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Label Consistent K-SVD: Learning A
Discriminative Dictionary for Recognition

Zhuolin Jiang, Member, IEEE, Zhe Lin, Member, IEEE, Larry S. Davis, Fellow, IEEE

Abstract—A label consistent K-SVD (LC-KSVD) algorithm to learn a discriminative dictionary for sparse coding is presented. In addition
to using class labels of training data, we also associate label information with each dictionary item (columns of the dictionary matrix) to
enforce discriminability in sparse codes during the dictionary learning process. More specifically, we introduce a new label consistency
constraint called ‘discriminative sparse-code error’ and combine it with the reconstruction error and the classification error to form
a unified objective function. The optimal solution is efficiently obtained using the K-SVD algorithm. Our algorithm learns a single
over-complete dictionary and an optimal linear classifier jointly. The incremental dictionary learning algorithm is presented for the
situation of limited memory resources. It yields dictionaries so that feature points with the same class labels have similar sparse codes.
Experimental results demonstrate that our algorithm outperforms many recently proposed sparse coding techniques for face, action,
scene and object category recognition under the same learning conditions.

Index Terms—Discriminative dictionary learning, incremental dictionary learning, supervised learning, label consistent K-SVD,
discriminative sparse-code error.

✦

1 INTRODUCTION

SPARSE coding has been successfully applied to a vari-
ety of problems in computer vision and image analy-

sis, including image denoising [1], image restoration [2]–
[4], image classification [5]–[7] and visual saliency [8].
Sparse coding approximates an input signal, y, by a
linear combination of a few items from an over-complete
dictionary D. Learning the dictionary from the training
samples instead of using off-the-shelf bases such as
Fourier or wavelet bases, has been shown to produce
state-of-art results [9]. [6] employs the entire set of train-
ing samples as the dictionary for discriminative sparse
coding, and achieves impressive performances on face
recognition. However, determining sparse codes from
large dictionaries is computationally expensive, prohibit-
ing real-time application, although some approaches [7],
[10]–[13] have been proposed that provide efficient op-
timization algorithms for sparse coding.

To scale to large training sets, compact dictionary
learning approaches have been developed in [6], [11],
[12], [14]–[17]. In [6], training samples are manually
selected to construct the dictionary. In [12], dictionary
learning is accomplished by grouping features from
training samples using k-means clustering. In [11], a
dictionary learning algorithm, K-SVD, is introduced that
generalizes k-means clustering and efficiently learns an
over-complete dictionary from a set of training signals.
This method has been applied to a variety of image
processing problems, including infilling missing pixels
and image compression. The method of optimal di-
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rections [17] follows closely the k-means outline and
updates the dictionary efficiently during learning. [10]
uses a Lagrange dual for learning dictionaries efficiently
and the feature-sign search with L1 sparsity for learn-
ing sparse coefficients. To exploit possible semantic re-
lationships between dictionary elements, [18] employs
tree-structured sparse regularization to learn structured
dictionaries embedded in a hierarchy.

All of these approaches are designed to produce dic-
tionaries useful for images reconstruction. They do not
utilize class information about images in the training
set. We refer to such learning approaches as unsupervised
dictionary learning; their goal is to minimize the residual
error of reconstructing the original signals to construct a
dictionary. Dictionaries learned in such an unsupervised
fashion can be used for classification tasks; examples in-
clude [5], [6], [19], [20]. But recent research [9], [14]–[16],
[21] indicates that dictionaries constructed via supervised
learning yields better classification performances.

Existing supervised learning approaches can be roughly
divided into three categories. The first class of
approaches learn multiple dictionaries or category-
specific dictionaries to promote discrimination between
classes [14], [22]–[28]. [22] wraps the dictionary learning
process inside a boosting procedure for learning multiple
dictionaries. In [14], [24], [27], [28], one dictionary is
learned for each class; Classification is based on the
corresponding reconstruction error - it does not lever-
age the sparse codes. However, dictionary construc-
tion during training and class-wise sparse coding dur-
ing testing are time-consuming when there are a large
number of classes. [25] learns class-specific dictionaries
with an incoherence promoting term, which encourages
class-specific dictionaries to be independent. [26] learns
multiple dictionaries for visually correlated object cat-
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egories. The common visual properties of the group
are characterized by a common shared dictionary and
category-specific visual properties are captured by mul-
tiple category-specific dictionaries.

The second set of approaches learn a compact dic-
tionary by merging or selecting dictionary items from
an initially large dictionary. [29] merges the visual
dictionary items by considering the trade-off between
intra-class compactness and inter-class discrimination
power. [30], [31] learn a dictionary through merging two
items by maximizing the mutual information of class
distributions. [32] presents an approach for dictionary
learning of action attributes via information maximiza-
tion. [33] constructs small dictionaries which maintain
the performance of their larger counterparts by using
agglomerative information bottleneck [34]. [35], [36] ex-
ploit submodularity to construct a dictionary from a set
of dictionary item candidates. For these approaches, a
large dictionary is required at the beginning to guarantee
discriminative power of the reduced compact dictionary.

The last type of approach incorporates discriminative
terms into the objective function during training such
as [14]–[16], [21], [24], [37]–[42]. The discrimination cri-
teria include softmax discriminative cost function [14],
[24], [38], [39], Fisher discrimination criterion [21], [26],
[40], linear predictive classification error [15], [16], hinge
loss function [37], [42] and logistic loss function [38],
[41]. [21] learns a structured dictionary with class labels
via Fisher discriminative criterion. The approach in [15]
iteratively updates the dictionary based on the outcome
of a linear classifier; it may suffer from a local mini-
mum problem because it alternates between dictionary
construction and classifier design. [16] incorporates clas-
sification error into the objective function, but it does
not guarantee the discriminability of the resulting sparse
codes when using a small-size dictionary.

We present a supervised learning algorithm to learn a
compact and discriminative dictionary for sparse coding.
We explicitly incorporate a label consistency constraint
called ‘discriminative sparse-code error’ and an ‘optimal’
classification performance criteria into the objective func-
tion and optimize it using the K-SVD algorithm. The
learned dictionary is then both reconstructive and dis-
criminative, in contrast to traditional purely constructive
ones [6], [11], [17]. The learned dictionary encourages
the signals from the same class to have similar sparse
codes and those from different classes to have dissimilar
sparse codes; hence we can achieve good accuracy on
object classification even with a simple multiclass linear
classifier, in contrast to other existing sparse coding
approaches [5], [14], [37], [38] which learn one classifier
for each pair of categories or one-against-all classifiers
to obtain good performances. Our dictionary learning
algorithm is solved exactly with the K-SVD algorithm.
It learns a single compact discriminative dictionary and
a universal multiclass linear classifier (for all categories)
simultaneously. This is in contrast to dictionary learning
approaches such as [37], [38] which iteratively solve sub-

problems in order to approximate a joint solution, or
those approaches [14], [24], [40] which learn the dictio-
nary and classifier separately. Our regression based clas-
sification scheme, which only involves matrix multiplica-
tion is very efficient, in contrast to the other approaches
which first map the computed sparse coefficients to each
class [21], [43] and then use the reconstruction error for
classification. Our main contributions are:

• A new label consistency constraint called ‘discrim-
inative sparse-code error’ is introduced and com-
bined with reconstruction error and classification
error to form a unified objective function.

• The optimal solution to the objective function is
efficiently obtained using the K-SVD algorithm.

• A single compact discriminative dictionary and a
universal multiclass linear classier (for all cate-
gories) are learned simultaneously.

• An incremental dictionary learning algorithm with
the label consistency constraint is introduced.

This paper is organized as follows: Section 2 presents
the objective function for learning a reconstructive dictio-
nary and a discriminative dictionary. Section 3 describes
a label consistent K-SVD algorithm for simultaneously
learning a dictionary with a combined discriminative
and reconstructive criteria, and an optimal multiclass
linear classifier. An incremental dictionary learning ap-
proach with the label consistency constraint is also pre-
sented. Section 4 describes the classification approach.
Section 5 describes implementation details. Section 6
presents experimental results and analysis. Section 7
concludes the paper and discusses future work.

2 DICTIONARY LEARNING
2.1 Dictionary Learning for Reconstruction
2.1.1 Sparsity Constraint using L0-norm
Let Y be a set of n-dimensional N input signals, i.e.
Y = [y1...yN ] ∈ Rn×N . Learning a reconstructive dic-
tionary with K items for sparse representation of Y can
be accomplished by solving the following problem:

< D,X >= argmin
D,X

‖Y −DX‖22 s.t.∀i, ‖xi‖0 ≤ T (1)

where ‖Y −DX‖22 denotes the reconstruction error, and
D = [d1...dK ] ∈ Rn×K (K > n, making the dictio-
nary over-complete 1) is the learned dictionary, X =
[x1, ..., xN ] ∈ RK×N are the sparse codes of input signals
Y , and T is a sparsity constraint factor (each signal has
fewer than T non-zero items in its decomposition).

The construction of D is achieved by minimizing
the reconstruction error and satisfying the sparsity con-
straints. The K-SVD algorithm [11] is an iterative ap-
proach to minimize the energy in (1) and learns a recon-
structive dictionary for sparse representations of signals.

1. It means that the number of dictionary items is larger than
the dimensionality of signals, which is often recommended in image
processing tasks because it captures a large number of patterns in the
input data [10]. However, an over-complete dictionary is not always
required for discrimination tasks.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight



DRAFT FOR IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

Fig. 1. Examples of sparse codes using different dictionary learning approaches on the six evaluated datasets. Each
waveform indicates a sum of absolute sparse codes for different testing samples from the same class. The curves in
1st, 2nd, 3rd, 4th, 5th and 6th row correspond to class 35 (32 testing frames) in Extended YaleB, class 69 (6 testing
frames) in AR Face, class 78 (29 testing frames) in Caltech101, class 32 (71 testing frames) in Caltech256, class 10
(115 testing frames) in fifteen scene categories and class 10 (4 testing sequences) in UCF dataset respectively. (a) are
sample images from these classes. (f) and (g) are the sparse codes using LLC with 30 and 70 local bases, respectively,
in five datasets except the UCF dataset, where we used 10 and 30 correspondingly. Each color from the color bars in
(h) and (i) represents one class for a subset of dictionary items. The black dashed lines demonstrate that the curves
are highly peaked in one class.

It is highly efficient and works well in applications such
as image restoration and compression.

Given D, sparse coding computes the sparse represen-
tation xi of yi by solving:

xi = x∗(yi, D) ≡ argmin
x
‖yi −Dx‖22 s.t. ‖x‖0 ≤ T (2)

The Orthogonal Matching Pursuit algorithm
(OMP) [44] can be used to solve (2).

2.1.2 Sparsity Constraint using L1-norm
An alternative formulation for (1) is to replace L0-norm
regularization with L1-norm regularization to enforce
sparsity:

< D,X >= argmin
D,X

‖Y −DX‖22 + γ‖X‖1 (3)

where γ is a parameter to balance the reconstruction
error and sparsity.

Similarly, given D, the sparse representation xi of an
input signal yi can be computed as:

xi = x∗(yi, D) ≡ argmin
x
‖yi −Dx‖22 + γ‖x‖1, (4)

which can be optimized by many efficient L1 optimiza-
tion approaches, such as [10], [13].

2.2 Dictionary Learning for Classification
The sparse code x can be directly used as a feature for
classification. A good classifier f(x) can be obtained by
determining its model parameters W ∈ Rm×K satisfying:

W = argmin
W

∑
i

L{hi, f(xi,W )} + λ1‖W‖2F (5)

where m is the number of categories, L is the classifica-
tion loss function, hi is the label of yi and λ1 is a regular-
ization parameter (which prevents overfitting). Typical
loss functions are the logistic loss function [38], square
hinge loss [37] and a simple quadratic loss function [15],
[16].

Separating the dictionary learning from the classifier
learning might make D suboptimal for classification. It is
possible to jointly learn the dictionary and classification
model, as in [15], [16], [37], [38], which attempt to
optimize the learned dictionary for classification tasks.
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In this case, an objective function for learning D and W
jointly can be defined as:

< D,W,X >= arg min
D,W,X

‖Y −DX‖22
+
∑
i

L{hi, f(xi,W )}+ λ1‖W‖2F s.t.∀i, ‖xi‖0 ≤ T (6)

Practically, these approaches appear to require learn-
ing relatively large dictionaries to achieve good classifi-
cation performance, leading to high computation cost.
This problem is aggravated when good classification
results can only be obtained using a classification ar-
chitecture based on multiple pairwise classifiers or one-
against-all classifiers as in [37], [38].

Alternatively, the sparse code xi can be directly used
as a feature descriptor of signal yi in a classical risk
minimization formulation:

< D,W >= arg min
D,W

∑
i

L{hi, f(x
∗(yi, D),W )}+ν1

2
‖W‖2F

(7)
where the dictionary D is not explicitly defined in the
energy function (7) but implicitly in the sparse coding
step, i.e. Equations (2) or (4). The dictionary can be
obtained by using stochastic gradient descent, as in [9],
[37], where implicit differentiation is adopted to compute
the gradient of (7) with respect to the dictionary.

Using a single dictionary and a multiclass classifier is
efficient for classification, especially with many classes,
and it allows feature sharing amongst the classes [9]. We
will show that good classification results can be obtained
using only a small, single unified dictionary (and a
single multiclass linear classifier) by a simple extension
to the objective function for joint dictionary and classifier
construction. This extension enforces a label consistency
constraint on the sparse codes w.r.t. the learned dic-
tionary - intuitively that the class distribution that a
dictionary element ‘contributes’ to during classification
are highly peaked in one class. We refer to this method
as label consistent K-SVD (LC-KSVD) since it employs
the original K-SVD algorithm to obtain its solution.

3 LABEL CONSISTENT K-SVD
We aim to leverage the supervised information (i.e.
labels) of input signals to learn a reconstructive and
discriminative dictionary. Each dictionary item will be
chosen so that it represents a subset of the training
signals ideally from a single class, so each dictionary
item dk can be associated with a particular label. Hence
there is an explicit correspondence between dictionary
items and the labels in our approach.

We subsequently focus on the effects of adding a label
consistency regularization term, and a joint classification
error and label consistency regularization term into the
objective function in (1) for learning a dictionary with
more balanced reconstructive and discriminative power.
We refer to them as LC-KSVD1 and LC-KSVD2, respec-
tively, in the following.

3.1 LC-KSVD1
The performance of the linear classifier depends on
the discriminability of the input sparse codes x. For
obtaining discriminative sparse codes x with the learned
D, an objective function for dictionary construction is
defined as:

< D,A,X >= arg min
D,A,X

‖Y −DX‖22
+α‖Q−AX‖22 s.t.∀i, ‖xi‖0 ≤ T (8)

where α controls the relative contribution between re-
construction and label consistency regularization, and
Q = [q1...qN ] ∈ RK×N are the ‘discriminative’ sparse
codes of input signals Y for classification. We say that
qi = [q1i ...q

K
i ]t = [0...1, 1, ...0]t ∈ RK is a ‘discriminative’

sparse code corresponding to an input signal yi, if the
non-zero values of qi occur at those indices where the
input signal yi and the dictionary item dk share the
same label. For example, assuming D = [d1...d6] and
Y = [y1...y6], where y1, y2, d1 and d2 are from class 1, y3,
y4, d3 and d4 are from class 2, and y5, y6, d5 and d6 are
from class 3, Q can be defined as:

Q ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

where each column corresponds to a discriminative
sparse code for an input signal.
A is a linear transformation matrix. Here we identify

a linear transformation, g(x;A) = Ax, which transforms
the original sparse codes x to be most discriminative in
sparse feature space RK .

The term ‖Q − AX‖22 represents the discriminative
sparse-code error, which enforces that the transformed
sparse codes AX approximate the discriminative sparse
codes Q. It forces the signals from the same class to have
very similar sparse representations (i.e. encouraging la-
bel consistency in the resulting sparse codes), which
results in good classification performance even using a
simple linear classifier.

3.2 LC-KSVD2
As in [15], [16], [37], [38], we aim to include the clas-
sification error as a term in the objective function for
dictionary learning, in order to make the dictionary
optimal for classification. Here we use a linear predic-
tive classifier f(x;W ) = Wx. An objective function for
learning a dictionary D having both reconstructive and
discriminative power can be defined as follows:

< D,W,A,X >= arg min
D,W,A,X

‖Y −DX‖22
+α‖Q−AX‖22 + β‖H −WX‖22 s.t.∀i, ‖xi‖0 ≤ T (9)

where the term ‖H − WX‖22 represents the classifica-
tion error. W denotes the classifier parameters. H =
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[h1...hN ] ∈ Rm×N are the class labels of input signals Y .
hi = [0, 0...1...0, 0]t ∈ Rm is a label vector corresponding
to an input signal yi, where the non-zero position indi-
cates the class of yi. α and β are the scalars controlling
the relative contribution of the corresponding terms.

In order to further understand the objective function
in (9), we can rewrite the objective function into another
simplified form. Assuming A ∈ RK×K is invertible
and discriminative sparse codes X ′ = AX , then D′ =
DA−1,W ′ = WA−1. The objective function in (9) can be
rewritten as:

< D′,W ′, X ′ >= arg min
D′,W ′,X′

‖Y −D′X ′‖22
+α‖Q−X ′‖22 + β‖H −W ′X ′‖22 s.t.∀i, ‖xi‖0 ≤ T (10)

The first term represents the reconstruction error, the
second term the discriminative sparse-code error, and
the third term the classification error. The second term
‖Q − X ′‖22 makes the sparse codes discriminative be-
tween classes while the third term ‖H−W ′X ′‖ supports
learning an optimal classifier.

The dictionary learned in this way is adaptive to the
underlying structure of the training data (leading to a
good representation for each member in the set with
strict sparsity constraints), and generates discriminative
sparse codes X and addresses the desirable property of
the discriminability of classifier construction regardless
of the size of the dictionary. These sparse codes can be
utilized directly by a classifier, such as in [6]. The dis-
criminative property of sparse code x is very important
for the performance of a linear classifier.

In the following section, we describe the optimization
procedure for LC-KSVD2. For LC-KSVD1, it utilizes a
similar procedure except that β = 0. However, the
classifier W for LC-KSVD1 is trained separately using
(17), after D, A and X are computed using (8).

3.3 Optimization
We use the efficient K-SVD algorithm to find the optimal
solution for all parameters simultaneously. Equation (9)
can be rewritten as:

< D,W,A,X >= arg min
D,W,A,X

‖
⎛
⎝ Y√

αQ√
βH

⎞
⎠−

⎛
⎝ D√

αA√
βW

⎞
⎠X‖22 s.t.∀i, ‖xi‖0 ≤ T (11)

Let Ynew = (Y t,
√
αQt,

√
βHt)t, Dnew =

(Dt,
√
αAt,

√
βW t)t. The matrix Dnew is L2 normalized

column-wise. The optimization of (11) is equivalent to
solving the following problems:

< Dnew, X >= arg min
Dnew,X

{‖Ynew −DnewX‖22}
s.t.∀i, ‖xi‖0 ≤ T (12)

This is exactly the problem that K-SVD [11] solves.
Following K-SVD, dk and its corresponding coefficients,
the k-th row in X , denoted as xk

R, are updated at a time.

Let Ek = (Y −∑
j �=k djx

j
R), and x̃k

R, Ẽk denote the result
of discarding the zero entries in xk

R and Ek, respectively.
dk and x̃k

R can be computed by:

< dk, x̃
k
R >= arg min

dk,x̃k
R

{‖Ẽk − dkx̃
k
R‖2F} (13)

A SVD operation is performed for Ẽk, i.e. UΣV t =

SVD(Ẽk). Then dk and x̃k
R are computed as:

dk = U(:, 1), x̃k
R = Σ(1, 1)V (:, 1) (14)

Finally the non-zero values in xk
R are replaced by x̃k

R.
The proposed LC-KSVD2 algorithm is summarized in
Algorithm 1.

LC-KSVD learns D, A and W simultaneously, which
reduces the possibility of converging to local minima and
is scalable to a large number of classes. In addition, it
allows us to easily combine another discriminative term,
i.e. discriminative sparse-code error, into the objective
function. It produces a discriminative sparse representa-
tion regardless of the size of the dictionary. Fig. 1 shows
examples of sparse codes of one testing class from six
evaluated datasets using different approaches. From this
figure, we can see that LC-KSVD ensures that signals
from the same class have similar sparse codes, which is
very important for linear classification.

Algorithm 1 Label Consistent K-SVD
Input: Y , Q, H, α, β, T , K
Output: D, A, W
Compute D(0) , A(0) , W (0) :

Compute D(0) by combining class-specific dictionary items
for each class using original K-SVD [11];
Compute sparse codes X(0) for Y using (2);
Compute A(0) and W (0) using (16)(17);

Initialize Ynew =

⎛
⎝ Y√

αQ√
βH

⎞
⎠ Dnew =

⎛
⎝ D(0)

√
αA(0)

√
βW (0)

⎞
⎠

Update Dnew by solving (12) using original K-SVD [11];
Obtain D, A, W from Dnew by using (23).

3.3.1 Initialization of LC-KSVD
We need to initialize the parameters D(0), A(0) and W (0)

for LC-KSVD. For D(0), we employ several iterations
of K-SVD within each class and then combine all the
outputs (i.e dictionary items learning from each class)
of each K-SVD. The label of each dictionary item dk is
then initialized based on the class it corresponds to and
will remain fixed during the entire dictionary learning
process 2, although dk is updated during the learning
process. Dictionary elements are uniformly allocated to
each class with the number of the elements proportional
to the dictionary size.

In order to initialize A(0), we employ the multivariate
ridge regression model [45], with the quadratic loss and
L2 norm regularization, as follows:

A = argmin
A
‖Q−AX‖2 + λ2‖A‖22 (15)

2. We do associate a unique and fixed class label to each dictionary
item, but an input signal of a class certainly can (and does) use
dictionary items from other classes, as the sparse codes in Fig. 1
illustrate.
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which yields the following solution:

A = QXt(XXt + λ2I)
−1 (16)

Similarly, for W (0), we again use the ridge regression
model and obtain the following solution:

W = HXt(XXt + λ1I)
−1 (17)

Given the initialized D(0), we apply the original K-
SVD algorithm to compute the sparse codes X of train-
ing signals Y . Then X can be used to compute the initial
A(0) in (16) and W (0) in (17).

3.4 Incremental Dictionary Learning
LC-KSVD needs to access the entire training set at each
iteration to optimize the objective function. In order to
learn a discriminative dictionary with limited memory
resources, we employ the learning framework in (7).
We learn D, A and W by minimizing the following
objective function with the sparsity constraint using L1-
norm regularization:

min
D,W,A

∑
i

Li(D, yi,W, hi, A, qi) +
ν1
2
‖W‖2F +

ν2
2
‖A‖2F

s.t. xi = argmin
x
‖yi −Dx‖22 + γ‖x‖1, i ∈ {1...N}

‖dj‖22 ≤ 1, j ∈ {1...K}. (18)

where Li(D, yi,W, hi, A, qi) � μ‖qi − Axi‖22 + (1 −
μ)‖hi − Wxi‖22. Let Li

1(D, yi, A, qi) = ‖qi − Axi‖22 and
Li
2(D, yi,W, hi) = ‖hi−Wxi‖22 in the following. 3Similar

to (9), (18) also incorporates the reconstruction error, the
discriminative sparse code error and the classification
error into the objective function of dictionary learning.
Hence minimizing (18) also leads to a dictionary with a
reconstructive and discriminative power.

The objective function in (18) is highly nonlinear and
highly nonconvex. We use a stochastic gradient descent
algorithm to optimize (18). The main difficulty is to
compute the gradients of the sparse code xi with respect
to D, because D is not explicitly defined in (18) but
implicitly in the sparse coding step (see (4)). So we have
to compute the gradient of Li for yi with respect to D

using the chain rule: ∂Li

∂D = μ
∂Li

1

∂xi

∂xi

∂D + (1− μ)
∂Li

2

∂xi

∂xi

∂D .
There is no analytical link between xi and D. Fol-

lowing [7], [9], [37], we overcome this by using implicit
differentiation on the fixed point equations. We establish
the fixed point equation for (4): Dt(Dx−y) = −γsign(x).
Then we compute the derivative of D on both sides:

∂xΛ

∂DΛ
= (Dt

ΛDΛ)
−1

(
∂Dt

Λy

∂DΛ
− ∂Dt

ΛDΛ

∂DΛ
x

)
(19)

where Λ is the index set of non-zero sparse coefficients
of xi and Λ̄ denote the index set of zeros coefficients.

3. Since we used very small values for ν1 and ν2, the main difference
between (18) and (9) is the sparsity constraint: (18) uses L1-norm while
(9) uses L0-norm. The theoretical results on the equivalence between
L0 and L1 regularization pointed out by [43], [46], imply that (18)
and (9) are generally achieving the same result. The L0-norm is not
differentiable, so we use L1-norm in (18) in order to perform stochastic
gradient descent.

We set the gradients to be zeros for xi,Λ̄. Here we define
an auxiliary variable φu ∈ RK , u ∈ {1, 2} with φu,Λ̄ =

0, and φu,Λ = (Dt
ΛDΛ)

−1 ∂Li
u

∂xi
, where ∂Li

1

∂xi
= At(Axi −

qi) and ∂Li
2

∂xi
= W t(Wxi − hi). Hence we obtain:∂L

i
1

∂D =

−Dφ1x
t
i + (yi − Dxi)φ

t
1,

∂Li
2

∂D = −Dφ2x
t
i + (yi − Dxi)φ

t
2.

So the gradient of Li with respect to D for input signal
yi can be rewritten as:

∂Li

∂D
= μ

∂Li
1

∂D
+ (1− μ)

∂Li
2

∂D
(20)

The gradients of (18) with respect to A and W can be
easily obtained by

∂Li

∂A
= μ(Axi − qi)x

t
i + ν2A, (21)

∂Li

∂W
= (1− μ)(Wxi − hi)x

t
i + ν1W. (22)

We apply an on-line method that reads a small batch
of training descriptors y at a time and incrementally
updates D, A and W . We first use the previous ini-
tialization of LC-KSVD to initialize D, A and W . Then
we loop through all the training descriptors to update
them incrementally. The parameters D, A and W are
updated in a gradient descent fashion. This is different
from (9) which can be optimized by K-SVD. The learning
rate 4 is set to min(ρ, ρi0/i), where ρ is a constant,
i0 = T̂ /10 and T̂ is the number of iterations. Finally,
we project the dictionary items onto the unit circle. The
proposed incremental dictionary learning is summarized
in Algorithm 2.

Algorithm 2 Incremental Dictionary Learning
Input: Y , Q, H, D(0) , A(0) , W (0) , μ, γ, ρ, ν1 , ν2 , T̂
Output: D, A, W
for t = 1...T̂ do

Permute training samples Y
for i = 1...N do

Compute the sparse code xi for yi by (4);
Find the active set Λi and compute the auxiliary variables φ1 and φ2;
Choose the learning rate ρt = min(ρ, ρi0/i)
Update D, A and W by (20)(21)(22);
D(t) = D(t) − ρt

∂L
i

∂D(t)
,

A(t) = A(t) − ρt
∂L

i

∂A(t)
,

W (t) = W (t) − ρt
∂L

i

∂W (t)
,

Project the columns of D(t) onto the unit circle
end for
Update D(t+1) = D(t) , A(t+1) = A(t) , W (t+1) = W (t) ;

end for

4 CLASSIFICATION APPROACH
We obtain D = {d1...dK}, A = {a1...aK} and W =
{w1...wK} from Dnew by employing the K-SVD algo-
rithm [11]. We cannot simply use D, A and W for testing
since D, A and W are L2-normalized in Dnew jointly in
the LC-KSVD algorithm, i.e. ∀k, ‖(dtk,

√
αatk,

√
βwt

k)
t‖2 =

1. The desired dictionary D̂, transform parameters Â and
classifier parameters Ŵ are computed as follows:

D̂ =

{
d1

‖d1‖2
...

dK

‖dK‖2

}
, Â =

{
a1

‖d1‖2
...

aK

‖dK‖2

}
, Ŵ =

{
w1

‖d1‖2
...

wK

‖dK‖2

}
(23)

4. This strategy is adopted from [9], [47]. The algorithm converges
very fast, typically in 10 iterations as shown in Figure 12(a).
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Given an input signal yi with its corresponding dis-
criminative code qi and the label vector hi, the relation-
ship between the desired (D̂, Â, Ŵ ) and the learned (D,
A, W ) is established according to:

yi ≈ Dxi =
∑
k

xk,idk =
∑
k

xk,i‖dk‖2
dk

‖dk‖2

=
∑
k

x̂k,id̂k = D̂x̂i

qi ≈ Axi =
∑
k

xk,iak =
∑
k

xk,i‖dk‖2
ak

‖dk‖2

=
∑
k

x̂k,iâk = Âx̂i

hi ≈ Wxi =
∑
k

xk,iwk =
∑
k

xk,i‖dk‖2
wk

‖dk‖2
=

∑
k

x̂k,iŵk = Ŵ x̂i (24)

where d̂k = dk

‖dk‖2
, âk = ak

‖dk‖2
and ŵk = wk

‖dk‖2
are the k-th

column of D̂, Â and Ŵ , respectively.
For a test image yi, we first compute its sparse repre-

sentation x̂i with dictionary D̂ by solving Equations (2)
or (4). Then we simply use the linear predictive classifier
to estimate a label vector l = Ŵ x̂i. The label of yi is the
index corresponding to the largest element of l.

5 IMPLEMENTATION DETAILS
In this section, we provide implementation details of our
approach. The parameters α and β are fixed for each
dataset and determined by n-fold cross validation on the
training data. Their learned values 5 for different datasets
are presented in the following experiment section. The
sparsity factor T = 30 is used in our experiments except
the UCF dataset, where T = 10 is used.

The optimization of (8) for LC-KSVD1 and LC-KSVD2
employ a similar procedure except for the classification
error term in (11). The linear classifier W is learned sep-
aratively from the training data, using the multivariate
ridge regression model as in (17).

The feature descriptors used in the Extended YaleB
database and AR Face database are random faces [6],
[16]. Each face image is projected onto a n-dimensional
feature vector with a randomly generated matrix from a
zero-mean normal distribution. Each row of the matrix
is L2 normalized. Following [16], the dimension of a
random-face feature in Extended YaleB is n = 504 while
the dimension in AR face is n = 540.

For the Caltech101 dataset, we first extract SIFT de-
scriptors from 16×16 patches which are densely sampled
using a grid with a step size of 6 pixels; then we extract
the spatial pyramid feature [48] based on the extracted
SIFT features with three grids of size 1 × 1, 2 × 2 and
4 × 4. To train the codebook for the spatial pyramid,
we use the standard k-means clustering with k = 1024.
Finally, the spatial pyramid feature is reduced to 3000
dimensions by PCA. Please note that the sparse coding
in our approach is used to encode the extracted spatial
pyramid features. This is very different from approaches,

5. From our experiments, α = 4.0 and β = 2.0 achieved good
performances for datasets using random face features (such as AR and
YaleB); while α and β are set to 0.001 for spatial pyramid features.
The surprising small value for alpha and beta for spatial pyramid
features is due to the scale of those features. These are large and sparse
vectors which when normalized result in feature vectors with very
small component values; so, the reconstruction errors have very small
magnitudes, and the relative weights of α and β compared to the scale
of reconstruction errors is similar for all of the datasets.

Fig. 2. Evaluated Face databases.

such as [5], [12], which use sparse coding to encode SIFT
descriptors from local patches.

For the Caltech101 dataset, in each spatial sub-region
of the spatial pyramid, the vector quantization codes are
pooled together to form a pooled feature. The pooled
features from each sub-region are concatenated and
normalized as the final spatial pyramid feature of an
image. There are two pooling methods: (1) sum pool-
ing [48]: xout = x1+, ...,+xn; (2) max pooling [5]: xout =
max(x1, ..., xn), where xi is the vector quantization code.
Then these pooled features are normalized by: (1) L1

normalization: xout = xout/
∑

i xi; (2) L2 normalization:
xout = xout/‖xout‖2. Different combinations are evalu-
ated in the experiment section.

For the Caltech256 dataset, we compute HOG descrip-
tors from each patch at three scales, 16 × 16, 25 × 25
and 31 × 31. The dimension of each HOG descriptor is
128. Then we compute the spatial pyramid features using
1× 1, 2× 2, and 4× 4 sub-regions. Finally we reduce the
dimensionality of the features to 305 using PCA.

For the Fifteen Scene Category dataset, we compute
the spatial pyramid feature using a four level spatial
pyramid and a SIFT-descriptor codebook with a size of
200. The final spatial pyramid features are reduced to
3000 by PCA. The feature descriptors used in the UCF
action dataset are the action bank feature representations
provided by [49]. We again use PCA to reduce the feature
dimension to 100.

For the incremental dictionary learning, we set the
parameters ν1 and ν2 to be 10−5. The constant ρ is
selected from {10−6, 10−5, ..., 10}. The parameters μ and
γ are set to 0.6 and 0.5 respectively in the experiment.

6 EXPERIMENTS
We evaluate our approach on two face databases: Ex-
tended YaleB database [50] and AR face database [51],
two object category datasets: Caltech101 [52] and Cal-
tech256 [53], a scene category dataset: Fifteen scene
categories [48], and a realistic action dataset: UCF
sports action [54]. We compare our approaches with
K-SVD 6 [11], D-KSVD [16], sparse representation-
based classification (SRC) [6] and the recently proposed
LLC algorithm [12] 7. Our source code can be down-
loaded from: http://www.umiacs.umd.edu/∼zhuolin/
projectlcksvd.html.

6. An algorithm that directly uses the dictionary learned by original
K-SVD algorithm and employs a linear classifier learned by (17).

7. D-KSVD and SRC results are based on our own implementations,
K-SVD and LLC implementations are provided by the authors, which
allowed us to standardize the learning parameters across methods.
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6.1 Extended YaleB
The Extended YaleB database contains 2, 414 frontal-face
images of 38 persons [50]. There are about 64 images
for each person. The original images were cropped to
192×168 pixels. This database is challenging due to vary-
ing illumination conditions and expressions as shown
in Fig. 2(a). We randomly select half of the images per
category as training and the other half for testing. The
dictionary consists of 570 items, which corresponds to
an average of 15 items per person. Unlike K-SVD [11]
and D-KSVD [16], there is an explicit correspondence
between the dictionary items and the labels of people in
our approach, which is similar to the SRC algorithm [6],
but our approach uses fewer training samples.

We measure the performance of the SRC algorithm
using dictionaries with two different sizes (all training
samples and 15 samples per person). For fair compar-
ison, the number of local bases, which determines the
sparsity of the LLC codes, is chosen as identical to the
sparsity factor (i.e. T = 30) used in our implementation.
For evaluating the importance of the number of local
bases, we also evaluate LLC with 70 local bases.

The experimental results are summarized in Table 1.
Most of the failure cases are from images taken under ex-
tremely bad illumination conditions. Hence we perform
another experiment with these bad images excluded
(about 10 for each person). The results of this experiment
are listed in the third column of Table 1. Our approaches
always achieve better results than KSVD, D-KSVD, LLC.
Additionally, our approach outperforms SRC when us-
ing the same size dictionary (denoted SRC*).

In addition, we compare with SRC in terms of the
computation time for classifying one test image. The
time is computed as an average over all the test images.
As shown in Table 2, our approach is approximately 22
times faster than SRC*. If a database is provided with
more categories, a small dictionary for sparse coding can
save even more time (see the results for AR database).
α and β are determined by 5-fold cross validation on

the training dataset. The effects of parameter selection
are show in Fig. 3. We can observe that good perfor-
mance is achieved at α = 4.0 and β = 2.0.

6.2 AR Face
The AR face database consists of over 4, 000 color images
of 126 persons. Each person has 26 face images taken
during two sessions. Compared to the Extended YaleB,
these images in Fig. 2(b) include more facial variations
including different illumination conditions, different ex-
pressions and different facial ‘disguises’ (sunglasses and
scarves). Following the standard evaluation procedure,
we use a subset of the database consisting of 2600 images
from 50 male subjects and 50 female subjects. For each
person, we randomly select 20 images for training and
the other 6 for testing. Each face image, of size 165×120
pixels, is projected onto a 540-dimensional vector with
a randomly generated matrix. The learned dictionary

TABLE 1
Recognition results using random-face features on the

Extended YaleB database. The 2nd column is the result
when we used all 64 images for each person. The 3rd
column is the result when we removed 10 poor-quality

images for each person.
Method Accuracy (%) Accuracy (%)

K-SVD(15 per person) [11] 93.1 98.0
D-KSVD(15 per person) [16] 94.1 98.0

SRC(all train. samp.) [6] 97.2 99.0
SRC*(15 per person) [6] 80.5 86.7
LLC(30 local bases) [12] 82.2 92.1
LLC(70 local bases) [12] 90.7 96.7

LC-KSVD1(15 per person) 94.5 98.3
LC-KSVD2(15 per person) 95.0 98.8

LC-KSVD2(all train. samp.) 96.7 99.0

TABLE 2
Computation time for classifying a test image on the

Extended YaleB database.
Method Average Time (ms)

SRC(all training samples) [6] 20.78
SRC*(15 per person) [6] 11.22

LC-KSVD1(15 per person) 0.52
LC-KSVD2(15 per person) 0.49

has 500 dictionary items, i.e. 5 items per person. As
discussed earlier, there is an explicit correspondence
between the dictionary items and the labels of people.
α = 3.0 and β = 2.0 are used in the experiment.

We evaluate our approaches using random face fea-
tures and compared with state-of-art approaches. For
SRC, we learn two dictionaries with two different dic-
tionary sizes. All the approaches use the same learning
parameters. The recognition results are summarized in
Table 3. Our approaches outperform K-SVD, D-KSVD,
LLC and SRC*. Note that SRC degrades dramatically
when using only 5 samples per person.

In addition, we compare with SRC in terms of the
computation time for classification. As shown in Table 4,
our approach is approximately 35 times faster than SRC*.
As expected, a small dictionary can save more time for
a database consisting of many training images, and the
performance does not degrade much compared to using
the entire set of training images as the dictionary.
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Fig. 3. Effects of parameter selection of α and β on the
classification accuracy on the Extended YaleB database.
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Fig. 4. Performance comparisons on the Caltech101. (a) Performance on the Caltech101 with varying dictionary size;
(b) Training time on the Caltech101 with varying dictionary size; (c) Performance on the Caltech101 with different
spatial-pyramid-matching settings.

TABLE 3
Recognition results using random face features on the

AR face database.
Method Accuracy (%)

K-SVD(5 per person) [11] 86.5
D-KSVD(5 per person) [16] 88.8

SRC(all train. samp.) [6] 97.5
SRC*(5 per person) [6] 66.5

LLC(30 local bases) [12] 69.5
LLC(70 local bases) [12] 88.7

LC-KSVD1(5 per person) 92.5
LC-KSVD2(5 per person) 93.7

LC-KSVD2(all train. samp.) 97.8

TABLE 4
Computation time for classifying a test image on the AR

face database.
Method Average Time (ms)

SRC(all training samples) [6] 83.79
SRC*(5 per person) [6] 17.76

LC-KSVD1(5 per person) 0.541
LC-KSVD2(5 per person) 0.479

6.3 Caltech101
The Caltech101 dataset [52] contains 9144 images from
102 classes (i.e. 101 object classes and a ‘background’
class) including animals, vehicles, flowers, etc. The sam-
ples from each category have significant shape variabil-
ity. The number of images in each category varies from
31 to 800. Following the common experimental settings,
we train on 5, 10, 15, 20, 25 and 30 samples per category
and test on the rest. We repeat the experiments 10 times
with different random spits of the training and testing
images to obtain reliable results. The final recognition
rates are reported as the average of each run. α and β
are set to 0.001 in the experiment.

We evaluate our approach using spatial pyramid
features and compare with K-SVD [11], D-KSVD [16],
SRC [6] and other state-of-art approaches [5], [12], [15],
[48], [53], [55]–[58]. The comparative results are shown
in Table 5. We used 510, 1020, 1530, 2040, 2550 and
3060 dictionary items, respectively, for 5, 10, 15, 20, 25
and 30 training samples per category. Our approaches
consistently outperform all the competing approaches.

TABLE 5
Recognition results using spatial pyramid features on the

Caltech101 dataset.
number of train. samp. 5 10 15 20 25 30

Malik [55] 46.6 55.8 59.1 62.0 - 66.20
Lazebnik [48] - - 56.4 - - 64.6

Griffin [53] 44.2 54.5 59.0 63.3 65.8 67.60
Irani [56] - - 65.0 - - 70.40

Grauman [57] - - 61.0 - - 69.10
Pham [15] - - 42.0 - - -

Gemert [58] - - - - - 64.16
Yang [5] - - 67.0 - - 73.20

Wang [12] 51.15 59.77 65.43 67.74 70.16 73.44
SRC [6] 48.8 60.1 64.9 67.7 69.2 70.7

K-SVD [11] 49.8 59.8 65.2 68.7 71.0 73.2
D-KSVD [16] 49.6 59.5 65.1 68.6 71.1 73.0
LC-KSVD1 53.5 61.9 66.8 70.3 72.1 73.4
LC-KSVD2 54.0 63.1 67.7 70.5 72.3 73.6

TABLE 6
Computation time (ms) for classifying a test image on the

Caltech101 dataset.
Dictionary size 510 1020 1530 2040 2550 3060

SRC [6] 173.44 343.12 520.88 662.40 835.34 987.55
LC-KSVD1 0.59 1.09 1.62 2.21 2.83 3.50
LC-KSVD2 0.54 0.98 1.44 1.94 2.50 3.17

The basic reason for the good recognition performance,
even with only a few training examples, is that the new
label consistency constraint encourages the input signals
from the same class to have similar sparse codes and
those from different classes to have dissimilar sparse
codes.

We randomly select 30 images per category as training
data, and evaluate our approach using different dictio-
nary sizes K = 510, 1020, 1530, 2040, 2550 and 3060;
We compare the classification accuracy of K-SVD [11],
D-KSVD [16] and SRC [6]. Fig. 4(a) shows that our
approaches maintain a high classification accuracy and
outperform the other three competing approaches signif-
icantly even using a smaller size dictionary.

We also compare the dictionary training time with K-
SVD and D-KSVD. As shown in Fig. 4(b), we can train
approximately 13 times faster when we use a dictionary
with a size of 510 rather than 3060. More importantly,
as shown in Fig. 4(a), the classification accuracy of LC-
KSVD degrades only slightly when using the dictionary
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Fig. 5. Example images from classes with high classifi-
cation accuracy from the caltech101 dataset.

of size 510. We compare our approach with SRC in
terms of computation time of classifying one test image,
using different dictionary sizes. As shown in Table 6, the
computation time of our approach is significantly faster
(a factor of more than 310) than SRC.

In addition, we evaluate different combinations of
pooling methods and normalization methods for com-
puting spatial pyramid features. As can be seen from
Fig. 4(c), ‘max pooling’ followed by ‘L2 normalization’
generates the best classification accuracy. Note that ‘sum
pooling’ followed by ‘L1 normalization’ generates the
histograms which were used in the original spatial
pyramid features [48]. There were a total of 9 classes
achieving 100% classification accuracy when using 30
training images per category. Fig. 5 shows some samples
from seven of these classes.

6.4 Caltech256
The Caltech256 dataset [53] contains 30, 607 images of
256 categories. There are at least 80 images per category.
Compared to Caltech101 dataset, it is much more diffi-
cult due to the large variations in object location, pose
and size. α and β are set to 0.001 in the experiment.

We evaluated our approaches on both 15 and 30
training images per class and compare with K-SVD [11],
D-KSVD [16], SRC [6], LLC [12] and the state-of-the-art
approaches [5], [53], [58]. We evaluate LLC with 70 local
bases. The comparisons are shown in Table 7. We used
3840 and 7680 dictionary item respectively for 15 and 30
training samples per category. Our results are better than

TABLE 7
Recognition results using spatial pyramid features on the

Caltech256 dataset.
number of training samples 15 30

Griffin [53] 28.3 34.10
Gemert [58] - 27.17

Yang [5] 27.73 34.02
K-SVD [11] 25.33 30.62

D-KSVD [16] 27.79 32.67
SRC [6] 27.86 33.33

LLC [12] 25.61 30.43
LC-KSVD1 28.1 32.95
LC-KSVD2 28.9 34.32

1280 2560 3840 5120 6400 7680
20

25
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35

dictionary size
cl
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SRC
LLC
LC−KSVD1
LC−KSVD2

Fig. 6. Recognition results using different approaches
with different dictionary sizes on the Caltech256.

those in [58] in the case of 30 training samples per cate-
gory, and marginally better than [5], [53] for both cases.
Note that [5], [53] train sophisticate SVM classifiers to
obtain good performance while our results are obtained
by using only a simple linear classifier. In addition, our
approaches outperform the other competing dictionary
learning approaches including K-SVD, D-KSVD, LLC
and SRC.

We randomly select 30 images per category as training
data, and evaluate our approach using dictionary sizes
from 1280 to 7680, and compare the results with those
from K-SVD, D-KSVD, SRC and LLC. As shown in Fig. 6,
our approaches maintain high classification accuracies
and outperform the other competing approaches. Fig. 7
shows samples of ten categories with high classification
accuracies when using 30 training images per category.

6.5 Fifteen Scene Categories
This is a dataset of fifteen natural scene categories intro-
duced in [48]. Each category has 200 to 400 images, and
the average image size is about 250 × 300 pixels. This
dataset contains fifteen scenes such as bedroom, kitchen
and country scenes as shown in Fig. 8. Following the
common experimental settings, we randomly select 100
images per category as training data and use the rest as
test data. α and β are set to 0.001 in the experiment. The
learned dictionary has 450 items.

We compare our results with K-SVD [11], D-
KSVD [16], SRC [6], LLC [12] and other approaches [5],
[39], [42], [48], [58], [59]. We evaluate the LLC algorithm
with 30 local bases. As Table 8 shows, our approaches
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Fig. 7. Example images from classes with high classifi-
cation accuracy from the Caltech256 dataset.

Fig. 8. Ten categories in the Fifteen Scene Category
dataset.

outperform the state-of-the-art approaches and the com-
peting dictionary learning approaches such as K-SVD,
D-KSVD and LLC 8. The confusion matrices for the
LC-KSVD1 and LC-KSVD2 are shown in Figures 9(a)
and 9(b), respectively.

6.6 UCF Sports Action
The UCF sports action dataset [54] contains video se-
quences which are collected from various broadcast
sports channels such as BBC and ESPN. This dataset
contains videos covering a wide range of scenarios and
viewpoints. There are ten action classes included in this
dataset: diving, golfing, kicking, lifting, horse riding,
running, skateboarding, swinging-(pommel horse and
floor), swinging-(high bar) and walking. Example images
from this dataset are show in Fig. 10. α and β are set to
1.0 in the experiment.

Following the common experimental settings, we eval-
uate our approach using the leave-one-video-out eval-
uation strategy. We compared with state-of-the-art ap-
proaches [49], [54], [60]–[63]. We also evaluate our ap-
proach using five-fold cross validation as in [32], [64],

8. The reason why LLC algorithm works better than the original
result in the paper is that we use sparse coding (LLC) to encode the
spatial pyramid features while the original LLC uses sparse coding
to encode sift descriptors for extracting sparse pyramid features. The
low-level features are the same for SRC, LLC, K-SVD and D-KSVD.

TABLE 8
Recognition results using spatial pyramid features on the

Fifteen scene category dataset.
Method Accuracy(%) Method Accuracy(%)

LC-KSVD1 90.4 Lazebnik [48] 81.4
LC-KSVD2 92.9 Gemert [58] 76.7

SRC [6] 91.8 Yang [5] 80.3
LLC [12] 89.2 Gao [59] 89.7

K-SVD [11] 86.7 lian [42] 86.4
D-KSVD [16] 89.1 Boureau [39] 84.3

Fig. 9. Confusion matrices on the Fifteen scene category
dataset using the dictionary size K = 450.

where one fold is used for testing and the remaining four
folds are used for training. The dictionary size for the
leave-one-video-out scheme is 70 while the dictionary
size for the five fold cross validation is 50. We compared
the results with SRC [6], LLC [12], K-SVD [11] and D-
KSVD [16] and [32], [64]. We evaluate the LLC algorithm
with 30 local bases.

The detailed comparison results are shown in Table 9.
For both evaluation schemes including leave-one-video-

Fig. 10. The UCF sports action dataset.
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TABLE 9
Recognition results using action bank features on the

UCF sports dataset.
Method evaluation Accuracy(%)

Rodrigurez [54] leave-one-out 69.2
Yeffet [60] leave-one-out 79.3
Wu [61] leave-one-out 91.3

Kovashka [62] leave-one-out 87.3
Le [63] leave-one-out 86.5

Sadanand [49] leave-one-out 95.0
Qiu [32] five-fold-cross 83.6
Yao [64] five-fold-cross 86.6
SRC [6] five-fold-cross 90.4

LLC [12] five-fold-cross 87.5
K-SVD [11] five-fold-cross 86.8

D-KSVD [16] five-fold-cross 88.1
LC-KSVD1 five-fold-cross 88.6
LC-KSVD2 five-fold-cross 91.2
LC-KSVD1 leave-one-out 95.7
LC-KSVD2 leave-one-out 95.7

Fig. 11. Confusion matrices on the UCF dataset using
the five-fold-cross-validation scheme.

out and five-fold cross validation, our results are better
than the other state-of-the-art approaches and the com-
peting dictionary learning approaches. Fig. 11 shows the
confusion matrices for both the LC-KSVD1 and the LC-
KSVD2 approaches.

6.7 Evaluation of Incremental Dictionary Learning
We evaluate the incremental dictionary learning ap-
proach on the Caltech101 dataset. We randomly select
30 images per category as training data, and evalu-
ate the incremental learning approach using different
dictionary sizes K ∈ {510, 1020, 1530, 2040, 2550, 3060}.
We compared the experimental results with those from
the ‘batch’ version LC-KSVD2 in terms of classification
accuracy and memory consumption.

Fig. 12 shows the optimization process of incremental
dictionary learning for T̂ = 20 iterations using K = 3060.
We record the objective function value and evaluate the
recognition performance with the learned dictionary on
the test data. As expected, the accuracy increases as the
objective function value decreases on the whole.

Fig. 13(a) shows that the classification performance
of incremental dictionary learning is comparable to LC-
KSVD2. For memory consumption comparison, we learn
a dictionary of size K = 510 given different sizes
of training data. Fig. 13(b) shows that the incremental
dictionary learning uses nearly constant memory while
the batch process (LC-KSVD2) consumes memory linear

Fig. 12. The optimization process of the objective function
for incremental dictionary learning on the Caltech101
dataset with 20 iterations.

in the training data size. This means that the incremental
dictionary learning is feasible for a limited machine
memory situation when given a large scale training
dataset.

7 CONCLUSIONS
We proposed a new dictionary learning approach, label
consistent K-SVD algorithm, for sparse coding. Our main
contribution lies in explicitly integrating the ‘discrimi-
native’ sparse codes and a single predictive linear clas-
sifier into the objective function for dictionary learning.
Additionally, the solution to the new objective function
is efficiently achieved by simply employing the origi-
nal K-SVD algorithm. Unlike most existing dictionary
learning approaches that rely on iteratively solving sub-
problems in order to approximate a global solution, our
approach is able to learn the dictionary, discriminative
coding parameters and classifier parameters simultane-
ously. We also propose an incremental dictionary learn-
ing approach with the label consistency constraint for
the situation of limited memory resources.

The experimental results show that our approach
yields very good classification results on six well-known
public datasets with only one simple linear classifier,
which is unlike some competing approaches learning
multiple classifiers for categories to gain discrimination
between classes. Our approach outperforms recently
proposed methods including D-KSVD [16], SRC [6] and
LLC [12], especially when the number of training sam-
ples is small.
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Fig. 13. The classification and memory consumption
comparisons on the Caltech101 dataset between LC-
KSVD2 and incremental dictionary learning approach.

Possible future work includes extending our approach
to learn category-structure aware dictionaries, which
encourage input signals from highly related categories
to share visual patterns (i.e. dictionary items). It will
make the classification of signals more ‘close’ to their
true identities. The sparse representations of signals of
the same category are defined to be strictly equal in
variable Q, which corresponds to the single model of
a feature distribution for one category. A more flexible
approach is to consider the multi-modal distributions of
signals of the same category when defining Q.
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