simultaneously still remains, because the traditional treatment of matching modulo axioms requires

the term to be rearranged (using the axioms) to conform to the rule, and thus prevents multiple rules to actually match

at the same time. The remainder part of this subsection shows how concurrency can be enhanced by handling matching

modulo (ACU) axioms differently.

The main idea is to think of the matching process as changing the rule to fit the term rather than changing the term to fit the

rule; in that sense, rewrite rules become rule schemata. Our goal is to modify the rule to match a concrete representation
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of the term. The reason for requiring adjustments to the rule is that while the term is concrete, and, for example, each list

constructor has only two arguments, the rule is specified modulo axioms.

Assume a generic K rule ρ : (∀X ) p[ L

R

]. In what follows we describe a sequence of steps, which, if applied in order,

generate all concrete instances of ρ needed to replace matching modulo (ACU) axioms by plain term matching. Before

going into more technical details, let us briefly describe each step. First step deals with the unit axiom, generating ad-

ditional rules to account for variables being matched to the unit of an operation. Second step prepares the terrain for

dealing with associativity; each variable which could stand for a term topped in an associative operation is replaced by

an arbitrary number of variables separated by that operation. In step 3 we deal with commutativity, by generating rule

instances for all permutations of arguments of commutative operations. Finally, in step 4, we deal with the associativity

axiom, properly parenthesizing all parts of the rule containing associative operations. Note that, although both steps 2

and 4 deal with associativity, steps 3 needs to be inserted between them to generate all permutations needed for the AC

operations.

This generative process of generating all matching instances for rules serves only for a theoretical purpose, as it actually

generates an infinite number of concrete rule instances. In a practical implementation of these ideas, we expect that the rule

schema would dynamically be adjusted in the process of matching, creating concrete rule instances by-need.

1. Resolving unit. We assume that the concrete terms to be matched are always kept in normal form w.r.t. the unit axioms,

that is, the unit † of an operation . cannot appear as an argument of that operation. This can be obtained by either reducing

the term after each rewriting step, or by reducing it only once at the beginning, and ensuring that the rewrite steps preserve

this property. Assuming this, to address matching modulo unit it is sufficient then that for each variable x of the same sort

as † appearing as an argument of operation ., say in a subterm .(x, p), we generate an additional rule in which .(x, p) is

replaced by p (and similarly if x is the second argument of .). Moreover, if x appears at the top of a replacement term R(�),
then R(�) must be † in the additional generated rule. As a matching example, for the pattern 〈σ x �→ v〉state we need to

generate an additional pattern 〈x �→ v〉state since σ could match ·, the unit of _ _.

2. Multiplying associative variables. For simplicity, we assume that each sort has at most one associative operator defined

on it; our definitions satisfy that—in fact, besides the K sort, which itself is a list, all other sorts with associative operators

allowed by K are lists, bags, sets, and maps. Moreover, we will assume that all rules topped in an associative operator . of

sort S have by default two (or only one if . is also commutative) anonymous variables of sort S at the top of the rule, one

on each side of the read-only pattern, to account for the fact that the rule may match in a context. The associativity will

be resolved in two steps. The first step, described here, is that for each rule containing a variable l of a sort S constructed

with an associative operator _._ and for each natural number n ≥ 2, a rule in which l is replaced by l1.l2. · · · .ln must

be added to the existing rules. Continuing our example above, the matching pattern instances associated to 〈σ x �→ v〉state
would now be (including the one from desugaring the unit axiom): 〈x �→ v〉state, 〈σ x �→ v〉state, 〈σ1 σ2 x �→ v〉state, and

so on.

3. Resolving commutativity. For each occurrence of a subterm .(t1, t2) in a rule, with . being commutative, add (if it does

not already exist) a rule in which .(t1, t2) is replaced by .(t2, t1), effectively generating all permutations for terms built

with AC operators. The patterns above are enriched to the following patterns: 〈x �→ v〉state, 〈σ x �→ v〉state, 〈x �→ v σ 〉state,

〈σ1 σ2 x �→ v〉state, 〈σ1 x �→ v σ2〉state, 〈x �→ v σ1 σ2〉state (and the ones equivalent to them modulo renamings of the

fresh variables), and so on.

Next step is only needed if associative operators are handled as ordinary binary operations when representing the term.

If, for example, associative operations are represented as operations with a variable number of arguments this step may be

skipped. However, we here prefer to keep this step in order to preserve the algebraic structure of the terms.

4. Resolving associativity. For each rule containing subterms of the form t1.t2. · · · .tn where . is an associative operator,

generate rules containing all possible ways to put parentheses so that each occurrence of _._ has only two arguments. Note

that matching terms containing subterms built from new variables using only . these rules need not be considered, as

they will be equivalent with rules containing just one new variable instead of that subterm. Keeping this in mind, the

following patterns are the final concrete patterns associated to the ones presented above: 〈x �→ v〉state, 〈σ x �→ v〉state,

〈x �→ v σ 〉state, 〈σ1 (σ2 x �→ v)〉state, 〈(σ1 x �→ v) σ2〉state, 〈σ1 (x �→ v σ2)〉state, and 〈(x �→ v σ1) σ2〉state, and so on.

Note that, since now parts of the original variables might be grouped together with other parts of the matching pattern,

parenthesizing makes virtually impossible to rewrite those variables, or even associative operators, unless the entire list is

being rewritten. Therefore, we require that for each sort S containing an associative operation ., and any variable l of sort

S, whenever . or l appears at top in a term to be replaced, i.e., t = L[�], � must not be an argument of . in the read-only

pattern p. The restriction concerning l may indeed inhibit parallelism when rewriting list variables. However, this situation

does not seem to be very common in practice; in particular, it does not appear in any of our current definitions using K.

However, the restriction concerning . is not as big of a concern, as it can be satisfied in two ways. The first one is to push

the hole � up in the term as long as . operations are on top of it, and thus inhibit the parallelism. The second, is to push the



410 G. Ros,u, T.F. ,Serbănu,tă / Journal of Logic and Algebraic Programming 79 (2010) 397–434

hole down, by moving . into the pattern, and splitting � into two new holes, requiring L to map them to the two arguments

of ., and updating R accordingly (including the possibility that R maps one of the holes to ·, while the other to R(�)).

Example: Matching the IMP++ variable read/write rules. Let us now show that interpreting K rules as rule schemata as

described above allows multiple concurrent matching instances for our motivating example introducing Section 4. Recall

the two rules (in their K form):

ρr : 〈x

i

� k〉k 〈σ x �→ i〉state ρw : 〈x = i′;
·

� k〉k 〈σ x �→ i

i′
〉state

Note that both rules have the bag constructor at top, and thus are considered to have a bag variable, say b, at top, as well.

Recall also the ground termed to be matched, this time parenthesized: ((〈a〉k 〈a〉k) 〈b = 3;〉k) 〈a �→ 1 b �→ 2〉state. Then, the

three concretizations of the two schema rules above which can match this term are: ρw,1 : (b1 〈x = i′;
·

〉k) 〈σ1 x �→ i

i′
〉state,

ρr,1 : ((〈x

i

〉k b1) b2) 〈x �→ i σ1〉state, and ρr,2 : ((b1 〈x

i

〉k) b2) 〈x �→ i σ1〉state.

4.5. K concurrent rewriting

In Section 4.2 we claimed that K rules can achieve more locality than usual rewrite-rules. Indeed, by allowing rules to

share their read-only pattern, parallel rewriting using K rules can capture more concurrent computations than rewriting

logic. In this section we intuitively describe how a term is matched by multiple rules, and indicate how all of the matched

rules can be applied concurrently. A formalization of this intuitive description can be found in [35].

As described above, the intuition in a K rule (∀X ) p[ L

R

] is that p represents a read-only pattern, which can be shared

with other rules, while the terms given by L should be regarded as read–write, because no two rules should simultaneously

modify the same part, and no rule should read it while another rule writes it.

We next give a visual intuition for combining multiple instances of K rules. Assume that the term to be rewritten is initially

uncolored (or black), that is, all its positions are available to all rules. Whenever a K rule matches, it colors the matched

part of the term using two colors, green for the read-only pattern, which can be shared, and red for the read–write parts, so

that they would not be touched by any other rule. When combining multiple matches concurrently, the following natural

coloring policies apply:
1. Uncolored, or black, can be colored in any color by any K rule;

2. No rule is allowed to color (green or red) a position which is already red;

3. Once a position is green, it cannot be colored in red by any K rule.
In short, “red cannot be repainted and green can only be repainted green.”

The first policy says that unconstrained parts of the term can be safely matched, in order to be rewritten, by any K rule.

The second policy says that a part of a term which is being written by some rule cannot be read or written by any other rule.

Finally, the third policy says that a part of a term that is being read by some rule can be read but not written by other rules.

Analyzing this coloring through the resemblance between K rules and graph-rewriting rules, one can notice that the

policy imposed by the above coloring rules is in direct correspondence with the notion of parallel independence [9] of rules

applications in graph rewriting, in the sense that the rule instances are allowed to overlap on their patterns, but not on

anything else.

Let us conclude this section by showing how we can finally achieve the goal of concurrently advancing all threads from the

motivating example at the beginning of this section. To do that, we use the coloring policies described above to combine the

concrete matching rules associated to rule schemataρr andρw from the end of previous subsection. We will use underlining to

represent red, and boxing to represent green. Let us start with the original term ((〈a〉k 〈a〉k) 〈b = 3;〉k) 〈a �→ 1 b �→ 2〉state,

and let us match rule ρr,2 first, yielding the coloring:

((〈a〉k ( (〈 (a (〉k ) ( 〈b = 3;〉k) ( (〈 (a (�→ (1 ( b �→ 2 (〉state

Rule ρr,1 also matches since the colors are consistent, and colors the first continuation cell in green and the a inside it in

red: (( (〈 (a (〉k ( (〈 (a (〉k ) ( 〈b = 3;〉k) ( (〈 (a (�→ (1 ( b �→ 2 (〉state .

Finally, rule ρw,1 can also match without conflicts, coloring all remainder positions:

(( (〈 (a (〉k ( (〈 (a (〉k ) ( (〈 (b = 3; (〉k ) ( (〈 (a (�→ (1 ( (b (�→ (2 (〉state .

Since all matches succeeded, we can apply all three rules simultaneously, obtaining the term

((〈1〉k 〈1〉k) 〈·〉k) 〈a �→ 1 b �→ 3〉state.
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5. The K technique

Q: What are these Question/Answer boxes in this section?

A: Each subsection in this section introduces an important component of the K

technique, such as configurations, computations, or semantic rules. Each Q/A box

captures the essence of the corresponding subsection from a user perspective.

They will ease the understanding of how the various components fit together.

Q/A

Like term rewriting and rewriting logic, K rewriting (discussed in Section 4) can be used in various ways in various

applications; in other words, it does not tell us how to define a programming language or calculus as a K-system. In this

section we present the K technique, which consists of a series of guidelines and notations that turn K rewriting, or even

plain term rewriting, into an effective framework for defining programming languages or calculi. The development of the

K technique has been driven by practical needs, and it is the result of our efforts to define various programming languages,

paradigms, and calculi as rewrite or K-systems. We would like to make two important observations before we proceed:

1. The K technique is flexible and open-ended. Our current guidelines and notations are convenient enough to define

the range of languages, features and calculi that we considered so far. Some readers may, however, prefer different

or new notations. As an analogy, there are no rigid rules for how to write an SOS configuration [33]: one may use

the angle-bracket notation 〈code, state, . . .〉, the square bracket notation [code, state, . . .], or even the simple tuple

notation (code, state, . . .); also, one may use a different (from comma) symbol to separate the various configuration

ingredients and, even further, one could use writing conventions (such as the “state” or “exception” conventions in [27])

to simplify the writing of SOS definitions. Even though we believe that our notational conventions discussed in this

section should be sufficient for any definitional task, we still encourage our reader to feel free to change our notations

or propose new ones if needed to better fit one’s needs or style. Nevertheless, our current prototype implementation

of K [41] relies on our current notation as described in this section; therefore, to use our tool one needs to obey our

notation.

2. The K technique yields a semantic definitional style. As an analogy, no matter what notations one uses for configurations

and other ingredients in SOS definitions (see item above), or even whether one uses rewriting logic or any other

computational framework to represent and execute SOS definitions or not, SOS still remains SOS, with all its advantages

and limitations; the same holds true for any other definitional style. Similarly, we expect that the K technique can

be represented or implemented in various back-end computational frameworks. We prefer K rewriting as a back-end

because we believe that it gives us the maximum of concurrency one can hope for in K definitions. However, if one

is not sensitive to this true concurrency aspect or if one prefers a certain computational framework over anything

else, then one can very well use the K technique in that framework. Indeed, the same way the various conventional

language definitional styles become definitional methodologies or styles within rewriting logic as shown in [40], the K

technique can also be cast as a definitional methodology or style within other computational frameworks. In [35,41]

we show how this can be done for rewriting logic and Maude, for example.

5.1. K configurations: nested cell structures

Q: Do I need to define a configuration for my language?

A: No, but it is strongly recommended to define one whenever your language is

non-trivial. Even if you define no configuration, you still need to define the cells used 

later on in the semantic rules; otherwise the rules will not parse.

Q: How can I define a configuration?

A: All you need is to define apotentially nested-cell structure like in Figure 10,

which is a cell term over the simple cell grammar described below. By defining the

configuration you have three benefits:

•   You implicitly define all the needed cells, which is required anyway;

•   You can reuse existing semantic rules that were conceived for more abstract 

configurations, via a process named context transformation; and

•   You have a better understanding of all the semantic ingredients that you need

for your subsequent semantics as well as their role.

Q/A
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In K definitions, the programming language, calculus or system configuration is represented as a potentially nested cell

structure. This is similar in spirit to how configurations are represented in chemical abstract machines (CHAMs, see [5])

or in membrane systems (P-systems, see [31]), except that K’s cells can hold more varied data and are not restricted to

certain means to communicate with their environment. The various cells in a K configuration hold the infrastructure needed

to process the remaining computation, including the computation itself; cells can hold, for example, computations (these

are discussed in depth in Section 5.2), environments, heaps or stores, remaining input, output, analysis results, resources

held, bookkeeping information, and so on. The number and type of cells that appear in a configuration is not fixed and is

typically different from definition to definition. K assumes and makes intensive use of the entire range of structures allowed

by algebraic CFGs, such as lists, sets, multisets, and maps.

Formally, the K configurations have the following simple, nested-cell structure:

Cell ::= 〈CellContents〉CellLabel

CellContents ::= Sort | Bag [Cell ]

CellLabel ::= CellName | CellName∗
CellName ::= � | k | | env | store | . . . (language-specific cell names; �, k are common)

where Sort can be any sort name, including arbitrary list (List[Sort]), set (Set[Sort]), bag (Bag[Sort]) or map

(Map[Sort1 �→ Sort2]) sorts. Many K definitions share the cell labels � (which stands for “top”) and k (which stays for

“computation”). They are built-in in our implementation of K in Maude [41], so one needs not declare them in each language

definition. The white-space or “invisible” label “ ” may be preferred as an alternative to � and/or k, particularly when there

is a need for only one cell type, like in the definitions of CCS and Pi calculi. The cells with starred labels say that there

could be multiple instances, or clones, of that cell. This multiplicity information is optional, 1 but can be useful for context

transformation (Section 5.5).

We have seen so far three K configurations, for IMP, for IMP++, and for their type system:

ConfigurationIMP ≡ 〈〈K〉k 〈Map[Id �→ Int]〉state〉�
ConfigurationIMP++ ≡ 〈〈K〉k 〈Map[Id �→ Int]〉state 〈List[Int]〉in 〈List[Int]〉out〉�
Configuration

Type
IMP++ ≡ 〈〈K〉k 〈Set[Id ]〉vars〉�

Notice that they all obey the general cell grammar above, that is, they are nested cell structures; the bottom cells only contain

a sort and no other cells.

As a more complex example, Fig. 10 presents the K configuration of Challenge (see Section 6), a language conceived to

challenge and expose the limitations of the language definitional frameworks. Fig. 10 shows both a textual representation

of Challenge configurations (as the ones for IMP and IMP++ above), as well as a graphical one, which can be automatically

generated by the K2Latex component of our current implementation of K in Maude [41]. The Challenge configurations

have five levels of cell-nesting and several cells labels are starred, meaning that there can be multiple instances of those

cells. For example, the top cell may contain multiple 〈〉agent cells; each agent may contain, besides information like a local

store, aspect, busy resources (used as locks for thread synchronization), etc., an arbitrary number of 〈〉thread cells grouped

in a 〈〉threads cell; each thread contains a local computation, a local environment and a number of resources (resources can

be acquired multiple times by the same thread, so a map is needed). As one may expect, real life language definitions tend

to employ rather complex configurations.

The advantage of representing configurations as nested cell-structures is that, like in MSOS [29], subsequent rules only

need to mention those configuration items that are needed for those particular rules, as opposed to having to mention the

entire configuration, whether needed or not, like in conventional SOS. We can add or remove items from a configuration as we

like, only impacting the rules that use those particular configuration items. Rules that do not need the changed configuration

items do not need to be touched. This is an important aspect of K, which significantly contributes to its modularity.

Defining a configuration for a K semantics of a language, calculus or system is an optional step, in that it suffices to

only define the desirable cell syntax so that configurations like the desired one parse as ordinary cell terms. That indeed

provides all the necessary infrastructure to give the semantic K rules. However, providing a specific configuration term is

useful in practice for at least two reasons. First, the configuration can serve as an intuitive skeleton for writing the subsequent

semantic rules, one which can be consulted to quickly find out, for example, what kind of cells are available and where they

can be found. Second, the configuration structure is the basis for context transformation (see Section 5.5), which gives more

modularity to K rules by allowing them to be reusable in language extensions that require changes in the structure of the

configuration.

1 Note, in particular, that we omitted it for the k label in the IMP++ configuration (IMP++ is multithreaded).
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5.2. K computations: �-separated nested lists of tasks

Q: What are K computations?

A: Computations are an intrinsic part of the K framework. They extend abstract

syntax with a special nested-list structure and can bethought of as sequences of

fragments of program that need to be processed sequentially.

Q: Do I need to define computations myself?

A: What is required is to define an abstract syntax of your language (discussed below)

and desired evaluation strategies for the language constructs (discussedin Section

5.3.1), which need to be defined no matter what frame work you prefer. By doing so,

you implicitly define the basic K computational infrastructure. In many cases you do

not need to define any other computation constructs.

Q: Do I need to understand in depth what computations are in order to use K?

A: Not really. If you follow a purely syntactic definitional style mimicking reduction

semantics with evaluation contexts [13] in K, thenthe only computations that you

will ever see in your rules are abstract syntax terms.

Q: What is the benefit of using more complex (than abstract syntax) computations?

A: Using K at its full strength. Many complex languages are very hard or impossible

to define purely syntactically, while they admit elegant and natural definitions using

proper K computations. For example, the CHALLANGE language in Section 6.

Q/A

K takes a very abstract view of language syntax and, in theory, it is not concerned at all with parsing aspects. 2 More

precisely, in K there is only one top-level sort 3 associated to all the language syntax, called K and standing for computational

structures or computations, and terms t of sort K have the abstract syntax tree (AST) representation l(t1, . . . , tn), where

l is some K label and t1, . . . , tn are terms of sort K , extended with the list (infix) construct “�”, read “followed by” or

“and then”; for example, if t1, t2, . . . , tn are computations then t1 � t2 � · · · � tn is also a computation, namely the one

sequentializing t1, t2, . . . , tn. All the original language constructs, including constants and program variables, as well as all

the freezers (discussed below), are regarded as labels. For notational convenience, we continue to write K-terms using the

original syntax instead of the harder to read AST notation. Formally, computations are defined as follows:

K ::= KLabel(List [K]) | List
�

[K]

KLabel ::= (one per language construct, plus auxiliary ones as needed)

The first construct scheme for K abstractly captures any programming language syntax as an AST, provided that one adds

one KLabel for each language construct. For example, in the case of the IMP language, we add to KLabel all the following

labels corresponding to the IMP syntax:

KLabelIMP ::= Int | Id | _+_ | _/_ | _<=_ | not_ | _and_ | skip; | _=_; | _ _

| if_then_else_ | while_do_ | var_; _

We recommend the use of the mix-fix notation for labels, like in the above labels corresponding to the IMP language; the mix-

fix notation was introduced by the OBJ language [14] and followed by many other similar languages, where underscores in

the name of an operation mark the places of its arguments. In addition to the language syntax, KLabel may include additional

labels for semantic reasons; e.g, labels corresponding to semantic domain values which may have not been automatically

included in the syntax of the language, such as the Bool domain in the case of IMP. We take the liberty to call K constants

those computations which are labels applied to, and always intended to be applied to, an empty list of arguments (e.g.,

skip;(), true(), 1(), 2(), etc.)

Most K labels always take a fixed number of arguments; e.g., the label if_then_else_ above takes three arguments.

Even though the simplistic syntax of K cannot enforce the fixed number of arguments in the semantics, one can show

that the semantic rules never change the number of arguments of such labels, so they will always have the original

number of arguments as given by the original parsing of the program. There are syntactic language constructs, how-

ever, which are allowed to take an arbitrary number of arguments. A typical example is, for example, lists of expressions.

2 In practice, like in all other language semantics frameworks, some parser is always assumed or effectively used as a front-end to K to parse and transform

the language syntax into its abstract K syntax.
3 Technically, one can define more than one top-level computation sort; however, for simplicity we prefer to keep only one computation sort for now.
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Consider, for example, the Challenge language discussed in Section 6. Like many other languages, Challenge includes

functions (as λ-abstractions). The function application construct, _ (_), is defined to take an expression as first argument

(expected to evaluate to a function value) and a comma-separated list of expressions as second argument: Exp (List[Exp]).
A list of expressions “e1,e2, . . . ,en” is captured as a K computation of the form “_,_(t1, t2, . . . , tn)” (with _,_() for the

empty list), where ti is the K representation of ei. Therefore, lists of expressions are regarded as labels applied to an arbi-

trary number of arguments; the name of the label is inspired from list constructs being thought of as binary associative

operations.

It is convenient in many K definitions to distinguish syntactically between proper computations and computations which

are finished. A similar phenomenon is common and also accepted in other definitional styles, which distinguish between

proper expressions and values, for example. To make this distinction smooth, we add the KResult syntactic subcategory of K

which is constructed using corresponding labels (all labels in KResultLabel are also in KLabel):

KResult ::= KResultLabel(List [K])

KResultLabel ::= (one per construct of terminated computations, e.g., values, results, etc.)

Among the labels in KResultLabel one may have certain language constants, such as true, 0, 1, etc., but also labels that

correspond to non-constant terms, for example λ_._; indeed, in some λ-calculi, λ-abstractions λx.e (or λ_._(x, e) in AST

form), are values (or finished computations).

There is yet another category of labels that turns out to be useful in semantic definitions, namely hybrid labels, which are

intended to “hold data”, i.e., take lists of K results into a K result:

KResult ::= KHybridLabel(List [K])

KHybridLabel ::= (one per construct that does not reduce once its arguments are reduced)

For example, the “list” label _,_ above should be declared hybrid, since we want _,_(t1, t2, . . . , tn) to be considered eval-

uated in the semantics whenever each ti is evaluated. On the other hand, labels like _+_ are obviously not hybrid. In fact,

hybrid labels are rather rare. It may also be worth noting that, unlike the result labels, the hybrid labels are more of a

convenience than a necessity. Indeed, one can always introduce a new result label for any label intended to be hybrid, e.g.

_,result_, together with a rule replacing the label with its result counterpart whenever its arguments become results, e.g.,

“_,_(t1, t2, . . . , tn) ⇁ _,result_(t1, t2, . . . , tn) when t1, t2, . . . , tn ∈ KResult” (a structural rule, see Section 5.3). However,

this would be inconvenient in many cases.

We take the liberty to write language or calculus syntax either in AST form, like in λ_._(x, e), if_then_else_(b, s1, s2),
and skip(), or in mixfix form, like in λx.e, if b then s1 else s2, and skip. For example, in Fig. 1 we preferred to write

the rule for addition as i1 + i2 → i1 +Int i2 instead of _+_(i1(), i2()) → (i1 +Int i2)(). In our Maude implementation of

K [41], thanks to Maude’s built-in support for mixfix notation and parsing capabilities, we actually write programs using

the mixfix notation. Even though theoretically unnecessary, this is actually very convenient in practice, because it makes

language definitions more readable and, consequently, less error-prone. Additionally, programs in the defined languages

can be regarded as terms the way they are, without any intermediate AST representation. In other implementations of K ,

one may need to use an explicit parser or to get used to reading syntax in AST representation. Either way, from here on we

assume that programs, or fragments of programs, parse as computations in K .

The second construct scheme for K allows one to sequentialize computational tasks. Intuitively, k1 � k2 says “process k1

then k2”. How this is used and what is the exact meaning of “process” is left open and depends upon the particular definition.

For example, in a concrete semantic language definition it can mean “evaluate k1 then k2”, while in a type inferencer definition

it can mean “type and accumulate type constraints in k1 then do the same for k2”, etc. Fig. 4 shows examples of computations

making use of the List
�

[K] structure of K (we use parentheses for disambiguation). The “·” in the first and last computations

in Fig. 4 is the unit of K (given by List
�

[K]). Note that �-separated lists of computations can be nested. Most importantly

note that, unlike in evaluation contexts, � is not a “hole” in K, but rather part of a KLabel; the KLabels involving � in Fig. 4

are “_+�”, “� +_”, and “if� then_else_”. The � carries the “plug here” intuition; e.g., one may think of “a1 � �+ a2” as

“process a1, then plug its result in the hole in �+a2”. The user of K is not expected to declare these special labels. We assume

Fig. 4. Examples of K computations.
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them whenever needed. In our implementation of K in Maude [41], all these are generated automatically as constants of sort

KLabel after a simple analysis of the language syntax.

Freezers. To distinguish the labels containing � in their name from the labels that encode the syntax of the language under

consideration, we call the former freezers. The role of the freezers is therefore to store the enclosing computations for future

processing. One can freeze computations at will in K, using freezers like the ones above, or even by defining new freezers.

In complex K definitions, one may need many computation freezers, making definitions look heavy and hard to read if one

makes poor choices for freezer names. Therefore, we adopt the following freezer naming convention, respected by all the

freezers above:

If a computation can be seen as c[k, x1, . . . , xn] for a multicontext c and a freezer is needed to freeze everything
except k, then its name is “c[�, _, . . . , _]”.

Additionally, to increase readability, we take the freedom to generalize the adopted mixfix notation in K and “plug” the

remaining computations in the freezer, that is, we write c[�, k1, . . . , kn] instead of c[�, _, . . . , _](k1, . . . , kn). For in-

stance, if _@_ is some binary operation and if, for some reason, in contexts of the form (e1@e2)@(e3@e4) one wishes

to freeze e1, e3 and e4 (in order to, e.g., process e2), then, when there is no confusion, one may write (e1@ �)@(e3@e4)
instead of ((_@ �)@(_@_))(e1, e3, e4). This convention is particularly useful when one wants to follow a reduction se-

mantics with evaluation contexts style in K, because one can mechanically associate such a freezer to each context-

defining production. For example, the freezer (_@ �)@(_@_) above would be associated to a production of the form

“P ::= (Exp@P)@(Exp@Exp)”.

5.3. K rules: computational and structural

Q: How are the K rules different from conventional rewrite rules?

A: The K framework builds upon K rewriting; how the K rewriting rules differ

froms tandard rules is explained in Section 4.

Q: What do I lose if I think of K rules as sugared variants of standard rules?

A: Not much if you are not interested in true concurrency.

Q: Does that mean that I can execute K definitions on any rewrite engine?

A: Yes. However, it is desirable to use are write engine with supportat least

for associative matching. In fact, our current implementation of K [7] does so.

Q/A

The K framework builds upon K rewriting. As mentioned in Section 4, K rules can be split into computational and structural.

From here on, we distinguish them as shown in Fig. 5. They both consist of a local context, or pattern, p, with some of its

subterms underlined and rewritten to corresponding subterms underneath the line. The idea is that the underlined subterms

represent the “read–write” part of the rule, while the operations in p which are not underlined represent the “read-only”

part of the rule and can be shared by concurrent rule instances. The difference between computational and structural rules is

that rewrite steps using the latter do not count as computational steps, their role being to rearrange the structure of the term

so that computational rules can apply. There are no rigid requirements on when a K semantic rule should be computational

versus structural. While in most cases the distinction between the two is natural, there are situations where one needs to

subjectively choose one or the other; for example, we chose the rule for variable declarations in the IMP semantics in Fig. 1

to be structural, but some language designers may prefer it to be computational.

Recall from Section 3.1 that we prefer to use the conventional rewrite rule notations “l → r” and “l ⇁ r” for computational

and structural K rules, respectively, when p = � (that is, when there is only one read–write part, the entire pattern, and no

read-only part). There is not much to say about K rules besides what has already been said in Sections 3 and 4. We would

only like to elaborate a bit further on the heating/cooling rules and their corresponding strictness attributes.

Fig. 5. K rules.
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5.3.1. Heating/cooling structural rules

Q: What is the role of the heating/cooling rules?

A: These are K’s mechanism to define evaluation strategies of language constructs.

They allow you to decompose fragments of programs into sequences of smaller com-

putations, and to compose smaller computations back into fragments of programs.

Q: Do I need to define such heating/cooling rules myself?

A: Most likely no. Itusually suffices to define strictness attributes, as discussed

below; these are equivalent to defining evaluation contexts. Strictness attributes serve

 as a notational convenience for defining obvious heating/cooling structural rules.

Q/A

After defining the desired language syntax so that programs or fragments of programs become terms of sort K , called

computations, the very first step towards giving a K semantics is to define the evaluation strategies or strictness of the

various language constructs by means of heating/cooling rules, or more conveniently, by means of the special attributes

described shortly. The heating/cooling rules allow us to regard computations many different, but completely equivalent

ways. For example, “a1 + a2” in IMP may be regarded also as “a1 � � + a2”, with the intuition “schedule a1 for processing

and freeze a2 in freezer � + _”, but also as “a2 � a1 + �” (recall from Section 3.1 that, in IMP, addition is intended to be

non-deterministic). As discussed in Section 5.2, freezers are nothing but special labels whose role is to store computations

for future processing.

Heating/cooling structural rules tell how to “pass in front” of the computation fragments of the program that need to

be processed, and also how to “plug their results back” once processed. In most language definitions, all such rules can be

extracted automatically from K strictness operator attributes as explained below; Fig. 1 shows several examples of strictness

attributes. For example, the strict attribute of _+_ is equivalent to the two heating/cooling pairs of K rules in Fig. 6 (a1 and a2

range over computations in K). The symbol “�” is borrowed from the chemical abstract machine (CHAM) [5], as a shorthand

for combinations of a heating rule (“⇀”) and a cooling rule (“↽”). Indeed, one can think of the first rule as follows: to process

a1 + a2, let us first “heat” a1, applying the rule from left to right; once a1 is processed (using other rules in the semantics)

producing some result, place that result back into context via a “cooling” step, applying the rule from right to left. These

heating/cooling rules can be applied at any moment and in any direction, since they are regarded not as computational

steps but as structural rearrangements. For example, one can use the heating/cooling rules for “_+_” to pick and pass in front

either a1 or a2, then rewrite it one step only using semantic rules (defined shortly), then plug it back into the sum, then pick

and pass in front either a1 or a2 again and rewrite it one step only, and so on, thus obtaining the desired non-deterministic

operational semantics of _+_.

The general idea to define a certain evaluation context, say c[�,N1, . . . ,Nn], where N1, . . . ,Nn are the various syntactic

categories involved (or non-terminals in the CFG of the language), is to define a KLabel freezer c[�, _, . . . , _] like discussed

in Section 5.2, together with a heating/cooling rule pair “c[k, k1, . . . , kn] � k � c[�, k1, . . . , kn]”. One should be aware

that in K “�” is nothing but a symbol that we prefer to use as part of label names. In particular, “�” is not a computation

(recall that in reduction semantics with evaluation contexts “�” is a special context, called a “hole”). For example, a hasty

reader may think that K’s approach to strictness is unsound, because one can “prove” wrong correspondences as follows:

a1 + a2 ⇀ a1 � � + a2 (by the first rule above applied left-to-right)

⇀ a1 � a2 � � + � (by the second rule above applied left-to-right)

⇁ a1 � a2 + � (by the first rule above applied right-to-left)

⇁ a2 + a1 (by the second rule above applied right-to-left)

What is wrong in the above “proof” is that one cannot apply the second rule in the second step above, because � + a2 is

nothing but a convenient way to write the frozen computation � +_ (a2). One may say that there is no problem with the

above, because _+_ is intended to be commutative anyway; unfortunately, the same could be proved for any non-deterministic

construct, for example for a division operation, “/”, if that was to be included in our language. Since the heating/cooling rules

are thought of as structural rearrangements, so that computational steps take place modulo them, then it would certainly

be wrong to have both “a1/a2” and “a2/a1” in the same computational class. One of K’s most subtle technical aspects,

which fortunately is transparent to users, is to find the right (i.e., as weak as possible) restrictions on the applications of

Fig. 6. Rules for _+_ strict.
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Fig. 7. Computational class.

heating/cooling equations, so that each computational class contains no more than one fragment of program. The idea is to

only allow heating and/or cooling of operator arguments that are proper syntactic computations (i.e., terms over the original

syntax, i.e., different from “·” and containing no “�”). With that, for example, Fig. 7 shows the computational class of the

expression x ∗ (y + 2) in the context of a language definition with non-deterministically strict binary + and ∗. Note that

there is only one syntactic computation in the computation class above, namely the original expression itself. This is a crucial

desired property of K.

5.4. Strict and hybrid attributes

In K definitions, one typically defines zero, one, or more heating/cooling rules per language construct, depending on

its intended evaluation/processing strategy. These rules tend to be straightforward and boring to write, so in K we prefer a

higher-level and more compact and intuitive approach: we annotate the language syntax with strictness attributes. A language

construct annotated as strict, such as for example the “_+_” in Fig. 1, is automatically associated a heating/cooling pair of

rules as above for each of its subexpressions. If an operator is intended to be strict in only some of its arguments, then the

positions of the strict arguments are listed as arguments of the strict attribute. For example, note that the strictness attribute

of if_then_else_ in Fig. 1 is strict(1); that means that a heating/cooling equation is added only for the first subexpression

of the conditional, namely the rule pair “if b then s1 else s2 � b � if� then s1 else s2”.

The two pairs of heating/cooling rules corresponding to the strictness attribute strict of _+_ above did not enforce any

particular order in which the two subexpressions were processed. It is often the case that one wants a deterministic order

in which the strict arguments of a language construct are processed, typically from left to right. Such an example is the

relational operator _<=_ in Fig. 1, which was declared with the strictness attribute seqstrict, saying that its subexpressions

are processed deterministically, from left to right. The attribute seqstrict requires the definition of the syntactic category

of result computations KResult, as discussed in Section 5.2, and it can be desugared automatically as follows: generate a

heating/cooling pair of rules for each argument like in the case of strict, but requiring that all its previous arguments are in

KResult. For example, the seqstrict attribute of _<=_ desugars into the rules in Fig. 8 (a1, a2 ∈ K and r1 ∈ KResult). Like the

strict attribute, seqstrict can also take a list of numbers as argument and then the heating/cooling rules are generated so that

the corresponding arguments are processed in that order.

The strictness attributes also apply to labels taking an arbitrary number of arguments. For example, the expression-list

construct _,_ of Challenge in Section 6 is declared strict, meaning that all the expressions appearing in the list need to

evaluate whenever the expression-list is asked to evaluate. The general desugaring rules of strictness can be best given in

terms of K label representations. For example, a strict attribute associated to label ∈ KLabel is syntactic sugar for rules like

the ones below (kl1, kl2 ∈ List[K], k ∈ K , r ∈ KResult):

label(kl1, k, kl2) � k � label(_,�, _)(klist(kl1), klist(kl2))

r � label(_,�, _)(klist(kl1), klist(kl2)) � label(kl1, r, kl2)

where label(_,�, _) and klist are labels. This way, the lists kl1 and kl2 are unambiguously frozen until k is reduced to a result.

For seqstrict, replace kl1 ∈ List[K] by rl1 ∈ List[KResult] above.

Our most general strictness declaration in K, also supported by our current implementation [41], is to declare a certain

syntactic context (a derived term) strict in a certain position designated by a special marker�. For example, in the K definition

of Challenge in Section 6, we declare the context “*� = _”, with the meaning that the assignment statement applied to a

pointer needs to first evaluate the pointer expression before other semantic rules can apply.

Fig. 8. Rules for _<=_ seqstrict.
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Language constructs can also be annotated with the hybrid attribute, to indicate that their corresponding label is hybrid

(see Section 5.2).

5.5. Context transformation

We next introduce one of the most advanced feature of K, the context transformation, which gives K an additional degree

of modularity. The process of context transformation is concerned with automatically modifying existing K rules according

to the cell structure defined by the desired configuration of a target language. The benefit of context transformation is that

it allows us to define semantic rules more abstractly, without worrying about the particular details of the concrete final

language configuration. This way, it implicitly enhances the modularity and reuse of language definitions: existing rules do

not need to change as the configuration of the languages changes to accommodate additional language features, and language

features defined generically once and for all can be reused across different languages with different configuration structures.

Defining a configuration (see Section 5.1) is a necessary step in order to make use of K’s context transformation. Assuming

that the various cell-labels forming the configuration are distinct, then one can use the structure of the configuration to

automatically transform abstract rules, i.e., ones that do not obey the intended cell-structure of the configuration, into

concrete ones that are well-formed within the current configuration structure. The context transformation process can be

thought of as being applied statically on all rules, before the K-system is executed.

Consider, for example, the K semantic rule for print in IMP++ (see Fig. 2):

〈print i;

·
_〉k 〈_ ·

i

〉out

This rule captures the semantics of the output statement in the most abstract and compact possible way: if “print i;” is the

next computational task, then append i to the end of the 〈〉out buffer and dissolve the print statement. This rule matched

the configuration structure of IMP++, because the IMP++ configuration structure was very simple: a top level cell containing

all the other cells inside as simple, non-nested cells. Consider now defining a more complex language, like the Challenge

language in Section 6 whose configuration is shown in Fig. 10. The particular cell arrangement in theChallenge configuration

makes the rule above directly inapplicable; to be precise, even though the rule context still parses as a CellContents-term, it

will never match/apply when used in the context of the Challenge configuration.

Context transformation is about automatic adaptation of K rules like above to new configurations. Indeed, note that there

is only one way to bring the cells 〈〉k and 〈〉out mentioned in the rule above together: to wrap them with the cells above

them declared in the Challenge configuration until a common cell contents is reached, namely to transform the rule into

the following one:

〈_ 〈_ 〈_ 〈_ 〈print i;

·
_〉k _〉thread _〉threads _〉agent _〉agents 〈_ 〈_ ·

i

〉out _〉I/O

Context transformation can be defined as the process of customizing the paths to the various cells used in a rule according

to the configuration of the target language. As part of this customization process, variables are used for the remaining parts

of the introduced cells, so that other rule instances concerned with those parts of the cells can apply concurrently with the

transformed rule.

5.5.1. The locality principle

The rule above was rather simple, in that there was no confusion on how to complete the paths to the referred cells.

Consider instead a general-purpose K rule for pointer dereferencing:

〈* n

v

_〉k 〈_ n �→ v _〉store

This says that if dereferencing of location n is the next computational task and if v is stored at location n, then * n rewrites

to v. The configuration of Challenge considers the cells 〈〉k and 〈〉store at different levels in the structure, so a context

transformation operation is necessary to adapt this rule to Challenge’s concrete configuration. However, without care,

there are two ways to do it:

〈_ 〈_ 〈* n

v

_〉k _〉thread _〉threads 〈_ n �→ v _〉store

〈_ 〈_ 〈_ 〈* n

v

_〉k _〉thread _〉threads _〉agent 〈_ 〈_ n �→ v _〉store _〉agent

The first rule above says that the thread containing the dereferencing and the store are part of the same agent, while the

second rule says that they are in different agents (why we are allowed to multiply the agent cells is explained shortly). Even

though we obviously meant the first one, both these rules make sense according to the configuration of Challenge.
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To avoid such conflicts, context transformation relies on the locality principle: rules are transformed in a way that makes

them as local as possible, or, in other words, in a way that the resulting rule matches as deeply as possible in the concrete

configuration. Thus, the locality principle rules out the second rule transformation above, since it is less local than the former.

If, for some reason (which makes no sense forChallenge) one means a non-local transformation of a rule context, then one

should add more cell-structure to the abstract rule for disambiguation. For example, if one really meant the second context

transformation of the dereferencing rule above, then one should have written the abstract rule, for example, as follows:

〈_ 〈*n

v

_〉k _〉agent 〈_ n �→ v _〉store

Now there is only one way to transform it to fit the configuration of Challenge, namely like in the second Challenge-

concrete rule above. Indeed, the 〈〉store cell can only be within an 〈〉agent cell and the 〈〉k cell inside the declared 〈〉agent cell

can only be inside an intermediate 〈〉thread cell, which must reside in a 〈〉threads cell. Context transformation applies at all

levels in the rule context.

Let us consider one more example showing the locality principle at work, namely the abstract rule for variable lookup

in languages with direct access to variable addresses (thus, variables are bound to their addresses in the environment and

their addresses to their values in the store):

〈x

k

_〉k 〈_ x �→ n _〉env 〈_ n �→ k _〉store

The locality principle says that there is only one way to transform this rule in the context of the Challenge configuration,

namely into the following rule:

〈_ 〈_ 〈x

k

_〉k 〈_ x �→ n _〉env _〉thread _〉threads 〈_ n �→ k _〉store

Without locality, the three cells in the abstract rule above could be included in two or even in three agents; when the first

two cells are in the same agent, they could also appear in different threads.

5.5.2. The cell-cloning principle

There are K rules in which one wants to refer to two or more cells having the same label. An artificial example was shown

above, where more than one 〈〉agent cell was needed. A more natural rule involving two cells with the same label would

be one for thread communication or synchronization, in which the two threads are directly involved in the said action. For

example, consider adding a rendezvous synchronization mechanism to IMP++ whose intended semantics is the following: a

thread whose next computational task is a rendezvous barrier statement “rendezvous v;” blocks until another thread also

reaches an identical “rendezvous v;” statement, and, in that case, both threads unblock and continue their execution. The

following K rule captures this desired behavior of rendezvous synchronization:

〈rendezvous v;

·
_〉k 〈rendezvous v;

·
_〉k

Since this K rule captures the essence of the intended rendezvous synchronization, we would like to reuse it unchanged

in language definitions which are more complex than IMP++, such as the Challenge language in Section 6. Unfortunately,

this rule will never match/apply as is on Challenge configurations, because two 〈〉k cells can never appear next to each

other. A context transformation operation is therefore necessary, but it is not immediately clear how the rule context should

be changed. The cell-cloning principle applies when abstract rules refer to two or more cells with the same name, and it

states that context transformation should be consistent with the cell cloning, or multiplicity, information provided as part

of the configuration definition; this can be done using starred labels, as explained in Section 5.1. Note that, for example, the

Challenge configuration in Fig. 10 declares both the agent and the thread cells clonable. Thus, using the cell-cloning principle

in combination with the locality principle, the abstract rule above is transformed into the following Challenge-concrete rule:

〈_ 〈rendezvous v;

·
_〉k _〉thread 〈_ 〈rendezvous v;

·
_〉k _〉thread

The cell-cloning principle can therefore only be applied when one defines a configuration for one’s language and, more-

over, when one also provides the desired cell-cloning information (by means of starred labels). However, in our experience

with defining languages in K, it is actually quite useful to spend the time and add the cell-cloning information to one’s config-

uration; one not only gets the convenience and modularity that comes with context transformation for free, but also a better

insight on how one’s language configurations look when programs are executed and thus, implicitly, a better understanding

of one’s language semantics.
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5.5.3. Context transformation with default values

When creating a new agent, or spawning a new thread, a new cell for that agent/thread must be created, together with all

the structure of nested cells below it. Moreover, all leaf cells need to be initialized with appropriate values. However, while

the structure of the newly created cell can be quite complex, only a few cells are initialized with non-default values. Also,

having to specify the entire cell makes the rule depend on a particular configuration, and thus non-modular: if the designer

decides to add a new cell or to re-organize existing cells, the rule would have to be updated. To address all these issues, we

allow partially specified configurations to appear in the replacement part of a K rule, and context-transform them by adding

all missing cells and initializing the leaf ones with their default values. The default values can either be given for each sort

or for each cell once and for all; in our K-Maude tool [41], for example, we place them inside each cell when we define the

configuration. The rule of agent creation can then be written as (“_” variables are used in the replacement part to indicate

that it must be context-transformed):

〈new-agent s

n

_〉k 〈m〉me 〈 n

n +Int 1

〉nextAgent ·
〈_ 〈s〉k〈n〉me 〈m〉parent _〉agent

Upon applying the context transformation, the 〈〉agent cell is completed to:

〈〈〈〈s〉k 〈·〉env 〈·〉holds 〈·〉fstack〉thread〉threads 〈·〉store 〈·〉ptr 〈0〉nextLoc 〈·〉aspect 〈·〉busy 〈n〉me 〈m〉parent〉agent

6. The CHALLENGE language

This section gives the K semantic definition of Challenge, a non-trivial experimental programming language aimed

at challenging existing or future language definitional frameworks. All language constructs of Challenge can be found in

existing languages, possibly in a more general form and possibly using a different syntax. None of Challenge’s features are

artificially crafted and the language, as a whole, is plausible and powerful.

The rationale for choosing features that already exist in popular languages is to avoid criticism, from proponents of

frameworks that cannot handle the proposed features, that those features are useless, and thus do not deserve attention.

Our standpoint is that the very fact that a feature exists in a mainstream language is sufficient evidence that the fea-

ture is useful, so an ideal semantic framework should unarguably support it. While a language designer may chose not

to include such a feature in her language, a language-design framework designer aiming at an ideal framework has no

choice and should support it. The Challenge’s features, and particularly their combination, have been chosen to satisfy two

criteria:

1. To capture the essence of a certain category of conventional language concepts; if a semantic framework cannot handle

a certain Challenge feature then that framework cannot handle a potentially wide range of desirable features;

2. To illustrate how one modularly defines a complex language in K: each new feature is added without changing any of

the already defined features. We here assume that one knows upfront the entire language and that at each step one

takes the globally best design decisions.

6.1. CHALLENGE syntax and informal meaning

Fig. 9 shows the syntax of Challenge, which is split into two syntactic categories: expressions (Exp) and statements

(Stmt). To save space and give the reader an early intuition of the evaluation strategies of the various constructs, the syntax

of Challenge in Fig. 9 is annotated with K strictness attributes (Section 5.4). The language starts with arithmetic expres-

sions, then gradually grows in complexity by adding: expressions with side effects; memory allocation and pointers; lists;

aspects; functions; recursion; call with current continuation; non-determinism; multithreading with shared memory and

synchronization; agents with synchronous and asynchronous communication, and with broadcasting and barriers; and con-

structs for code generation and evaluation. We next informally explain the various Challenge constructs and briefly give

our reasons for including them in Challenge.

Expressions can be both arithmetic and boolean, and include both integer and real numbers. The arithmetic/boolean

expression constructs and their evaluation strategies are similar to those of IMP, which were discussed in Section 3.1.

However, we keep the integer and real numbers separate and all the arithmetic and relational operations are overloaded to

work with both. Expressions can have side effects, both minimal (as given, e.g., by the variable increment construct “++x”)

and arbitrarily complex (as given, e.g., byλ andμ in combination with arbitrary pointer passing, assignment and arithmetic).

Side effects are common in programming languages and their inclusion may require non-modular changes when one uses

certain semantic frameworks.

Challenge allows dynamic memory allocation via the malloc expression construct and allows memory deallocation

with the free statement construct. Like in C, “malloc e” evaluates e (say to n), allocates a block of n contiguous locations,

and returns the location where the block starts; free can only be called on a location which has been previously returned by

a malloc, so that the number of locations to free is known. Challenge also allows unrestricted pointer arithmetic, accessing

the address at which a variable is allocated (with the expression construct &x), dereferencing locations (with the expression
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Fig. 9. K annotated Challenge syntax.

construct *p), and writing values to locations (using statements of the form *p = e). Not all languages allow as explicit and

direct memory access as Challenge. Nevertheless, a semantic framework able to naturally deal with the memory operations

of Challenge can likely support arbitrarily complex memory operations in programming language semantic definitions,

including, for example, arrays.

While pointers and explicit memory allocation are powerful enough to mimic any data-structures and operations on

them, many languages provide more explicit (built-in or user-defined) data-structures, such as lists, trees, etc. For simplicity,

we only include (arbitrary) lists with operations on them (whose syntax is borrowed from Haskell), where x:l prepends

element x to list l and head l and tail l give the first element of list l and the remaining elements, respectively.

Any semantic framework must support definitions of languages with functions. Higher-order functions tend to be more

complex and there are many higher-order functional languages. We therefore only include higher-order functions in Chal-

lenge, and we do it by means of λ-expressions. To stress the framework’s capability to syntactically and semantically deal

with lists of terms, we allowλ-abstractions taking arbitrary lists of parameters (λ (List[Id]) . Stmt) andλ-applications taking

arbitrary lists of arguments (Exp (List[Exp])) in Challenge. For example, (λ() . s)(), (λ(x) . s)e, and (λ(x1, x2) . s)(e1, e2) are

all well-formed Challenge expressions when x, x1, x2 ∈ Id, s is a well formed statement, and e, e1, e2 are well-formed

expressions. Note that we defined the λ-application to be strict both in its first argument (expected to evaluate to a function)

and in its second argument; its second argument is a list of expressions, so the application is implicitly strict in all these

expressions in the list (i.e., each of the expressions in the list will be evaluated before the function is applied; how this

works is explained in Section 5); therefore, Challenge is call-by-value. To stress the framework’s ability to define constructs

that change the execution flow abruptly, the body of a λ-expression is a statement; to exit it, one needs to use an explicit

“return Exp” statement, which is strict in its argument.

Since recursion is a fundamental design and semantic concept in programming languages, and since recursion can

have many apparently different facets, Challenge allows several different means to achieve it: through explicit use of

a provided fixed-point μ construct (μ Id . Exp); through iteration using the provided while loop statement construct

(while Exp do Stmt); through using conventional λ-calculus encodings based on passing functions to themselves (which

only work in untyped settings); through assigning to store locations λ-abstractions whose closed environments refer to

those locations; and through using continuations via callcc. Even though in theory only one approach to recursion suffices,

we strongly believe that a language definitional framework should naturally support all these approaches in practice to give

the language designer flexibility.

Many languages have control-intensive constructs, such as abrupt termination, exceptions, break/continue of loops, and

even callcc (from “call with current continuation”). Therefore, any language definitional framework must support language

constructs that abruptly change the execution flow. Since callcc is as complex a control-intensive construct as it can be, we

included it as part of Challenge (callcc Exp). We also includedreturn, as explained above, and several abrupt termination

statements (for threads, agents and program), which we discuss shortly.
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Some semantic frameworks, particularly those of a denotational nature, cannot handle non-determinism satisfactorily:

while they still allow, in some cases, to define a collecting semantics (i.e., a semantics that collects all behaviors), such a

semantics is inappropriate for obtaining an interpreter for the defined language when executing it. To illustrate a framework’s

capability to deal with non-determinism, Challenge includes the simplest imaginable explicit non-deterministic construct,

namely a randomBool boolean constant which non-deterministically evaluates to true or false each time it is evaluated.

Concurrency, discussed below, induces implicit non-determinism.

Concurrent software in no longer the exception to the rule, it has become the norm. Any practical language definitional

framework should provide good support for concurrency. Therefore, Challenge contains language constructs that stress

the underlying framework in several ways with respect to concurrency. It allows dynamic creation and termination of both

agents (newAgent Stmt) and threads (spawn Stmt). The threads live inside agents and the threads within a given agent com-

municate and synchronize with each other by means of shared memory, re-entrant acquisition (acquire Exp) and releasing

(release Exp) of locks (any value can serve as a lock), and by rendezvous barriers (rendezvous Exp). Agents communicate

by means of asynchronous (send Exp to Exp) and synchronous (sendSynch Exp to Exp) message-send commands (the first

argument is the value being passed and the second argument is the receiving agent’s name), by targeted (receiveFrom Exp,

where the argument is the sending agent’s name) and non-targeted (receive) expression receive constructs, and by broad-

casting (broadcast Exp) and global barriers (barrier). A framework supporting the above common concurrency features

likely can support any degree of concurrency that a language designer may want to include in her language.

To keep a tight connection between the concurrency features and the rest of the language, Challenge includes several

other features that do not dictate the semantics of the concurrent ones but interact with them. For example, since there

are three types of executing entities, namely threads, agents, and the entire system, it makes sense to have three abrupt

termination statements, one for the current thread (haltThread), one for the current agent (haltAgent) and one for the

entire system (haltSystem); as expected, the former releases the locks held by the thread. Challenge also has an output

that is shared by all threads and agents (via the print statement). The constructs malloc/free act on the memory of

the current agent only (so the agent’s threads compete on memory), and callcc acts on the computation of the current

thread only.

Aspect-oriented programming is an important and increasingly growing trend in programming languages. There are

many different approaches to aspects (e.g., dynamic versus static aspects) and we cannot possibly include all of them in

Challenge. We only include one aspect-oriented feature, namely executing an aspect statement whenever a function is

invoked. To make it more interesting, we combine static with dynamic intuitions of aspects in that we weave the current

aspect within the body of a function at function declaration time, but we allow one to dynamically change the aspect code

(the latter is done via a statement “aspect s” setting the argument statement s as the aspect of the current thread. Many

variations are possible, particularly in combination with concurrency, but we prefer to keep Challenge minimal. We added

the particular aspect feature above for two reasons: first, executing additional code when a function is called is one of

the most common aspects; second, it may be inconvenient to give it semantics in purely syntactic approaches (one needs

to distinguish between already-weaved and not-yet-weaved functions) or in approaches which reduce desired language

features to their “built-in” similar features (e.g., desired functions to their built-in functions, desired recursion to their

fixed-points, etc.).

Finally, there are several programming languages providing support for dynamic code generation and execution (e.g.,

Lisp, Scheme, APL, COBOL, Javascript, Python, MetaOCaml, Jumbo, etc., and almost all assembler languages). We therefore

add support for code generation and execution to Challenge, to challenge the framework’s meta/reflective capabilities. The

expression “quote e” freezes expression e into a special code value, and “eval e” first evaluates e to a code value, say c,

and then unfreezes c and evaluates it in the current environment. To allow for arbitrarily complex code generation and

reuse, one can use expressions like “unquote e” inside a quoted expression, with the following semantics: evaluate e in

the current environment to a code value, then plug that code value into the quoted expression. Quoting of code can be

nested and an expression must be unquoted as many times as quoted in order to be evaluated. To lift values to code values,

we also include a “lift e” construct which evaluates e and creates a code value from its result. Therefore, like in Jumbo

and related languages (but unlike in Lisp and Scheme), we keep a clear separation between code and data in Challenge.

Code generation may be hard or impossible to define modularly in many language semantic frameworks, because they

do not allow for a meta/reflective view of syntax. Indeed, most frameworks drive a language semantics according to the

rigid structure of its syntax, where the individuality of each language construct is important; thus, one would most likely

need to define quoting/unquoting for each language construct, which is non-modular. In K, we can define the semantics of

quote/unquote/eval/lift with a few language-independent rules, using its reflective capabilities for syntax.

As argued above, the purpose of Challenge is to present a minimal set of non-artificial features that we believe any

ideal language definitional framework should be able to define modularly. In what follows we show how one can use K to

give modular semantics to Challenge. The fact that one can indeed define Challenge in K obviously does not automatically

make K an ideal language definitional framework; it only shows that K passes this minimal test.

Once a language syntax is defined in a tool-supported executable semantics framework, one can write and parse several

programs that one would like to eventually use to test the semantics. In our experience, it is worth writing tens of programs

using each language construct in isolation or combinations of them. These will help the designer not only make aesthetic

syntactic changes early in the process if needed, but also have a better understanding of the language overall. Finally, it is a
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good idea to also write a few more complex programs making intensive use of large subsets or language constructs, even all

if possible, such as, for example, the program in Fig. 12.

6.2. CHALLENGE configuration

Fig. 10 shows the complete K-configuration of Challenge, both in term representation and in graphical representation.

The cell contents is self-explanatory, but more detail will be given as we define the various language constructs in Section 6.3.

For notational simplicity and to keep the figure within the page width, we allowed more generous contents for some of the

cells in Fig. 10; in the semantics, for example, the cell 〈〉busy will take a set of K results only.

6.3. CHALLENGE semantics

Here we discuss the K semantics of Challenge, skipping all those constructs whose semantics are the same as in IMP++

(Section 3). Recall from Section 5.2 that language syntax is sunk into K computations by associating a K label to each language

construct (including constants) and that, to ease writing, we continue to use the mixfix notation instead of the AST notation in

computations, that is, we write e1 + e2 instead of _+_(e1, e2), 3 instead of 3(), etc. In general, to reduce clutter in computations

we write label instead of label() for any label ∈ KLabel. We start by defining basic values as result computations (or more

precisely as result labels; see Section 5.2):

KResultLabel ::= Bool | Int | Real

Other result labels are added by need as we define the semantics below. The variables used in the subsequent K rules

range over syntactic/semantic categories as follows: r1, r2 ∈ Real; i, i1, i2 ∈ Int; m, n, n′, l, l1, l2, . . . ∈ Nat; v ∈ KResult;

vl ∈ List[KResult]; x, y ∈ Id; xl ∈ List[Id]; ρ, 
 ∈ Map[Id �→ Nat]; σ ∈ Map[Nat �→ K]; fs ∈ List[K × Map[Id �→ Nat]];
h ∈ Map[KResult �→ Nat]; busy ∈ Set[KResult]; e, s1, s2, k, k1, k2 ∈ K; label ∈ KLabel; kl, kl1, kl2 ∈ List[K].

Note that we allow our stores to hold arbitrary computations, not only results as one would expect. We allow this

generality because it simplifies the semantics of recursion.

Arithmetic operations. All arithmetic operations have the same semantics as in IMP++ on the types of values that IMP++

had. We additionally extend their semantics to Real values:

r1 + r2 → r1 +Real r2 r1 + i2 → r1 +Real i2r(i2) i1 + r2 → i2r(i1)+Real r2

We chose to convert integers to reals (using an assumed i2r function) in order to sum them with reals. Our choice here

is, of course, adhoc; another possibility is, e.g., to disallow such situations (by dropping the last two rules), etc. The other

arithmetic operations are defined similarly.

Variable declaration. Newly declared variables are assigned new locations in the environment and the store is initialized

with 0 at those locations. The 〈〉nextLoc cell holds the next available location. ρ[l1 .. ln/xl] (re)assigns in ρ the identifier list

xl to the locations l1 .. ln, and l1 .. ln �→ v creates mappings from all locations l1 .. ln to v (i.e., l1 �→ v, l2 �→ v, etc.):

〈var xl;

·
_〉k 〈 ρ

ρ[n .. n′/xl]
〉env 〈_ ·

n .. n′ �→ 0

_〉store 〈 n

n′ +Int 1

〉nextLoc

where n′ is n +Int |xl| −Int 1

Variable lookup. When a program variable reaches the top of the computation, it is replaced by whatever is in the store at

the location corresponding to that variable in the environment:

〈x

k

_〉k 〈_ x �→ n _〉env 〈_ n �→ k _〉store

Variable assignment. The “strict(2)” attribute of the assignment construct says that the right-hand-side of an assignment

will be eventually evaluated. The resulting value is then written into the store at the location the variable points to in the

environment, and the assignment is dissolved:

〈x = v;

·
_〉k 〈_ x �→ n _〉env 〈_ n �→ _

v

_〉store
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Fig. 10. The configuration of the Challenge language in both term (top) and graphical (middle) representation, with short explanation of cell contents (bottom).
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Variable increment. The semantics of variable increment is a mixture of the two rules above:

〈 ++ x

i +Int 1

_〉k 〈_ x �→ n _〉env 〈_ n �→ i

i +Int 1

_〉store

Basic statement constructs. The following three rules give semantics to the basic statement constructs that were not

already discussed as part of IMP++ ({} is the same as IMP’s skip). The first gives semantics to blocks and says that once the

statement in the block is executed, the old environment must be resumed. The old environment is saved as item env(ρ) in the

computation right after the statement, where env wraps an environment in a K label, i.e., KLabel ::= env(Map[Id �→ Nat]);
the second rule below, which is structural, restores the environment once the statement is processed. The third rule below

discards the residual value obtained after evaluating expression e (e.g., ++x) in statement “e;” (recall from Fig. 9 that “Exp;”

is strict):

〈 {s}

s � env(ρ)
_〉k 〈ρ〉env 〈env(ρ)

·
_〉k 〈_

ρ

〉env v ; → ·

The restoration of the environment after a block is crucial, because we allow variable declarations anywhere and their

scope is until the end of the current block. Thus, a block-local variable may shadow an outside one which happens to have

the same name. The main reason for which we chose an environment-based instead of a substitution-based definitional

style for Challenge is that the later is known to be inconvenient when defining languages with such unrestricted variable

declarations in combination with referencing, dereferencing, and assignment constructs.

Referencing and dereferencing. The next rules give the semantics of &x (the reference location of program variable x) and

*n (the value at location n—note that *e was declared strict in Fig. 9):

〈& x

n

_〉k 〈_ x �→ n _〉env 〈* n

v

_〉k 〈_ n �→ v _〉store

Memory allocation and deallocation. The following two rules are almost dual to each other:

〈malloc n

l

_〉k 〈_ ·
l �→ n

_〉ptr 〈_ ·
l .. (l +Int n −Int 1) �→ 0

_〉store 〈 l

l +Int n

〉nextLoc

〈free l;

·
_〉k 〈_ l �→ n

·
_〉ptr 〈 σ

σ [⊥/l .. l +Int n −Int 1]
〉store

Above, σ [⊥/l .. l +Int n −Int 1] “undefines” the map σ in each of the locations in the list l +Int n −Int 1.

Assigning to a dereferenced location. Since the assignment operation is strict in its second argument (see Fig. 9), the

expression e2 in a reference assignment statement of the form “*e1 = e2;” is eventually evaluated. To give this statement a

semantics, we also need to evaluate e1 (interleaved with the evaluation of e2). The simplest way to do this is to declare a

strict context like below. Once e1 is also evaluated, the semantics of reference assignment is straightforward:

context: *� = _;
〈* n = v;

·
_〉k 〈_ n �→ _

v

_〉store

Note that even though the Challenge syntax in Fig. 9 allows assignment statements of the form “e1 = e2;” for arbitrary e1,

we only gave it a semantics for the cases when e1 is either a variable or a dereferencing expression of the form *e′
1; any other

e1 would stuck the computation/evaluation.

Lists. Challenge lists are comma-separated sequences of expressions surrounded by square brackets. Lists of expressions

evaluate to corresponding lists of results, obtained by evaluating each of the expressions in the list, and the obtained lists

of results are themselves results. This is achieved by the strict and hybrid attributes of the bracket list construct in Fig. 9,

with one important addition: the label “_,_” that corresponds to List[Exp] needs to also be declared strict and hybrid, so

that the expression-list argument of the bracket construct is evaluated to a result-list, as discussed in Section 5.2. Below is

the complete semantics of lists:
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_,_ [strict hybrid] v :[_,_(vl)] → [_,_(v, vl)]

head [_,_(v, vl)] → v tail [_,_(v, vl)] → [_,_(vl)]

We used the K labeled representation of lists above to make it clear that there is a _,_ list construct inside each square-bracket

Challenge list. In our K-Maude tool [41], however, one does not need to use the labeled representation; for example, the

last rule above is “rule tail [V,Vl] => [Vl]”.

Aspects. Challenge allows very simple aspects, whose semantics is as follows. Using a statement “aspect s”, one can

dynamically set the current aspect (held in a specific cell) to statement s:

〈aspect s

·
_〉k 〈_

s

〉aspect

The rest of the aspect semantics is formally defined in the next rule for function evaluation. Informally, whenever a λ-

abstraction evaluates to a closure, the current aspect is weaved at the beginning of its body. This way, the aspect is executed

whenever the function is invoked.

Functions as closures. It is convenient to evaluate Challenge λ-abstractions to closures. A closure is a special value

wrapping a function together with its defining environment. Closures ensure that the identifiers which are free in the wrapped

λ-abstraction are not escaped and always refer to the same store locations each time the λ-abstraction is applied. Since

closures evaluate no further, we can define them as K result labels, KResultLabel ::= closureλ(List[Id], K,Map[Id �→ Nat]);
an alternative, unexplored here, is to only define closureλ as a K result label. The semantics of λ-abstractions is given by the

following rule, which also weaves the current aspect:

〈 λxl . s1

closureλ(xl, s2 s1, ρ)

_〉k 〈ρ〉env 〈s2〉aspect

Function application. Upon function call, the evaluated arguments (which, since _,_ is strict and hybrid, are grouped as a

list of result computations under a _,_ label) are bound to the formal parameters, then the body of the function is executed

in the environment saved by the closure, and finally the calling environment and remainder of computation are saved as a

pair in the function stack 〈〉fstack to allow restoration upon return (a return must always be used to exit a function):

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

〈closureλ(xl, s, ρ) _,_(vl)� k

s

〉k 〈 


ρ[n .. n +Int |xl| −Int 1 / xl]
〉env 〈 ·

(k, 
)

_〉fstack

〈_ ·
n .. n +Int |xl| −Int 1 �→ vl

_〉store 〈 n

n +Int |xl|
〉nextLoc

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

When a return statement is reached, the original environment and computation are restored:

〈return v; �_

v � k

〉k 〈_

ρ

〉env 〈(k, ρ)
·

_〉fstack

Recursion. The standard fix-point semantics ofμx .e is given by unrolling it to e[μx .e/x]. To achieve this in an environment

based definition one needs to evaluate e in an environment where x is bound to e itself. However, similarly to the semantics

of λ, this enriched environment must be enclosed together with e to account for the other free variables of e. We can

achieve this using a similar closure construct as for λ, namely KLabel ::= closureμ(Exp,Map[Id �→ Nat]). Note, however, that

closureμ(e, ρ) is not a result label anymore, because it must schedule e for evaluation, as shown below. Once e is evaluated,

the original environment must be restored:

〈 μx . e

e � env(ρ)
_〉k 〈 ρ

ρ[n/x]
〉env 〈_ ·

n �→ closureμ(e, ρ[n/x])
_〉store 〈 n

n +Int 1

〉nexLoc
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Fig. 11. Recursion via assignment.

During the evaluation of e, whenever x is encountered the μ closure needs to be unrolled:

〈closureμ(e, 
)

e � env(ρ)
_〉k 〈ρ




〉env v � env(ρ) ⇁ env(ρ)� v

The other rule above (on the right) passes an already evaluated expression after the environment recovery item in the

computation, to allow our original environment recovery rule (see the rules for the statement block above) to apply. The

environment-based semantics of μ is more involved than the substitution-based one, but environments make the se-

mantics of other constructs (e.g., declarations, referencing, dereferencing, assignment) easier. There is no absolute better

style.

Note that e can be arbitrarily complex in its full generality, in particular it can generate several side effects before reaching

x and x need not necessarily appear inside a λ-abstraction. A common type of recursion, however, is to restrict e to only

λ-abstractions, in which case μx . e defines a recursive function (indeed, μx . λy . e′ then becomes let rec x y = e′ in x,

the usual mechanism to define recursive functions in functional languages). If such a restriction is acceptable, then we can

have much more elegant and compact semantics for μ, such as, for example

〈 μx . e

var x; � x = e; � x � env(ρ)

_〉k 〈ρ〉env

Alternatively, one could completely desugarμx .e into (λ().{ var x; x = e; return x; })(). These semantics mimic the

way let rec can be expressed using assignment in languages like Ocaml and SML. For example, Fig. 11 shows one possible

way to implement factorial in Ocaml. All the steps in our previous semantic rules can be observed in this definition: declaring

x, assigning it to an expression referencing x, and then escaping its value outside the defining environment. One could also

give μ a more direct semantics, under the same restriction, by declaring μx . e to be strict in e, and, once e evaluates to a

closure, to assign that closure to a fresh location n in the store, while modifying its environment to contain a mapping of x

to n:

〈μx . closureλ(y, s, ρ)

closureλ(y, s, ρ[n/x])
_〉k 〈_ ·

n �→ closureλ(y, s, ρ[n/x])
_〉store 〈 n

n +Int 1

〉nextLoc

Call with current continuation. Callcc packages the reminder of the computation as a value and passes it to its argument

(expected to evaluate to a function). When the packaged computation is applied on a value, the current computation is

discarded and replaced by the packaged one which is also passed the value. Note that the environment and function stack

also need to be packed:

〈 callcc v

v cc(k, ρ, fs)

� k〉k 〈ρ〉env 〈fs〉fstack 〈cc(k, ρ, fs) v � _

v � k

〉k 〈_

ρ

〉env 〈_

fs

〉fstack

In the above, we used cc to pack the various items discussed above into a K result label. Formally, KResultLabel ::=
cc(K,Map[Id �→ Nat], List[K × Map[Id �→ Nat]]).

Sequential non-determinism. randomBool can arbitrarily evaluate to either true or false.

〈randomBool
true

_〉k 〈randomBool
false

_〉k

Thread creation and termination. Threads execute in parallel within an agent, sharing its store. A 〈〉thread cell groups

together several cells related to a thread, namely its computation, its environment, its function stack, and its acquired
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resources. A “spawn s” command creates a new thread, whose computation is s and whose environment is the same as that

of the creating thread (this is how threads share memory). The initialization of the unspecified cells (〈〉holds and 〈〉fstack)

with their default values is taken care of by the context transformation step—see Section 5.5.3:

〈_ 〈spawn s

·
_〉k 〈ρ〉env _〉thread ·

〈_ 〈s〉k 〈ρ〉env _〉thread

When the computation of a thread is empty, the thread is dissolved and its resources released:

〈_ 〈·〉k 〈h〉holds _〉thread

·
〈 busy

busy −set dom(h)

〉busy,

Above, 〈〉busy holds the names of all the resources held by any of the threads; dom and _ −set _ define the map domain and

the set difference, respectively, both easy to define and assumed given.

Thread synchronization. To attain mutual exclusion, threads can be synchronized by means of locks. In Challenge, any

K result can be used as a lock. A lock can only be acquired if it is not busy, indicated by its absence from the set cell 〈〉busy
which can be tested using the built-in membership predicate for sets ∈set . The same thread can acquire same lock multiple

times (due, e.g., to recursion or synchronized functions), so 〈〉holds must maintain a counter for each lock:

〈acquire v;

·
_〉k 〈_ ·

v �→ 0

_〉holds 〈busy ·
v

〉busy where ¬Bool(v ∈set busy)

〈acquire v;

·
_〉k 〈_ v �→ n

sNat(n)

_〉holds

〈release v;

·
_〉k 〈_ v �→ sNat(n)

n

_〉holds

〈release v;

·
_〉k 〈_ v �→ 0

·
_〉holds 〈_ v

·
_〉busy

Rendezvous synchronization. Two threads can only pass together a barrier specified by a lock v:

〈rendezvous v;

·
_〉k 〈rendezvous v;

·
_〉k

The semantics of rendezvous is more difficult to give in other definitional frameworks, because it requires the ability

to access and reduce redexes of two computational units simultaneously.

Agents. A Challenge agent is a collection of threads grouped in an 〈〉agent cell. Besides its threads, an 〈〉agent cell also

contains a 〈〉me subcell holding agent’s unique id and a 〈〉parent subcell holding the id of its creating agent. The cell 〈〉nextAgent
provides fresh agent ids. The cell 〈〉world holds the set of all active agents. Due to context transformation (Section 5.5), the

rule for new agent creation needs specify only those cells which contain non-default values: 〈〉k—initialized with the given

statement, 〈〉parent—initialized with the contents of the 〈〉me cell of the creating agent, and 〈〉me—initialized with a new agent

id, which is also the return value of the newAgent construct:

〈newAgent s

n

_〉k 〈m〉me 〈 n

n +Int 1

〉nextAgent 〈_ ·
n

_〉world ·
〈_ 〈s〉k 〈n〉me 〈m〉parent _〉agent

When all threads of an agent terminate, the agent can be dissolved and unregistered from 〈〉world:

〈_ 〈m〉me 〈·〉threads _〉agent
·

〈_ m

·
_〉world

The semantics of the me and parent expression constructs is straightforward:



G. Ros,u, T.F. ,Serbănu,tă / Journal of Logic and Algebraic Programming 79 (2010) 397–434 429

〈me
m

_〉k 〈m〉me 〈parent
n

_〉k 〈n〉parent

An agent can send any results (including agent ids) to other agents, provided it knows their identity. To model asynchro-

nous communication, 〈〉message cells are introduced that hold the sender of the message, the intended set of receivers, and

a message body (holding the result sent):

〈send v to n;

·
_〉k 〈m〉me ·

〈〈m〉from 〈n〉to 〈v〉body〉message

A message can also be broadcast to all active agents, that is, to all agents in the 〈〉world cell:

〈m〉me 〈broadcast v;

·
_〉k 〈w〉world ·

〈〈m〉from 〈w〉to 〈v〉body〉message

An agent can request to receive a message from a certain agent, or from any agent, waiting until that happens. Upon

receiving, the agent’s id is removed from the 〈〉to cell of the message:

〈receiveFrom n

v

_〉k 〈m〉me 〈〈n〉from 〈_ m

·
_〉to 〈v〉body〉message

〈receive
v

_〉k 〈m〉me 〈_ 〈_ m

·
_〉to 〈v〉body _〉message

Once a message has no receivers, it can be removed:

〈_ 〈·〉to _〉message ⇁ ·
Agents can also communicate synchronously if the sender chooses so, in which case the sender and the receiver need to

be matched together for the exchange to occur:

〈_ 〈sendSynch v to n;

·
_〉k 〈m〉me _〉agent 〈_ 〈receiveFromm

v

_〉k 〈n〉me _〉agent

〈sendSynch v to n;

·
_〉k 〈_ 〈receive

v

_〉k 〈n〉me _〉agent

Global synchronization. Challenge supports global synchronization by means of barriers. When an agent reaches a barrier

and the barrier is on, the agent adds itself to the 〈〉waiting cell:

〈n〉me 〈〈〈barrier; _〉k _〉thread〉threads 〈true〉barrier 〈w ·
n

〉waiting when ¬Bool(n ∈Set w)

It is important to note that the above rule requires the agent to have only one running thread when attempting to globally

synchronize. Otherwise, it may happen that while one thread is waiting at the barrier, other threads send messages to other

agents. We do not want that in Challenge.

When all agents in the 〈〉world wait at the barrier, the barrier is lifted (so they can all proceed):

〈 true
false

〉barrier 〈w〉waiting 〈w〉world when ¬Bool(w =Bool ·)

Once the barrier is off, waiting agents unregister from the 〈〉waiting cell and proceed:

〈n〉me 〈barrier;
·

_〉k 〈false〉barrier 〈_ n

·
_〉waiting

Once all the agents proceeded, the barrier is lowered so that it can be used again:

〈false
true

〉barrier 〈·〉waiting
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Abrupt termination. We have three abrupt termination statements. haltThread empties the current thread’s compu-

tation, inducing thread dissolution and resource freeing (see the thread termination rule above). haltAgent empties the

current agent’s 〈〉threads cell, inducing its dissolution (see the agent termination rule above). finally, haltSystem empties

the 〈〉agents cell:

〈haltThread; _〉k → 〈·〉k
〈_ 〈haltAgent; _〉k _〉threads → 〈·〉threads

〈_ 〈haltSystem; _〉k _〉agents → 〈·〉agents

Code generation. We next define runtime code generation language-independently, in the sense that the particular con-

crete syntax or meaning of the existing language constructs plays no role. To obtain this degree of language-independence,

the reflective capabilities of K w.r.t. syntax are crucial. Indeed, since any fragment of program can be uniformly regarded as

a K computation, we only need to consider the general-purpose K syntactic constructs, namely “K ::= KLabel(List [K]) |
List

�
[K]”. To distinguish between existing code and generated code, we start by reflecting K’s syntax within itself, that is,

by creating labels corresponding to the K constructs the same way we created labels to sink concrete language syntax into K:

KLabel ::= KLabel [strict] | _ ,_ [strict] | _ �_ [strict]
We boxed these new labels to easily distinguish them. For now, we can think of computations using boxed labels as com-

putations being generated using the quote/unquote mechanism. They were declared strict because they will be used

in a way that their arguments will still need to be processed and hereby code generated for them. We did not need re-

flective versions of the units of the two K built-in lists, namely of “ ” and “·”, because we can reuse the core ones in-

stead.

There are two important aspects of code generation. One important aspect is that code quoting and unquoting can be

nested, and an unquoted code can be evaluated only if it is guarded by as many unquote constructs as quote ones; to

achieve this we need to maintain a counter for the depth of quotation—we prefer to do it as part of a special K label. The

other important aspect is that the generated code may need to be eventually evaluated; to avoid “unboxing” the labels at

evaluation time, we prefer instead to introduce a special code K result label that wraps the generated code as code over the

core labels instead of over boxed labels:

KLabel ::= quote[Nat]
KResultLabel ::= code

Initially, a quoted expression starts at the quoting level 0, and acts as a morphism on all K constructors, transforming

them into their boxed variants, except for the quote/unquote labels, which need to increment/decrement the counter. If the

quoting level is 0 and an unquote(k) expression is encountered, then k is released for evaluation; its evaluation will indeed

take place, because the boxed labels were all defined strict. Each computation rooted in a boxed label eventually evaluates

to a code fragment; as this happens, the generated fragments of code are glued together into bigger code fragments, this

way eliminating all the boxed labels:

〈 quote

quote[0]
(k) _〉k

quote[n](quote(k)) ⇀ quote(quote[sNat(n)](k))
quote[0](unquote(k)) ⇁ k

quote[sNat(n)](unquote(k)) ⇀ unquote(quote[n](k))
quote[n](label(kl)) ⇀ label(quote[n](kl)) when label �= quote , label �= unquote

label(code(kl)) ⇁ code(label(kl))

quote[n]( ) ⇁ code( )

quote[n](kl1, kl2) ⇀ quote[n](kl1) , quote[n](kl2) when kl1 �= , kl2 �=
code(kl1) , code(kl2) ⇁ code(kl1, kl2)
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quote[n](·) ⇁ code(·)
quote[n](k1 � k2) ⇀ quote[n](k1) � quote[n](k2) when k1 �= · , k2 �= ·
code(k1) � code(k2) ⇁ code(k1 � k2)

lift(v) ⇁ code(v)

eval(code(k)) ⇁ k

Section 6.4 shows a program using code generation (together with many other Challenge features).

6.4. A CHALLENGE program

Here we discuss a non-trivialChallengeprogram that can be used as a stress-test for the semantics. It makes use of almost

all the language constructs of Challenge. The overall purpose of the program is to sort the elements of a list. However, it

does it in a specific way that makes intensive use of Challenge’s features. Even though this approach to sorting may appear

unnecessarily complex in a uni-processor implementation of Challenge, it may in fact provide an efficient sorting procedure

on multi-core implementations. The idea is that the main agent first reads the data to sort in a list, and then starts a local

thread and an agent. The local thread is given the task to allocate the data in memory and then sort it using a selection sort.

The agent is given the task to sort the list using a multi-threaded variant of merge-sort, where a thread is created at each

split to take care of sorting one half of the list. When either the selection-sort thread or the merge-sort agent terminates,

it sends a message to the original agent, which spawned a new thread waiting for such a message. Then the sorted list is

printed and the system is halted.

Fig. 12. A complex complete Challenge program involving almost all the language constructs.
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Line 2 reads the numbers to sort and puts them in the list in. To test callcc, we used it both for exceptions and for

looping (the use ofcallcc for these operations is folklore): the firstcallcc captures the exit continuation (which is invoked

whenever a 0 is read), and the second callcc captures the looping continuation and “leaks” it into the variable g.

The third callcc, at lines 3–26 is more subtle and cannot be simulated with other constructs. Before we explain it, let

us first discuss the lines 27–30 and then a programming scenario that motivates the architecture of our program. Line 27

calculates the length of the input list by defining and applying a recursive function. Line 28 allocates a block of memory and

writes the list elements in it. Lines 29–30 implement selection sort using direct memory access. Suppose that, originally,

one’s program consisted only of this selection sort code; in other words, suppose that the callcc at lines 3–26 was not

originally planned. A possible continuation of the original program could have been to print the sorted list (calculated

with the code in the first argument of the send command in line 31), and then free the allocated memory (line 32). Now

suppose that the original program was sometimes slow and one wanted to improve it with minimal work, taking advantage

of concurrency. One possibility to do it is to start two threads, one executing selection sort as before and another running a

different sorting algorithm, and then collect the answer from whichever thread finishes first. To achieve that with minimal

programming, one can do the following: (1) shift the main computation from selection sort to a manager performing the

above (the callcc at line 3), as explained next; (2) create a new thread that executes the old selection sort code (the spawn
at line 3); (3) initiate a concurrent sorting procedure (lines 4–23; this is discussed below); (4) spawn a thread that receives

the sorted list from whomever finishes first, then prints it and halt the system (line 24); (5) halt the “manager” thread, to

void executing the subsequent selection sorting again. No change was needed in the original selection sorting code, except

for replacing the print statement with sending a message.

Let us next discuss step (3) above, the initiation of merge sorting. Since merge sort admits elegant parallel implemen-

tations, to avoid loading the original agent and for separation of concerns reasons we prefer to create a new agent that

offers merge-sort services (lines 4–18). The procedures for splitting (lines 5–7) and merging (lines 8–11) are standard; note,

however, that we achieve recursion by means of side effects and assignment (e.g., split is allocated a location at line 4,

then at line 5 a closure is written at that location that sees split in its environment so that it is properly retrieved when

split is invoked at line 7). The mergeSort procedure spawns a thread to sort one half of the list and write the sorted result

in a local variable left, and it proceeds to sort the other half. To make sure that the spawned thread is complete before the

actual merging of the two sorted halves, the address of left is used as a rendezvous barrier for synchronization.

For the sake of testing our semantics for intra-agent message communication, code generation and aspects, we assume

that a certain protocol must be obeyed when initializing and communicating with a merge-sort agent: first, one should send

one’s id to the merge-sort agent one wants to initialize (the send statement at line 19 and the corresponding m=receive
at line 12); second, the merge-sort agent sends back to the initiating agent a local address, where an aspect state can be

stored (the send at line 12); third, the initiating agent takes the sent location (line 20) and generates some code based on

it—incrementing the value at the sent location—which is sent to the merge-sort agent where it makes sense (lines 21–22);

fourth, the generated code is set as an aspect by merge-sort agent, so it will be executed each time a function is invoked (end

of line 12). Now the initialization of the merge-sort agent is complete, so it is ready to accept tasks (line 17). A task consists

of a received message containing the sender agent’s id and a list to sort (e.g., see line 23). The merge-sort agent spawns a

new thread for each task and, once completed, sends back to the sender the sorted list as well as the state of the aspect.

The Challenge program above, as well as many others together with other language definitions and corresponding

programs, can be reached from http://k.cs.uiuc.edu, the K website. We are currently using the K-Maude tool [41] to execute

and formally analyze K definitions. To execute the program above in K-Maude, one needs to rewrite a configuration containing

the program in the 〈〉k cell of some agent and a list of integers, including a 0, in the 〈〉in cell.

7. Conclusion, current work and future work

We presented the K semantic framework, consisting of a general-purpose concurrent rewriting approach together with a

definitional technique specialized for concurrent programming languages or systems. We hope that we presented compelling

arguments that K brings together the advantages of the existing language definitional frameworks and avoids some of their

limitations.

Although introduced relatively recently, K has already generated a consistent body of research projects and publications.

Even from its incipient stages, K aimed at scalability: to define and analyze real life programming languages. For example,

a comprehensive definition of Java 1.4 in Maude was specified following the K technique and used to derive a state-of-art

competitive model-checker for Java [11]. More recently, the same definition was adapted and used to verify security-related

properties for Java programs [1,2]. Besides analyzing Java programs, the K technique was also used to define a complete

static semantics for C which can support checking pluggable domain specific policies, such as units of measurement [15],

which can be used to analyze real C programs. Additionally, [39] uses K to define a symbolic semantics for pointer allocation

in a C-like language, aiming at runtime-verifying memory safety. A K semantic definition of Scheme R5RS is given in [30],

and one for the Beta language in [16].

There are also several tools and techniques based on K. For example, [41] describes the K-Maude prototype, a Maude

implementation of the K framework which fully supports the K definitional style as portrayed here. A module system

for K aiming at maximizing modularity and code-reuse is discussed in [17]. The potential for efficient executability of K
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definitions has been first empirically noted in [18]. An experimental object-oriented programming language is defined

using K in [19]–[21], together with several formal analyses and optimizations based on it. The K framework is compared

in [42] with P-systems [31] and shown that it can be systematically used to define, execute and analyze a large body of

P-systems. Matching logic is a new axiomatic semantics extending the benefits of both Hoare logic and separation logics,

which fundamentally relies on the K framework [37,38]. As shown in [10], K can also be effectively used to define type

inferencers and prove their soundness w.r.t. the language semantics.

Future work. Theoretically, we plan (1) to provide a stand-along model theory for K specifications and (2) to analyze in

depth the relationships between K and other definitional frameworks. Practically, we intend to automatically generate very

efficient and correct-by-construction interpreters for programming languages from their K semantics.
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