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I. INTRODUCTION

This Supplementary Information is organized as follows. In Sec. II, we clarify the fundamental

differences between our work and previous research on network controllability. In Sec. III, we

give a short introduction to the structural control theory, which can be simply applied to directed

networks. The reasons why we focus on linear dynamics are given in Sec. III A. Some simple

examples in Sec. III B demonstrate the difference between controllability, structural controllability

and strong structural controllability. The sufficient and necessary conditions for a linear system

to be structurally controllable are given by Lin’s structural controllability theorem (SCT), which

is discussed in Sec. III C. Based on SCT, we derived the minimum input theorem in Sec. III D,

which gives the minimum number of inputs that we need to fully control a directed network. This

theorem also enables us to find the driver nodes to which the external inputs should be injected,

based on a deep relation between structural controllability and maximum matching. In Sec. IV, we

analytically derived the average size and number of the maximum matchings for a random directed

network ensemble with a prescribed degree distribution, using the cavity method developed in

statistical physics. In Sec. V, we show the results on control robustness against node failure,

compared to the results on link failure shown in the main text. The real-world networks analyzed

in this work are listed and briefly described in Sec. VI.

II. PREVIOUS WORK AND RELATION OF CONTROLLABILITY TO OTHER

PROBLEMS

A. Controllability of Undirected Network

Network controllability is a vast area of research with a long history[1–5]. Here, we clarify the

relationship and differences between our work and earlier research in this direction. In particular,

we want to emphasize that:

1. The classical concept and condition of controllability was usually applied to undirected net-

works. While the control of undirected networks is a problem with its own intellectual

challenges, it has so far found little applications to complex systems. The reason is that

to best of our knowledge, most, if not all, real-world complex networks where control is
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expected to have an impact are directed. This dramatically limits the applicability of the

previous results.

2. From a numerical point of view, the previous approaches are limited to small networks due

to two levels of difficulties: (1) To identify the minimum set of driver nodes, the number of

configurations to be tested increase like O(2N ), prohibitive for networks with thousands to

millions of nodes. (2) Kalman’s rank condition is difficult to test for networks with millions of

nodes. For these reasons, the largest network size explored in pervious work is very limited,

a few dozen nodes at most[1–3], which pale compared to any known network of interest for

network science or complex systems.

3. Previous research implicitly assumes the interaction strengths or link weights can be exactly

measured. Many of them even assume that all links have identical weights. Consequently,

the controllability problem is significantly simplified, naturally translating into a spectral

graph theoretic problem, e.g. the spectrum of the Laplacian matrix of the network[4, 5].

Despite some rigorous work relating network controllability to its symmetry structure, we

argue that the assumption the link weights can be exactly measured is not realistic in most

real-world networks, because measurement error and uncertainties cannot be avoided in real

systems. For example, in regulatory networks, which are directed and weighted, we do not

have the tools yet to estimate the link weights.

Due to the undirected and unweighted assumptions, the obtained conclusions are misleading

in some sense. For example, some authors arrived to the conclusion that a complete graph

is uncontrollable with a single leader (driver node in our language). Mathematically, this

conclusion is correct, and it follows rigorously from the formalism used by the authors[1, 4].

But the result heavily depends on the assumption that all the link weights are exactly known

and the same. As long as there are some uncertainties introduced in the link weights, this

conclusion needs to be revisited. Actually we know that for the linear system

Ẋ(t) = A · X(t) + B · u(t), (S1)

the set of all controllable pairs is open and dense in the space of all pairs (A,B) with standard

metric[6]. In other words, if a pair (A0,B0) is not controllable, then for every ε > 0, there

exists a completely controllable pair (A,B) with ||A − A0|| < ε and ||B − B0|| < ε where

|| · || denotes matrix norm. That is, an uncontrollable system will become controllable if we

slightly change the weights of some links. This is the key reason why some conclusions of
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previous works need to be rechecked whenever there are parameter uncertainties. In fact,

our work based on structural controllability predicts that a complete graph is structurally

controllable with any single node chosen as a driver.

In contrast with these limitations, our results offer the analytic tools to explore directed networks

(hence overcoming the limitation (1)), of arbitrary size (overcoming limitation (2)) and of arbitrary

weights (bypassing limitation (3)).

B. Network Synchronizability

Network synchronizability[7–12] is often also called “controllability” or “pinning controllability”.

We emphasize that the controllability we study here is fundamentally different from synchronizabil-

ity. We ask whether the system can fully explore its state space, while synchronizability addresses

whether the system can exhibit specific spatio-temporal symmetries (for instance, whether all its

nodes can follow a common time-varying trajectory) and the stability of such symmetries. For

example, we show that driver nodes tend to avoid hubs, while on the contrary hubs can facilitate

synchrony by providing common inputs to downstream nodes[12, 13].

The consensus or agreement problem in multi-agent systems[5, 14] can be viewed as a particular

case of the synchronization problem. Generally speaking, the consensus problem studies processes

by which a collection of interacting agents converge to a common value or achieve a common goal.

This is fundamentally different from the controllability problem we address here.

C. Congestion Control

Congestion control [15–17] is a problem of similar difficulty and importance with the control-

lability problem, and occasionally the two are mentioned together. Yet, they are fundamentally

different.

Roughly speaking, congestion control is a technique to monitor network utilization and ma-

nipulate data transmission rate so that network traffic jam or congestion is avoided. Obviously,

this is of particular interest for communication networks, e.g. the Internet. For example, in the

Transmission Control Protocol (TCP), the congestion control mechanism has been implemented to

facilitate reliable and fast data transfer. Congestion control has been formalized as a distributed

optimization problem[15]: The objective is to maximize the sum of source (or user) utilities U(xi)

as functions of rates {xi}, the constraints are linear flow constraints, and optimization variables
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are source rates {xi}. The utility U(xi) measures how much benefit a source i obtains by trans-

mitting at rate xi. This optimization problem is often called network utility maximization (NUM)

problem[17]. In fact, each variant of congestion control protocol, e.g. TCP, can be viewed as

a distributed algorithm solving a specified basic NUM problem with a particular type of utility

function.

From a mathematical point of view, congestion control is a mechanism for resource allocation[15,

16], which is unique to transport systems, most notably, the Internet. Controllability, however, is

a far more general problem, with applications from communication systems to the cell.

III. STRUCTURAL CONTROL THEORY

We introduce a linear time-invariant (LTI) dynamics (Eq. 1) on a directed network G(A). In

control theory, X ∈ RN is called the state vector, A ∈ RN×N is the state matrix, B ∈ RN×M

is the input matrix, and u ∈ RM is the input or control vector. Note that in the state matrix

A := (aij)N×N , the element aij is 0 if (j → i) is not a link in G(A), i.e. node-j does not affect

node-i. Otherwise, aij gives the strength or weight that node-j can affect node-i. Positive (or

negative) value of aij means the link (j → i) is excitatory (or inhibitory). Note that if all the links

are excitatory with unit strength, then the state matrix A is just the transpose of the adjacency

matrix of the directed network.

The whole system, denoted as (A,B), can be represented by a digraph G(A,B) = (V,E)

with V = VA ∪ VB the vertex set and E = EA ∪ EB the edge set. Here, VA = {x1, · · · , xN} :=

{v1, · · · , vN} is the set of state vertices, corresponding to the N nodes in the network (see Fig.

S2a). VB = {u1, · · · , uM} := {vN+1, · · · , vN+M} is the set of input vertices, corresponding to the

M inputs (see Fig. S2b). EA = {(xj , xi)|aij �= 0} is the set of edges between state vertices, i.e.

the links in the network. EB = {(uj , xi)|bij �= 0} is the set of edges between input vertices and

state vertices. The M input vertices are also called the origins of the digraph G(A,B). The state

vertices connected to the origins are called controlled nodes, e.g. x1, x2, x3, x4 and x5 in Fig. S2b.

Denote the number of controlled nodes as M ′, one has M ′ ≥ M because one input vertex can

be connected to multiple state vertices. Those controlled nodes which do not share input vertices

are called driver nodes, e.g. x2, x4 and x5 in Fig. S2b. Obviously, the number of driver nodes

equals M , which is the number of inputs. Any system is fully controllable if we control each node

individually, i.e. M = N . The question is therefore how to identify the minimum number of

inputs (denoted as NI) or equivalently the minimum number of driver nodes (denoted as ND). By
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definition, ND = NI = Mmin.

The concept of structural controllability was first introduced by Lin in 1970s [6]. The basic idea

follows. In the LTI system (Eq. S1), the matrices A and B are considered to be structured ones,

i.e. their elements are either fixed zeros or independent free parameters. This reflects the fact

that in reality the system parameters are often not known precisely except the zeros that mark the

absence of connections between components of the system. The system (A,B) is called structurally

controllable if it is possible to fix the free parameters in A,B to certain values so that the obtained

system (A,B) is controllable in the usual sense (rankC = N). Note that if a system is structurally

controllable then it is controllable for almost all parameter values except for those in some proper

algebraic variety in the parameter space. Since a proper algebraic variety has Lebesgue measure

zero [6, 18], structural controllability is a generic property of the system. Roughly speaking, a

structurally controllable system is either controllable or becomes controllable after slightly changing

the weights of certain interconnections, and it remains controllable for possibly large changes of the

link weights. As far as physical systems are concerned, structural controllability in practice implies

controllability, since a possible loss of controllability of a structurally controllable system can occur

only in pathological cases when there are accidental constraints of the system parameters. When

the system is controllable for any values (other than zero) of the indeterminate parameters of the

system may take, it is called strongly structurally controllable [19].

Note that imposing structural controllability for complex networks is also akin in spirit to the

notion of using strong robustness as a means to select dynamic models for biological systems [20].

A. Why Linear Dynamics?

The linear dynamics (Eq.S1) may be suitable for the consensus or agreement dynamics in multi-

agent networks[1, 3–5]. But we have to admit that by using linear dynamics we did not intend to

model any particular type of dynamical processes on any particular networks. The dynamical rules

on real-world networks are so diverse that writing a general dynamical equation that would capture

them all is plainly impossible. Moreover, for many networks, especially biological networks, we do

not even know the dynamical rules. We expect that real systems are driven by some nonlinear

dynamical rules. Yet, the linear dynamics (Eq.S1) is still essential (and unavoidable) in the path

towards addressing the controllability of these systems, for reasons explained below:

Most importantly, studying linear controllability offers a framework to explain the controllability

of nonlinear systems. Indeed, a basic starting point for exploring the controllability of any nonlinear
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system is the study of controllability of the linearized version of the nonlinear dynamical system,

e.g. Eq.S1.

Moreover, as we focus on the structural version of controllability, the fact that the controlla-

bility matrix of the linearized system has full rank at all points is sufficient for most systems to

yield controllability of the actual nonlinear system [21]. In other words, because structural con-

trollability leads to controllability of a continuum of linearized systems, our results can provide

sufficient controllability conditions in the full nonlinear case. This is not particularly surprising,

since knowing a nonlinear dynamics at just one point and its linearizations everywhere (or more

generally, almost everywhere in a convex connected region) is equivalent to knowing the dynamics

everywhere (or everywhere in the region), a remark which also forms the basis of modern stability

and convergence analysis tools such as nonlinear contraction theory [22]. Indeed, for arbitrary P

and N , and any smooth function f : RP × R+ → RN , one has

f(r2, t) = f(r1, t) +
(∫ λ=1

λ=0

∂

∂r
f(r1 + λ(r2 − r1), t) dλ

)
· (r2 − r1). (S2)

Intuitively, around each linearization point the system remains controllable in a finite ball, by

continuity, so that a trajectory between any two points can be covered by a finite number of such

controllability balls. In general, nonlinearity may actually enhance a system’s controllability by

helping the system explore the full state space [21, 23, 24]. Fully exploiting these nonlinear effects

is the subject of future research.

Finally, the non-trivial topology of real-world networks brings an intrinsic layer of complexity

to the controllability problem. Before we explore the fully nonlinear dynamical setting, we have to

understand the effects of topological characteristics on linear controllability, which naturally serves

as a prerequisite of nonlinear controllability problem. From the advances towards understanding

complex networks accumulated in the last decade, we know that network topology fundamentally

affects the dynamical processes on it, from epidemic spreading to synchronization phenomenon. It is

fair to expect that the network topology would definitely affect controllability as well. To approach

this problem in a systematic fashion, we have to proceed from the simplest dynamics that offers

a mathematically correct description of controllability, helping us avoid any entanglement due to

nonlinear effects.

Notice that the framework we developed applies similarly to discrete-time system[25, 26].
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Figure S1: Control a simple network. a, A directed path can be completely controlled by controlling the

starting node only. The controllability is independent of the detailed (non-zero) values of b1, a21, and a32,

so the system is strongly structurally controllable. b, A directed star can never be completely controlled by

controlling the central hub (node x1) only. c, This example network, generated by adding a self-edge to the

star shown in b, can be completely controlled by controlling node x1 only. The controllability is independent

of the detailed (non-zero) values of b1, a21, a31, and a33, so the system is strongly structurally controllable.

d, This network is completely controllable for almost all weights combinations. It will be uncontrollable

only in some pathological cases, e.g. those weights satisfy the constraint a32a
2
21 = a23a

2
31 exactly, so the

system is structurally controllable.

B. Simple Examples

Here, we show simple examples to illustrate the difference between controllability, structural

controllability, and strong structural controllability.

The linear dynamics shown in Fig. S1(a) can be written as



ẋ1(t)

ẋ2(t)

ẋ3(t)


 =




0 0 0

a21 0 0

0 a32 0


 ·




x1(t)

x2(t)

x3(t)


 +




b1

0

0


u(t).

The controllability matrix is given by

C = [B,A · B,A2 · B] = b1




1 0 0

0 a21 0

0 0 a32a21


 .

Since rankC = 3 = N , the system is controllable. Note that the system is always controllable

as long as those weights, i.e. a21, a32 and b1, are non-zero. In other words, its controllability is

independent of the detailed values of a21, a32 and b1. This is an example of the so called strong

structural controllability [19].
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The linear dynamics shown in Fig. S1(b) can be written as



ẋ1(t)

ẋ2(t)

ẋ3(t)


 =




0 0 0

a21 0 0

a31 0 0


 ·




x1(t)

x2(t)

x3(t)


 +




b1

0

0


u(t).

The controllability matrix is given by

C = [B,A · B,A2 · B] = b1




1 0 0

0 a21 0

0 a31 0


 .

Since rankC = 2 < N , the system is uncontrollable. Note that this is independent of the detailed

values of a21, a31, and b1. No matter how we tune them, the system is uncontrollable. Indeed, the

dynamics equation suggests that the system will get stuck in the plane a31x2(t) = a21x3(t) in the

state space.

The linear dynamics shown in Fig. S1(c) can be written as



ẋ1(t)

ẋ2(t)

ẋ3(t)


 =




0 0 0

a21 0 0

a31 0 a33


 ·




x1(t)

x2(t)

x3(t)


 +




b1

0

0


u(t).

The controllability matrix is given by

C = [B,A · B,A2 · B] = b1




1 0 0

0 a21 0

0 a31 a33a31


 .

Since rankC = 3 = N , the system is controllable. In this example, the controllability is inde-

pendent of the detailed values of a21, a31 , a33, and b1, as long as they are non-zero. This is

another example of strong structural controllability. Notice the small difference between the net-

works shown in Fig. S1(b) and Fig. S1(c). The presence of a self-edge fundamentally changes the

controllability of the system.

The linear dynamics shown in Fig. S1(d) can be written as



ẋ1(t)

ẋ2(t)

ẋ3(t)


 =




0 0 0

a21 0 a23

a31 a32 0


 ·




x1(t)

x2(t)

x3(t)


 +




b1

0

0


u(t).
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The controllability matrix can be easily calculated

C = [B,A · B,A2 · B] = b1




1 0 0

0 a21 a23a31

0 a31 a32a21


 .

In most cases, we have rankC = 3 = N , so the system will be controllable. In case
(
a21

a31

)
∝

(
a23a31

a32a21

)
,

e.g. a32a
2
21 = a23a

2
31, then rank (C) = 2 < N and the system will be uncontrollable. However, this

case is pathological. In fact, slightly change any link’s weight will break the constraint and make

the system controllable. Thus, we call this system structurally controllable. (Apparently, it is not

strongly structurally controllable.)

C. Structural Controllability Theorem

The structural controllability of LTI systems has been well studied after Lin’s seminal work [6,

18, 27–31]. Both sufficient and necessary conditions for a system to be structurally controllable are

given by Lin’s structural controllability theorem, which has clear graph-theoretic interpretations.

Before we state Lin’s theorem, we introduce several definitions.

For a general graph, it is said to be covered or spanned by a subgraph if the subgraph and the

graph have the same vertex set. For a digraph, a sequence of oriented edges {(v1 → v2), (v2 →

v3), · · · , (vk−1 → vk)} where all vertices {v1, v2, · · · , vk} are distinct is called an elementary path.

When vk coincides with v1, it is called an elementary cycle.

Now we consider the particular digraph G(A,B) describing the controlled network (see Fig.

S2b).

Definition 1 (inaccessibility). A state vertex xi in the digraph G(A,B) is called inaccessible iff

there are no directed paths reaching xi from the input vertices (origins).

Definition 2 (dilation). The digraph G(A,B) contains a dilation iff there is a subset S ⊂ VA

such that |T (S)| < |S|. Here, the neighborhood set T (S) of a set S is defined to be the set of all

vertices vj that there exists an oriented edge from vj to a vertex in S, i.e. T (S) = {vj |(vj → vi) ∈

E(G), vi ∈ S}. The origins are not allowed to belong to S but may belong to T (S). |S| or |T (S)|

is the cardinality of set S or T (S), respectively.

Remark The definition of inaccessibility can not be absorbed into that of dilation because an

inaccessible node could have a self-edge, which causes no dilation. In case all nodes are isolated

and each of them has a self-edge, then there are no dilations, but all nodes are inaccessible!
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6

3

3

6

3

6

U-rooted factorial connection

Figure S2: A schematic digram shows the control of a directed network. a, A directed network

G(A). All nodes in the network are called state vertices. b, The network is controlled by three input vertices

(origins), which are marked in blue. The controlled network is described by a digraph G(A,B). The state

vertices pointed by the inputs are called controlled nodes, e.g. x1, x2, x3, x4 and x5. c, The U-rooted factorial

connection of the digraph G(A,B) is composed of vertex-disjoint stems and cycles. Matching edges are

marked in red. Matched nodes are marked in green. The input vertices are connected to unmatched nodes

(marked in white), forming stems. The unmatched nodes, e.g. x2, x4 and x5, are called the independent

controlled nodes or driver nodes, which do not share the input signals. d, The cacti is built from the U-

rooted factorial connection. The cactus in the left contains a stem and four buds. Both the cactus in the

middle and the cactus in the right are just stems.

Definition 3 (stem). A stem is an elementary path originating from an input vertex. The initial

(or terminal) vertex of a stem is called the root (or top) of the stem.

Definition 4 (bud). A bud is an elementary cycle C with an additional edge e that ends, but not

begins, in a vertex of the cycle. This additional edge e is called the distinguished edge of the bud,

e.g. (u1 → x3) or (x2 → x6) in Fig. S2d.

Definition 5 (U-rooted factorial connection). A set of vertex-disjoint stems and elementary cycles

such that the union of all the stems and all the cycles spans G(A,B) is called a U-rooted factorial
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connection in G(A,B).

Remark It is easy to show that if and only if there are no dilations in G(A,B) then there is a

U-rooted factorial connection in G(A,B). See Fig. S2c.

Definition 6 (cactus). A cactus is a subgraph defined recursively as follows. A stem is a cactus.

Given a stem S0 and buds B1, B2, · · · , Bl, then S0 ∪ B1 ∪ B2 ∪ · · · ∪ Bl is a cactus if for every i

(1 ≤ i ≤ l) the initial vertex of the distinguished edge of Bi is not the top of S0 and is the only

vertex belonging at the same time to Bi and S0 ∪B1 ∪B2 ∪ · · ·∪Bi−1. A set of vertex-disjoint cacti

is called a cacti.

Remark Cactus (or cacti) is the minimal structure which contains neither inaccessible nodes

nor dilations. That is, for a given cactus, the removal of an arbitrary edge will cause either

inaccessibility or dilation.

Theorem 1 (Lin’s Structural Controllability Theorem).

The following three statements are equivalent:

1. A linear control system (A,B) is structurally controllable.

2. i) The digraph G(A,B) contains no inaccessible nodes.

ii) The digraph G(A,B) contains no dilation.

3. G(A,B) is spanned by cacti.

Remarks

1. Lin’s theorem has pure algebraic meanings [18]. The presence of inaccessible state vertices

means that the structured matrix [A;B] is reducible, i.e. there exists a permutation matrix

P such that

PAP−1 =


 A11 0

A21 A22


 ; PB =


 0

B2


 (S3)

where A11 ∈ RK×K , A21 ∈ R(N−K)×K , A22 ∈ R(N−K)×(N−K), and B2 ∈ R(N−K)×M with

1 ≤ K ≤ N . The presence of a dilation is equivalent to the statement that the structured

matrix [A;B] has generic rank less than N :

rankg [A;B] < N. (S4)
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Here, the generic rank of a structured matrix M is defined to be the maximum rank that M

can attain as a function of all the free parameters in M. Then Lin’s theorem can be written

as: A linear control system (A,B) is structurally controllable iff the structured matrix [A;B]

is irreducible and has generic rank N .

2. Lin’s theorem also has intuitive explanations: (1) A system is uncontrollable if there are

inaccessible nodes, which cannot be accessed or “influenced” by the external inputs. A naive

example would be isolated nodes. Another example is the following: By controlling a directed

path with a driver node which is not the starting node of the path, we cannot fully control

the path, simply because we lose control of all the nodes upstream from the driver node,

which are inaccessible from the driver node. (2) A system is also uncontrollable if there

are dilations. Roughly speaking, dilations are subgraphs in which there are more nodes

pointed or “ruled” by less other nodes. (In other words, there are more “subordinates” than

“superiors”.) For example, in a directed star with many leaf-nodes pointed by one central

hub, any two leaf-nodes together with the central hub form a dilation. If we control the

central hub only, the system is uncontrollable because we cannot independently control the

difference of any two leaf-nodes state variables. In other words, we cannot independently

control two subordinates if they share one superior.

To fully control a network, one has to remove all possible dilations and make sure every

node is accessible from the external inputs. Colloquially, this means: each node must have

its own “superior”. If a node has no “superiors”, i.e. no nodes pointing to it, then obviously

it is inaccessible and we lose control of it. If two or more nodes share one “superior”, then

dilation occurs, we cannot fully control the system either.

D. Minimum Inputs Theorem

In this section, we prove that in order to fully control a network G(A) the minimum number

of input vertices (or equivalently the minimum number of driver nodes) we need is related to the

size of maximum matching in the corresponding digraph G(A), which is one of our key results. To

achieve this, we first generalize the concept of matching in undirected graph to digraph.

Definition 7. For an undirected graph, a matching M is an independent edge set, i.e. a set of

edges without common vertices. A vertex is matched if it is incident to an edge in the matching.

Otherwise the vertex is unmatched.
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Figure S3: Matching in digraph and its bipartite representation. a, A simple digraph. b, The

bipartite representation of the digraph shown in a. It has a unique maximum matching, which is shown in

red. Matched (or unmatched) nodes are shown in green (or white), respectively.

Definition 8. For a digraph, an edge subset M is a matching if no two edges in M share a

common starting vertex or a common ending vertex. A vertex is matched if it is an ending vertex

of an edge in the matching. Otherwise, it is unmatched.

In both cases, a matching of maximum cardinality/size is called a maximum matching. (Note

that in general there could be many different maximum matchings for a given graph or digraph.)

A maximum matching is called perfect if all vertices are matched. For example, in a directed

elementary cycle, all vertices are matched. Note that a maximum matching of a digraph G(A)

can be easily found in its bipartite representation, denoted as H(A). See Fig. S3. The bipartite

graph is defined in the following way. H(A) = (V +
A ∪ V −

A ,Γ). Here, V +
A = {x+

1 , · · · , x+
N} and

V −
A = {x−

1 , · · · , x−
N} are the set of vertices corresponding to the N columns and rows of the state

matrix A, respectively. Edge set Γ = {(x+
j , x−

i ) | aij �= 0}. For a general bipartite graph, its

maximum matching can be found efficiently using the well-known Hopcroft-Karp algorithm, which

runs in O(
√

V E) time [32].

Denote |M∗| as the size of the maximum matching in the directed network G(A). We have

Theorem 2 (Minimum Input Theorem).

The minimum number of inputs (NI) or equivalently the minimum number of driver nodes (ND)

need to fully control a network G(A) is one if there is a perfect matching in G(A). (In this case,

any single node can be chosen as the driver node.) Otherwise, it equals the number of unmatched

nodes with respective to any maximum matchings. (In this case, the driver nodes are just the
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unmatched nodes.)

NI = ND = max {N − |M∗|, 1} . (S5)

Proof. Case 1) If |M∗| < N , the maximum matching in G(A) is not perfect and there are N−|M∗|

unmatched vertices. The matching edges form elementary paths and circles. We call them matching

paths and matching circles hereafter (see Fig. S2c). We can connect an input vertex to each

unmatched vertex, and form N − |M∗| stems. All other state vertices are spanned by matching

cycles. For a given matching cycle C, if there is an edge e in G(A) such that the starting vertex of

e belongs to one of the stems and the ending vertex of e belongs to C, then e∪C forms a bud. For

a matching cycle which can not form a bud in such a way, we can connect one of the input vertices

to it and form a bud. In both cases, matching cycles do not require extra inputs to form buds.

Thus, we have a disjoint set of cacti with N − |M∗| inputs (origins). According to Lin’s theorem,

the system is structurally controllable. Since |M∗| is the size of the maximum matching in G(A),

ND = N − |M∗| is therefore the the minimum number of inputs we need.

Case 2) If |M∗| = N , then all vertices are spanned by one or more matching cycles. The simplest

cactus can be constructed by introducing one input vertex (origin) and connecting it to all cycles

to form buds. Modify an arbitrary bud to a stem, we obtain a cactus with one input ND = 1.

Remarks

1. The above theorem has an intutive explanation. To make sure that each node has its own

“superior” so that we can fully control the network, we must inject enough inputs to the

system. The minimum inputs we need is determined by the maximum matching of the

network. Roughly speaking, a matched node has already been controlled by its “superior”,

i.e. the node pointing to it. But unmatched node has to be controlled directly by an external

“superior” or input. Thus, they are the driver nodes for the whole system. Once we have

injected inputs into all the driver nodes, then each node has its own “superior” and the

system is fully controllable.

2. Note that when a directed network is strongly connected (i.e. between any pair of distinct

nodes i and j there exists a directed path from i to j), and if ND = 1, then there is a directed

spanning tree, i.e. a directed tree with at least one root r such that any other nodes can be

reached by r along edges in the tree [33]. This is a simple application of Lin’s Structural
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Controllability Theorem. However, if a strongly connected network has a directed spanning

tree, then one cannot claim that ND = 1. The reason is that the network can have more

than one dilations, which require more than one driver nodes. The existence of dilations has

nothing to do with the existence of directed spanning tree(s).

3. According to Lin’s theorem, adding more links will never weaken a system’s structural con-

trollability (which is not generally true for the usual concept of controllability). This makes

the above minimum input theorem meaningful in dealing with missing links, a common oc-

currence in biological network data. In other words, the minimum input theorem yields an

upper bound on the minimum inputs for the network with all missing links added.

IV. MAXIMUM MATCHING

For a random digraph ensemble with a given degree distribution P (kin, kout), we derived the

average size and number of the maximum matching, using the cavity method developed in statistical

physics [34]. (Note that similar results for undirected graph have been obtained using the same

method [35].) Then the average number or density of unmatched nodes, i.e. the driver nodes, can

be easily obtained.

A. Statistical physics description

Describe a matching M in a digraph G = {V (G), E(G)} by the binary variables sa = s(i→j) ∈

{0, 1} assigned to each directed edge or arc a = (i → j) ∈ E(G) with sa = 1 if a ∈ M and sa = 0

otherwise. According to the definition of matching in a digraph, one has two constraints on each

vertex i ∈ V (G),

∑
j∈∂+i

s(i→j) ≤ 1 (S6)

∑
k∈∂−i

s(k→i) ≤ 1 (S7)

with ∂−i and ∂+i indicating the sets of nodes which point to i or are pointed by i, respectively.

If we define

Ei({s}) = 1 −
∑

k∈∂−i

s(k→i), (S8)
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then Ei({s}) ≥ 0 and it just means whether vertex i is matched (Ei({s}) = 0) or unmatched

(Ei({s}) = 1). Define the cost (or energy) function which gives, for each matching M = {s}, twice

the number of unmatched vertices:

EG({s}) = 2
∑

i∈V (G)

Ei({s}) = 2(N − |M |). (S9)

We define the Boltzmann probability in the space of matchings as

PG({s}) =
e−βEG({s})

ZG(β)
, (S10)

where β is the inverse temperature and ZG(β) is the partition function:

ZG(β) =
∑
{s}

e−βEG({s}). (S11)

For β → ∞ (zero temperature limit), the internal energy EG(β) gives the ground state property,

i.e. the property of the maximum matchings.

B. Internal energy

For each arc a = (i → j), define two cavity fields: hi→j and ĥj→i. They satisfy the recursion

relation

hi→j = − 1
β

log


e−β +

∑
k∈∂+i\j

eβbhk→i


 (S12)

ĥj→i = − 1
β

log


e−β +

∑
k∈∂−j\i

eβhk→j


 . (S13)

The free entropy is given by

log ZG(β) = −βFG(β)

=
∑

i

log


e−β +

∑
k∈∂+i

eβbhk→i


 +

∑
j

log


e−β +

∑
k∈∂−j

eβhk→j




−
∑

(i→j)

log
(
1 + eβ(hi→j+bhj→i)

)
. (S14)

Note that this form of free entropy is variational, i.e. the derivatives ∂(βF (β))
∂hi→j

and ∂(βF (β))

∂bhj→i
vanish

if and only if the fields hi→j and ĥi→j satisfy the recursion relations Eq. S12 and S13.
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The internal energy is given by

EG(β) = −∂ log ZG(β)
∂β

=
∑

i

e−β −
∑

k∈∂+i ĥk→ie
βbhk→i

e−β +
∑

k∈∂+i eβbhk→i

+
∑

j

e−β −
∑

k∈∂−j hk→je
βhk→j

e−β +
∑

k∈∂−j eβhk→j

+
∑

(i→j)

(hi→j + ĥj→i)eβ(hi→j+bhj→i)

1 + eβ(hi→j+bhj→i)
. (S15)

Equations (S14, S15) hold on a single digraph G. Now we average over the random digraph

ensemble with a prescribed degree distribution P (kin, kout). Call Pβ(h), P̂β(ĥ) the distributions of

cavity fields along and against all the arcs of a large typical digraph from the digraph ensemble.

They satisfy the following self-consistent equations:

Pβ(h) =
∞∑

kin=0

∞∑
kout=1

kout

〈kout〉
P (kin, kout)

∫ kout−1∏
i=1

[dĥiP̂β(ĥi)]δ

[
h +

1
β

log

(
e−β +

kout−1∑
i=1

eβbhi

)]

=
∞∑

kout=1

Q(kout)
∫ kout−1∏

i=1

[dĥiP̂β(ĥi)]δ

[
h +

1
β

log

(
e−β +

kout−1∑
i=1

eβbhi

)]
(S16)

P̂β(ĥ) =
∞∑

kin=1

∞∑
kout=0

kin

〈kin〉
P (kin, kout)

∫ kin−1∏
i=1

[dhiPβ(hi)]δ

[
ĥ +

1
β

log

(
e−β +

kin−1∑
i=1

eβhi

)]

=
∞∑

kin=1

Q̂(kin)
∫ kin−1∏

i=1

[dhiPβ(hi)]δ

[
ĥ +

1
β

log

(
e−β +

kin−1∑
i=1

eβhi

)]
. (S17)

Here, the term

Q(kout) ≡
kout

∑∞
kin=0 P (kin, kout)
〈kout〉

=
koutP (kout)

〈kout〉
(S18)

Q̂(kin) ≡
kin

∑∞
kout=0 P (kin, kout)

〈kin〉
=

kinP̂ (kin)
〈kin〉

(S19)

are the out- and in- degree distributions of the node i when one picks up uniformly at random

an arc (i → j) from the digraph. This equations for distributions Pβ(h) and P̂β(ĥ) can be solved

numerically using the technique of population dynamics [34].
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The average of the free energy density is given by

f(β) =
FG(β)

N

= − 1
β

∞∑
kout=0

P (kout)
∫ kout∏

i=1

[dĥiP̂β(ĥi)] log

(
e−β +

kout∑
i=1

eβbhi

)

− 1
β

∞∑
kin=0

P̂ (kin)
∫ kin∏

i=1

[dhiPβ(hi)] log

(
e−β +

kin∑
i=1

eβhi

)

+
z

2β

∫
[dhdĥPβ(h)P̂β(ĥ)] log

(
1 + eβ(h+bh)

)
, (S20)

where z = 〈k〉 is the mean degree.

Similarly, the average energy density is given by

ε(β) =
EG(β)

N

=
∞∑

kout=0

P (kout)
∫ kout∏

i=1

[dĥiP̂β(ĥi)]
e−β −

∑kout
i=1 ĥie

βbhi

e−β +
∑kout

i=1 eβbhi

+
∞∑

kin=0

P̂ (kin)
∫ kin∏

i=1

[dhiPβ(hi)]
e−β −

∑kin
i=1 hie

βhi

e−β +
∑kin

i=1 eβhi

+
z

2

∫
[dhdĥPβ(h)P̂β(ĥ)]

(h + ĥ)eβ(h+bh)

1 + eβ(h+bh)
. (S21)

The zero temperature limit (β → ∞) corresponds to the ground state (maximum matching) of

our system. Numerical studies of Eq. S16, S17 show that for large β the cavity field distribution

Pβ(h) peaks around three different values h ∈ {−1, 0, 1}:

P(h) = w1δ(h − 1) + w2δ(h + 1) + w3δ(h), (S22)

where w1,w2, and w3 are the weights (probabilities) of h = 1,−1 and 0. Similarly,

P̂(ĥ) = ŵ1δ(ĥ − 1) + ŵ2δ(ĥ + 1) + ŵ3δ(ĥ). (S23)

This is called the energetic zero-temperature limit. After some algebra, we have

Pβ(h) =
∞∑

kout=1

Q(kout)
∫ kout−1∏

i=1

[dĥiP̂β(ĥi)]δ

[
h +

1
β

log

(
e−β +

kout−1∑
i=1

eβbhi

)]

β→∞
=

∞∑
kout=1

Q(kout)
[
(1 − (1 − ŵ1)kout−1)δ(h + 1) + ŵkout−1

2 δ(h − 1)

+((1 − ŵ1)kout−1 − ŵkout−1
2 )δ(h)

]
(S24)
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P̂β(ĥ) =
∞∑

kin=1

Q̂(kin)
∫ kin−1∏

i=1

[dhiPβ(hi)]δ

[
ĥ +

1
β

log

(
e−β +

kin−1∑
i=1

eβhi

)]

β→∞
=

∞∑
kin=1

Q̂(kin)
[
(1 − (1 − w1)kin−1)δ(ĥ + 1) + wkin−1

2 δ(ĥ − 1)

+((1 − w1)kin−1 − wkin−1
2 )δ(ĥ)

]
. (S25)

Compare Eq. S22 with S24, one has

w1 =
∞∑

kout=1

Q(kout)ŵkout−1
2 =

∞∑
kout=0

Q(kout + 1)ŵkout
2 = H(ŵ2) (S26)

w2 =
∞∑

kout=1

Q(kout)[1 − (1 − ŵ1)kout−1] = 1 − H(1 − ŵ1) (S27)

w3 =
∞∑

kout=1

Q(kout)[(1 − ŵ1)kout−1 − ŵkout−1
2 ] = 1 − w2 − w1. (S28)

Compare Eq. S23 with S25, one has

ŵ1 =
∞∑

kin=1

Q̂(kin)w
kin−1
2 =

∞∑
kin=0

Q̂(kin + 1)wkin
2 = Ĥ(w2) (S29)

ŵ2 =
∞∑

kin=1

Q̂(kin)[1 − (1 − w1)kin−1] = 1 − Ĥ(1 − w1) (S30)

ŵ3 =
∞∑

kin=1

Q̂(kin)[(1 − w1)kin−1 − wkin−1
2 ] = 1 − ŵ2 − ŵ1. (S31)

Here we defined the generating functions

G(x) =
∞∑

kout=0

P (kout)xkout (S32)

Ĝ(x) =
∞∑

kin=0

P̂ (kin)xkin (S33)

H(x) =
∞∑

kout=0

Q(kout + 1)xkout (S34)

Ĥ(x) =
∞∑

kin=0

Q̂(kin + 1)xkin . (S35)
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In the zero temperature limit, the average energy density can be calculated as follows

ε(β) =
∞∑

kout=0

P (kout)
∫ kout∏

i=1

[dĥiP̂β(ĥi)]
e−β −

∑kout
i=1 ĥie

βbhi

e−β +
∑kout

i=1 eβbhi

+
∞∑

kin=0

P̂ (kin)
∫ kin∏

i=1

[dhiPβ(hi)]
e−β −

∑kin
i=1 hie

βhi

e−β +
∑kin

i=1 eβhi

+
z

2

∫
[dhdĥPβ(h)P̂β(ĥ)]

(h + ĥ)eβ(h+bh)

1 + eβ(h+bh)

β→∞
=

∞∑
kout=0

P (kout)[ŵkout
2 + ((1 − ŵ1)kout − 1)] +

∞∑
kin=0

P̂ (kin)[w
kin
2 + ((1 − w1)kin − 1)]

+
z

2
[ŵ1(1 − w2) + w1(1 − ŵ2)]

=
[
G(ŵ2) + G(1 − ŵ1) − 1

]
+

[
Ĝ(w2) + Ĝ(1 − w1) − 1

]

+
z

2
[
ŵ1(1 − w2) + w1(1 − ŵ2)

]
. (S36)

The minimum density of unmatched nodes or equivalently the minimum density of driver nodes

is then given by

nD =
1
2

{[
G(ŵ2) + G(1 − ŵ1) − 1

]
+

[
Ĝ(w2) + Ĝ(1 − w1) − 1

]
+

z

2
[
ŵ1(1 − w2) + w1(1 − ŵ2)

]}
.

(S37)

In the following, we apply the above calculation onto some examples of specific digraphs.

Though the calculation can be performed on any given P (kin, kout), to simplify the discussion,

we present the results obtained from digraphs in which in-degrees and out-degrees share the same

distribution, which is of course not always true for real-world networks. We will briefly discuss the

results obtained from digraphs where in-degree and out-degree distributions are different.

1. r−regular random digraph

A r-regular graph is a graph without self-edges and multiple edges where each vertex has the

same degree r. A r-regular digraph (with r = even) must also satisfy the stronger condition that

the in-degree and out-degree of each vertex are equal to each other, i.e.

P (kout) = δ(kout −
r

2
) = Q(kout) (S38)

P̂ (kin) = δ(kin − r

2
) = Q̂(kin). (S39)
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In this case, the self-consistent equations of Pβ(h), P̂β(ĥ) can be simplified to

Pβ(h) =
∫ r/2−1∏

i=1

[dĥiP̂β(ĥi)]δ
[
h +

1
β

log
(
e−β + eβbh1 + · · · + eβbhr/2−1

)]
(S40)

P̂β(ĥ) =
∫ r/2−1∏

i=1

[dhiPβ(hi)]δ
[
ĥ +

1
β

log
(
e−β + eβh1 + · · · + eβhr/2−1

)]
(S41)

with solutions given by

Pβ(h) = δ(h − hr) (S42)

P̂β(ĥ) = δ(ĥ − ĥr). (S43)

For the recursion equations of hr and ĥr,

hr = − 1
β

log
[
e−β + (r/2 − 1)eβbhr

]
(S44)

ĥr = − 1
β

log
[
e−β + (r/2 − 1)eβhr

]
(S45)

which have obvious solutions hr = ĥr. By letting x = eβhr and solving x−1 = e−β + (r/2− 1)x, we

have

hr = ĥr =
1
β

log

[√
4(r/2 − 1) + e−2β − e−β

2(r/2 − 1)

]
. (S46)

The average of the free energy density can be simplified

f(β) = − 1
β

log
(
e−β +

r

2
eβhr

)
− 1

β
log

(
e−β +

r

2
eβhr

)
+

r

2β
log

(
1 + e2βhr

)

= − 2
β

log
(
e−β +

r

2
eβhr

)
+

r

2β
log

(
1 + e2βhr

)
. (S47)

And the average energy density is simplified to

ε(β) =
e−β − r

2hre
βhr

e−β + r
2eβhr

+
e−β − r

2hre
βhr

e−β + r
2eβhr

+
rhre

2βhr

1 + e2βhr

= 2
e−β − r

2hre
βhr

e−β + r
2eβhr

+
rhre

2βhr

1 + e2βhr
. (S48)

For r/2 ≥ 2 in the zero temperature limit β → ∞ we have hr = 0. The ground state energy

density is then ε = 0, which means that asymptotically almost all the vertices may be matched for

almost every r-regular digraph (r ≥ 4). For r/2 = 1, we know that 2-regular digraph consists of

disconnected cycles, which indicates the maximum matching is perfect.

Notice that the result obtained from cavity method is consistent with the graph theoretical

result that every regular bipartite graph has a perfect matching [36].
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2. Poisson-distributed digraph

For directed Erdős-Rényi random networks, in the thermodynamic limit, both P (kin) and

P (kout) follow a Poisson distribution, i.e. e−z0zk
0/k! with z0 = z/2 = 〈kin〉 = 〈kout〉 the half

mean degree, so we have

G(x) = H(x) = Ĝ(x) = Ĥ(x) = e−z0(1−x). (S49)

It is easy to check that

nD =
1
2
ε0 = w1 − w2 + z0w1(1 − w2) (S50)

and w1, w2 satisfy the following equations w1 = e−z0(1−w2), w2 = 1 − e−z0w1 . One solves the

self-consistent equation

w1 = exp
(
−z0e

−z0w1
)

(S51)

for w1 and then nD is obtained (see Fig. S4). Note that nD decreases exponentially as z0 = z/2

increases. The asymptotic behavior of nD in the large z limit can be estimated [37]: As z � 1, one

has w1 ∼ e−z0 , w2 = 1 − e−z0w1 ∼ z0w1, and thus nD ∼ w1 − z0w1w2 ∼ e−z0 − z2
0e

−2z0 . Therefore,

in the large z = 〈k〉 limit we have

nD ∼ e−z0 = e−〈k〉/2. (S52)

To study the effect of degree heterogeneity on nD for an arbitrary network, we defined the

degree heterogeneity as the relative mean difference of its degree distribution,

H =
∆
〈k〉

=

∑
i

∑
j |i − j|P (i)P (j)

〈k〉
= 2

∑
i

∑
j<i(i − j)P (i)P (j)

〈k〉
, (S53)

where ∆ is the average absolute degree difference of two degrees (i and j) drawn from the degree

distribution. As a measure of statistical dispersion, H has a well-defined range [0, 2] and is twice

of the Gini coefficient of the given distribution. (Note that an often used measure of degree

heterogeneity, 〈k2〉/〈k〉2, diverges for scale-free networks with γ ≤ 3 in the N → ∞ limit, thus it is

not appropriate to explore the impact of heterogeneity on controllability for scale-free networks.)

For Poisson distribution: P (k) = e−zzk

k! , k = 0, 1, 2, · · · , one can show that

H = 2e−2z [I0(2z) + I1(2z)] , (S54)

where In(x) =
∑∞

i=0
1

i!(n+i)!

(
x
2

)2i+n is the modified Bessel function of the first kind. For a general

distribution P (k), it is usually hard to get an analytical formula for H. Nevertheless, it can be

numerically calculated by using its definition.
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Figure S4: nD for Poisson-distributed digraphs. a, nD decreases as 〈k〉 increases. Lines are analytical

results calculated with the cavity method by solving Eq. S51. Symbols are results calculated from finite

networks with size N = 105, constructed by the static model [38]: ’◦’ is the exact result calculated from the

maximum matching algorithm and ‘+‘ is the analytical result of the cavity method using the exact degree

sequence of the constructed network. b, For large 〈k〉, nD decays exponentially as nD ∼ e−〈k〉/2. c, Effect

of degree heterogeneity H on nD.

3. Exponentially distributed digraph

For exponentially distributed digraphs, we assume both P (kin) and P (kout) follow the same

exponential distribution, i.e. (1 − e−1/κ)e−k/κ. Then the half mean degree is given by z0 = z/2 =
e−1/κ

1−e−1/κ = 〈kin〉 = 〈kout〉 and the generating functions are

G(x) = Ĝ(x) =
1 − e−1/κ0

1 − xe−1/κ0
(S55)

and

H(x) = Ĥ(x) =

(
1 − e−1/κ0

1 − xe−1/κ0

)2

. (S56)

The calculated nD is shown in Fig. S5.
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Figure S5: nD for exponentially distributed digraphs. a, nD decreases as κ0 increases. Lines are

analytical results calculated by the cavity method using Eq. S37. Symbols are results calculated from finite

networks with size N = 104, constructed by the configuration model [39]: ’◦’ is the exact result calculated

from the maximum matching algorithm and ‘+‘ is the analytical result of the cavity method using the exact

degree sequence of the constructed network. b, As 〈k〉 increases, nD also increases. c, Effect of degree

heterogeneity H on nD. For exponential distribution, we do not have an analytical form for H as a function

of κ0. Instead, it is numerically calculated from the degree distribution. The nD(H) curve for Poisson

distributed digraphs is shown (dotted line) just for comparison.

4. Power-law distributed digraphs

Assuming P (kin) and P (kout) can be described by the same degree distribution with power-law

exponent γ and exponential cutoff

P (kin) = C k−γ
in e−k/κ (S57)

P (kout) = C k−γ
out e−k/κ. (S58)

The normalization constant is given by C =
[
Liγ(e−k/κ)

]−1
with Lin(x) is the nth polylogarithm

of x. Note that with the exponential cutoff e−k/κ, the distribution is normalizable for any γ.
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It is easy to check that

G(x) = Ĝ(x) =
Liγ(xe−k/κ)
Liγ(e−k/κ)

(S59)

H(x) = Ĥ(x) =
Liγ−1(xe−k/κ)
xLiγ−1(e−k/κ)

. (S60)

In the κ → ∞ limit, one has

G(x) = G̃(x) =
Liγ(x)
ζ(γ)

(S61)

H(x) = H̃(x) =
Liγ−1(x)
xζ(γ − 1)

(S62)

with ζ(γ) =
∑∞

k=1 k−γ the Riemann Zeta function. Then one can show that as γ → 2, nD → 1,

which means one has to control almost all the nodes to achieve full control over the network. The

derivation follows. As γ → 2, H(x) = H̃(x) → 0 for 0 ≤ x < 1. Thus, w1 = H(ŵ2) → 0,

ŵ2 = 1 − H̃(1 − w1) → 1. Similarly ŵ1 → 0 and w2 → 1. So we have

nD =
1
2

{[
G(ŵ2) + G(1 − ŵ1) − 1

]
+

[
G̃(w2) + G̃(1 − w1) − 1

]
+

z

2
[
ŵ1(1 − w2) + w1(1 − ŵ2)

]}

→
[
G(1) + G(1) − 1

]
+

ζ(γ − 1)
ζ(γ)

· Liγ−1(w2)
w2ζ(γ − 1)

· (1 − w2)

→ 1 − 1
ζ(2)

· [(1 − w2) ln(1 − w2)]

→ 1 (S63)

where we have used the fact that Li1(x) = − ln(1 − x) and limx→0 x lnx = 0.

This analytical prediction is confirmed by numerical calculation. One solves the self-consistent

equation

w1 =
Liγ−1

(
1 − Liγ−1(1−w1)

(1−w1)ζ(γ−1)

)
[
1 − Liγ−1(1−w1)

(1−w1)ζ(γ−1)

]
ζ(γ − 1)

(S64)

for w1, and similar equation for ŵ1, then nD is can be calculated from Eq. S37. The result is shown

in Fig. S6a. For comparisons, the results for power-law digraphs with finite κ are also shown. It is

clearly seen that as κ → ∞ and γ → 2, nD → 1. This suggests that γ = 2 is a critical value for the

controllability of infinite pure scale-free networks. Only for γ > 2 can we have full controllability

by controlling only a subset of nodes.

We remark that, for γ → 2, super-hubs will emerge and connect to almost all nodes in the

network[40]. We know that for a star-like digraph with one central hub and N − 1 leaves, one

has to control ND = N − 1 nodes (the central hub and any N − 2 leaves). In the large N limit,

N − 1 ≈ N , which explains intuitively why we have to control almost all nodes when γ → 2.
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Figure S6: nD for power-law distributed digraphs with exponential degree cutoff. a, nD shows

non-monotonic behavior as γ increases at fixed finite κ. At γ = 2, nD → 1 as κ → ∞. Lines are analytical

results calculated with the cavity method using Eq. S57 and S58. Symbols are results calculated from finite

networks with size N = 105 and κ ≤ 103, constructed by the configuration model [39]: ’◦’ is the exact result

calculated from the maximum matching algorithm and ‘+‘ is the analytical result of the cavity method

using the exact degree sequence of the constructed network. b, nD as a function of κ at fixed γ. c, nD as

a function of degree heterogeneity H at fixed 〈k〉. Since 〈k〉 = 2Liγ−1(e
−1/κ)

Liγ(e−1/κ)
, to keep 〈k〉 fixed, one has to

vary κ and γ simultaneously.

5. Static model

An often used model to generate static (i.e. not growing) scale-free undirected networks with

γ > 2 is the so-called static model [38]. We start from N disconnected nodes indexed by integer

number i (i = 1, . . . N). We assign a weight or expected degree wi = c i−α to each node, with α a

real number in the range [0, 1) and c is a constant such that
∑N

i=1 wi = 2E = N〈k〉. Two different

nodes i and j are randomly selected from the set of N vertices, with probability proportional

to wi and wj , respectively. If they have not been connected, then connect them. Otherwise

randomly choose another pair. This process is repeated until E = mN links are created, resulting
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in 〈k〉 = 2m. Note that in case α = 0, this model is equivalent to the classical Erdős-Rényi random

graph model.

Many properties of the static model have been analytically derived [41, 42]. For example, in

the thermodynamic limit the degree distribution is given by P (k) = [m(1−α)]1/α

α
Γ(k−1/α,m[1−α])

Γ(k+1) with

Γ(s) the gamma function and Γ(s, x) the upper incomplete gamma function. In the large k limit,

P (k) ∼ k−(1+ 1
α

) = k−γ where γ = 1 + 1
α .

Note that this model can be easily generalized to construct directed networks with different γin

and γout. Here, we assume γin = γout = γ = 1 + 1
α . The generating functions are then given by

G(x) = G̃(x) =
1
α

E1+ 1
α
[(1 − x)m(1 − α)] (S65)

H(x) = H̃(x) =
1 − α

α
E 1

α
[(1 − x)m(1 − α)]. (S66)

Here En(x) :=
∫ ∞
1 dy e−xyy−n is the exponential integral. The asymptotic behavior of nD(〈k〉, γ)

for large 〈k〉 can be derived as follows. Consider the self-consistent equations of w1 and ŵ2:

w1 = H(ŵ2) =
1 − α

α
E 1

α
[(1 − ŵ2)m(1 − α)]

ŵ2 = 1 − H̃(1 − w1) = 1 − 1 − α

α
E 1

α
[w1m(1 − α)]. (S67)

We know that as m → ∞, w1 → 0, ŵ2 → 0 and [(1 − ŵ2)m(1 − α)] → ∞. Using the asymptotic

expansion of En(x) with x = (1− ŵ2)m(1−α), one can show that w1 ≈ e−m(1−α)

mα → 0 and similarly

G̃(w2) ≈ 1
α

e−m(1−α)

m(1−α) → 0. Notice that mw1(1 − α) ≈ 1−α
α e−m(1−α) → 0, so by using the series

expansion of En(x) with x = mw1(1 − α), we have G̃(1 − w1) ≈ 1.

Finally,

nD = G(ŵ2) + G̃(1 − w1) − 1 +
z

2
w1(1 − ŵ2) ≈

e−m(1−α)

α
∼ e

− 1
2
(1− 1

γ−1
)〈k〉

, (S68)

where we have used the fact that P (kin) and P (kout) share the same functional form. Notice that

in case γin �= γout, one can show that it is the minimum value min[γin, γout] that determines the

asymptotic behavior of nD.

Equation (S68) indicates that as γ → 2, α → 1, nD → 1, which is consistent with the result

that γc = 2 obtained from the pure SF network. The asymptotic behavior of nD at large 〈k〉 is

shown in Fig. S7a, b, by numerically solving the self-consistent equations.

We also compared the results calculated from finite networks constructed by the static model

with the analytical results obtained from infinite systems. We find that for γ > 3, they agree

well with each other. See Fig. S7c. However, for γ < 3, especially when γ → 2, significant
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finite size effect is observed. Moreover, even for the constructed finite network itself, the analytical

result calculated from the degree sequence only deviated from the exact result calculated from the

maximum matching. These deviations are rooted in the intrinsic degree correlations in the static

model when γ < 3 [41, 42]. This raises a natural question: How will the degree correlation affect

nD, i.e. the controllability of a network? This will be systematically explored in a future work.

6. Chung-Lu model

The built-in degree correlations in the static model can be eliminated by introducing structural

degree cutoff, i.e. kmax < (N〈k〉)
1
2 [43]. In fact, this is a standard procedure to generate un-

correlated simple graphs, i.e. graphs without multiple-edges and self-edges [44]. Here, we discuss

the results from the Chung-Lu model, which implicitly considers the degree cutoff and therefore

has no degree correlations [45]. Consider random graphs with a given expected degree sequence

w = (w1, · · · , wN ). The node i is assigned a weight or expected degree wi. The probability pij

that there is an edge between i and j is proportional to wiwj , i.e. pij = wiwjPN
k=1 wk

. We assume

maxi w2
i <

∑
k wk to ensure pij ≤ 1 for all i and j. Note that this condition is equivalent to

set kmax < (N〈k〉)
1
2 , i.e. a structural cutoff is implicitly introduced. A simple way to generate

uncorrelated scale-free networks with degree exponent γ = 1 + 1
α using Chung-Lu model is to

assign weight wi = c (i + i0 − 1)−α to node i with i = 1, · · · , N and c is a constant such that
∑N

i=1 wi = 2E = N〈k〉. The constant i0 is chosen to ensure that kmax ∼ ci−α
0 < (N〈k〉)

1
2 such that

the degree correlation is eliminated [46]. The construction of SF networks using the Chung-Lu

model is then quite similar to the static model, except the introduced constant i0. Note that for

γ > 3, one simplify chooses i0 = 1, then the two models are exactly the same.

The results of nD for ER and SF networks constructed by the Chung-Lu model are shown in

Fig. S8. We find excellent agreement between the exact nD calculated from the maximum matching

algorithm and the analytical nD calculated from the cavity method using the exact degree sequence

of the constructed network. Both agree with the analytical result calculated from the cavity method

using the expected degree sequence only without constructing the network.
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Figure S7: nD of the static model. a, nD in the thermodynamic limit. Those lines are analytical results

calculated by the cavity method using Eq. S37. Result for ER network is shown for comparison. b, In the

thermodynamic limit, scaling behavior of nD in the large 〈k〉 limit can be shown by plotting nD/(γ − 1)

vs. f(γ)〈k〉 with f(γ) = − 1
2 (1 − 1

1−γ ). For γ → 2, one needs large 〈k〉 to get the asymptotic behavior

as predicted. Only for large γ, the asymptotic behavior can be easily observed. c, nD decreases as 〈k〉

increases. Lines are analytical results for the infinite system. Symbols are results calculated from finite

networks with size N = 105, constructed by the static model : ’◦’ is the exact result calculated from the

maximum matching algorithm and ‘+‘ is the analytical result of the cavity method. Strong finite size effects

are seen as γ → 2. d, nD increases as γ decreases at fixed 〈k〉. Again, strong finite size effects are seen

as γ → 2. e, nD as a function of degree heterogeneity H for ER and SF networks with fixed γ values and

variable 〈k〉. f, nD as a function of degree heterogeneity H for ER and SF networks at fixed 〈k〉 values and

variable γ. As γ increases the curves converge to the ER result (black) at the corresponding 〈k〉 value.
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Figure S8: nD of the Chung-Lu model. a, nD as a function of 〈k〉 for ER and SF networks with different

γ values. Both ER and SF networks are generated from the Chung-Lu model with N = 105. Lines are

analytical results calculated by the cavity method using the expected degree sequence of the Chung-Lu

model at the given system size without constructing the network; symbols are results calculated from the

constructed network : ’◦’ is the exact result calculated from the maximum matching algorithm and ‘+‘ is

the analytical result of the cavity method using the exact degree sequence of the constructed network. b,

nD as a function of γ for SF networks at given 〈k〉. For infinite SF networks, as γ → γc = 2, nD → 1,

i.e. one has to control almost all nodes to fully control the network. For finite SF networks, nD reaches its

maximum as γ approaches 2 at given 〈k〉. c, nD as a function of degree heterogeneity H for ER and SF

networks with fixed γ values and variable 〈k〉. d, nD as a function of degree heterogeneity H for ER and

SF networks at fixed 〈k〉 values and variable γ. As γ increases the curves converge to the ER result (black)

at the corresponding 〈k〉 value.



SUPPLEMENTARY INFORMATION

3 2  |  W W W. N A T U R E . C O M / N A T U R E

RESEARCH
32

C. Entropy

To count the ground states (maximum matchings), we calculate the ground state entropy S0,

which gives the leading exponential behavior of the number of maximum matchings. Here, we again

follow the methodology developed in the study of maximum matchings in undirected graph [35].

It is a simple exercise to extend this methodology to the digraph case, as shown below.

The ground state entropy density s0 = S0/N can be computed by expanding the free energy

density at low temperatures f(β → ∞) = e0 − s0/β +O(1/β2) and studying the ’evanescent’ parts

of the cavity fields [35], i.e. the leading corrections to their value at β = ∞. Numerically, it has

been observed that at β � 1 the three delta peaks in P(h) keep their weights (w1, w2, w3) and

spread as

h = 1 +
log ν

β
for the peak around h = 1

h = −1 +
log µ

β
for the peak around h = −1

h =
log γ

β
for the peak around h = 0. (S69)

Similarly, the three delta peaks in P̂(ĥ) spread as

ĥ = 1 +
log ν̂

β
for the peak around ĥ = 1

ĥ = −1 +
log µ̂

β
for the peak around ĥ = −1

ĥ =
log γ̂

β
for the peak around ĥ = 0. (S70)

In the β → ∞ limit,

Pβ(h) =
∞∑

kout=1

Q(kout)
∫ kout−1∏

i=1

[
dĥiP̂β(ĥi; ν̂i, µ̂i, γ̂i)

bν,bµ,bγ]
δ

[
h +

1
β

log

(
e−β +

kout−1∑
i=1

eβbhi

)]

=
∞∑

kout=1

Q(kout) ·

∫ kout−1∏
i=1

[
dĥi

(
ŵ1δ(ĥi − 1 − log ν̂i

β
)

bν
+ ŵ2δ(ĥi + 1 − log µ̂i

β
)

bµ
+ ŵ3δ(ĥi −

log γ̂i

β
)

bγ)]

δ

[
h +

1
β

log

(
e−β +

kout−1∑
i=1

eβbhi

)]
(S71)
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and

P̂β(ĥ) =
∞∑

kin=1

Q̃(kin)
∫ kin−1∏

i=1

[
dhiPβ(hi; νi, µi, γi)

ν,µ,γ
]

δ

[
ĥ +

1
β

log

(
e−β +

kin−1∑
i=1

eβhi

)]

=
∞∑

kin=1

Q̃(kin) ·

∫ kin−1∏
i=1

[
dhi

(
w1δ(hi − 1 − log νi

β
)
ν

+ w2δ(hi + 1 − log µi

β
)
µ

+ w3δ(hi −
log γi

β
)
γ
)]

δ

[
ĥ +

1
β

log

(
e−β +

kin−1∑
i=1

eβhi

)]
. (S72)

This is called the entropic zero-temperature limit. Note that hereafter, the overline and supscripts

denote expectations over independent random variables with distribution A1 (for ν-variables),

A2 (for µ-variables), A3 (for γ-variables); and Â1 (for ν̂-variables), Â2 (for µ̂-variables), Â3 (for

γ̂-variables). If confusions cannot occur, subscripts will be neglected.

From the above self-consistent equations of P(h) and P̂(ĥ), we get the self-consistent equations

satisfied by A1(ν), A2(µ), A3(γ) and Â1(ν̂), Â2(µ̂), Â3(γ̂).

A1(ν) =
∞∑

kout=0

C1(kout)
∫ kout∏

i=1

[dµ̂iÂ2(µ̂i)] δ

(
ν − 1

1 +
∑kout

i=1 µ̂i

)
(S73)

A2(µ) =
∞∑

kout=1

C2(kout)
∫ kout∏

i=1

[dν̂iÂ1(ν̂i)] δ

(
µ − 1∑kout

i=1 ν̂i

)
(S74)

A3(γ) =
∞∑

kout=1

C3(kout)
∫ kout∏

i=1

[dγ̂iÂ3(γ̂i)] δ

(
γ − 1∑kout

i=1 γ̂i

)
(S75)

with

C1(kout) =
1
w1

· ŵkout
2 Q(kout + 1) (S76)

C2(kout) =
1
w2

·
∞∑

m=kout

(
m

kout

)
ŵkout

1 (ŵ2 + ŵ3)m−koutQ(m + 1) (S77)

C3(kout) =
1
w3

·
∞∑

m=kout

(
m

kout

)
ŵkout

3 ŵm−kout
2 Q(m + 1) (S78)
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and

Â1(ν̂) =
∞∑

kin=0

Ĉ1(kin)
∫ kin∏

i=1

[dµiA2(µi)] δ

(
ν̂ − 1

1 +
∑kin

i=1 µi

)
(S79)

Â2(µ̂) =
∞∑

kin=1

Ĉ2(kin)
∫ kin∏

i=1

[dνiA1(νi)] δ

(
µ̂ − 1∑kin

i=1 νi

)
(S80)

Â3(γ̂) =
∞∑

kin=1

Ĉ3(kin)
∫ kin∏

i=1

[dγiA3(γi)] δ

(
γ̂ − 1∑kin

i=1 γi

)
(S81)

with

Ĉ1(kin) =
1
ŵ1

· wkin
2 Q̃(kin + 1) (S82)

Ĉ2(kin) =
1
ŵ2

·
∞∑

m=kin

(
m

kin

)
wkin

1 (w2 + w3)m−kinQ̃(m + 1) (S83)

Ĉ3(kin) =
1
ŵ3

·
∞∑

m=kin

(
m

kin

)
wkin

3 wm−kin
2 Q̃(m + 1). (S84)

Using the above equations we can expand the free energy to order 1/β and get the ground state

entropy density of maximum matchings. (As a byproduct, the ground state energy is also obtained,

which should be equal to the result obtained from the calculation in the energetic zero-temperature

limit.)

f(β) =
FG(β)

N

= − 1
β

∞∑
kout=0

P (kout)
∫ kout∏

i=1

[dĥiP̂β(ĥi)] log

(
e−β +

kout∑
i=1

eβbhi

)

− 1
β

∞∑
kin=0

P̃ (kin)
∫ kin∏

i=1

[dhiPβ(hi)] log

(
e−β +

kin∑
i=1

eβhi

)

+
z

2β

∫
[dhdĥPβ(h)P̂β(ĥ)] log

(
1 + eβ(h+bh)

)

≡ [1] + [2] + [3]. (S85)

In the β → ∞ limit, one has

Pβ(h) = w1δ(h − 1 − log ν

β
)
ν

+ w2δ(h + 1 − log µ

β
)
µ

+ w3δ(h − log γ

β
)
γ

(S86)

P̂β(ĥ) = ŵ1δ(ĥ − 1 − log ν̂

β
)

bν
+ ŵ2δ(ĥ + 1 − log µ̂

β
)

bµ
+ ŵ3δ(ĥ − log γ̂

β
)

bγ
. (S87)
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Consider the first term in the free energy density, one has

[1] = − 1
β

∞∑
kout=0

P (kout)
∫ kout∏

i=1

[dĥiP̂β(ĥi)] log

(
e−β +

kout∑
i=1

eβbhi

)

= −1 + G(ŵ2 + ŵ3) + G(ŵ2)

− 1
β




∞∑
kout=1

∞∑
m=kout

(
m

kout

)
ŵkout

1 (1 − ŵ1)m−kout P (m) · log
kout∑
i=1

ν̂i

+
∞∑

kout=0

P (kout) ŵkout
2 · log(1 +

kout∑
i=1

µ̂i)

+
∞∑

kout=1

∞∑
m=kout

(
m

kout

)
ŵkout

3 ŵm−kout
2 P (m) · log

kout∑
i=1

γ̂i


 . (S88)

Similarly, for the second term, one has

[2] = − 1
β

∞∑
kin=0

P̃ (kin)
∫ kin∏

i=1

[dhiPβ(hi)] log

(
e−β +

kin∑
i=1

eβhi

)

= −1 + G̃(w2 + w3) + G̃(w2)

− 1
β




∞∑
kin=1

∞∑
m=kin

(
m

kin

)
wkin

1 (1 − w1)m−kin P̃ (m) · log
kin∑
i=1

νi

+
∞∑

kin=0

P̃ (kin) wkin
2 · log(1 +

kin∑
i=1

µi)

+
∞∑

kin=1

∞∑
m=kin

(
m

kin

)
wkin

3 wm−kin
2 P̃ (m) · log

kin∑
i=1

γi


 . (S89)

For the third term, one has

[3] =
z

2β

∫
[dhdĥPβ(h)P̂β(ĥ)] log

(
1 + eβ(h+bh)

)

= zŵ1w1 +
z

2
(ŵ1w3 + w1ŵ3)

− 1
β

{
− z

2
ŵ1(w1 + w3) log ν̂ − z

2
(ŵ1 + ŵ3)w1 log ν

−z

2
ŵ1w2 log (1 + ν̂µ) − z

2
w1ŵ2 log (1 + µ̂ν)

−z

2
ŵ1w3 log γ − z

2
w1ŵ3 log γ̂ − z

2
w3ŵ3 log (1 + γ̂γ)

}
. (S90)

Since

f(β → ∞) = e0 −
s0

β
+ O(1/β2), (S91)
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from Eq. S88, S89, and S90, one recognizes that the ground state energy density

e0 = [−1 + G(ŵ2 + ŵ3)] + G(ŵ2)] + [−1 + G̃(w2 + w3) + G̃(w2)] +
z

2
[ŵ1(1 − w2) + w1(1 − ŵ2)]

= [G(ŵ2) + G(1 − ŵ1) − 1] + [G̃(w2) + G̃(1 − w1) − 1] +
z

2
[ŵ1(1 − w2) + w1(1 − ŵ2)] (S92)

and the ground state entropy density

s0 =




∞∑
kout=1

∞∑
m=kout

(
m

kout

)
ŵkout

1 (1 − ŵ1)m−kout P (m) · log
kout∑
i=1

ν̂i

+
∞∑

kout=0

P (kout) ŵkout
2 · log(1 +

kout∑
i=1

µ̂i)

+
∞∑

kout=1

∞∑
m=kout

(
m

kout

)
ŵkout

3 ŵm−kout
2 P (m) · log

kout∑
i=1

γ̂i




+




∞∑
kin=1

∞∑
m=kin

(
m

kin

)
wkin

1 (1 − w1)m−kin P̃ (m) · log
kin∑
i=1

νi

+
∞∑

kin=0

P̃ (kin)wkin
2 · log(1 +

kin∑
i=1

µi)

+
∞∑

kin=1

∞∑
m=kin

(
m

kin

)
wkin

3 wm−kin
2 P̃ (m) · log

kin∑
i=1

γi




+

[
− z

2
ŵ1(w1 + w3) log ν̂ − z

2
(ŵ1 + ŵ3)w1 log ν

−z

2
ŵ1w2 log (1 + ν̂µ) − z

2
w1ŵ2 log (1 + µ̂ν)

−z

2
ŵ1w3 log γ − z

2
w1ŵ3 log γ̂ − z

2
w3ŵ3 log (1 + γ̂γ)

]
. (S93)

Note that e0 is exact what we obtained from the direct calculation of e0 in the energetic zero-

temperature limit, i.e. Eq. S36.

Fig. S9 shows the ground state entropy density s0 for various model networks. Similar to

the undirected case [35], we find that s0 is not monotonic with 〈k〉 (Fig. S9a, c): it develops a

nontrivial local minimum around 〈k〉 ∼ 〈k〉c for both ER and SF networks. This complex behavior

results from the competition between entropy contributions of two topologically distinct regions

of a network, the core and leaves[35]. The core represents a compact cluster of nodes left in the

network after applying a greedy leaf removal procedure[47]. While leaves are nodes with kin = 1

or kout = 1 before or during the greedy leaf removal. The core emerges through a percolation

process (Fig. S9b, d): for k < 〈k〉c, ncore = Ncore/N = 0, so only the leaves contribute to s0, their
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Figure S9: Entropy density of maximum matchings and the core percolation of random net-

works. (a,b) Erdős-Rényi (ER). (c,d) ER and scale-free (SF). (a) The entropy density of maximum match-

ings (dashed line) has two contributions due to leaves (green line) and the core (red line): s = sleaves + score.

(b) For ER, the core percolation occurs at k = 〈k〉c = 2e, which explains the entropy valley developed

around 〈k〉c. (c,d) For SF random networks with smaller γ, the core percolation is shifted to higher 〈k〉c
value. Both the ER and SF networks are generated from the Chung-Lu model [45] with N = 104.

contribution reaching a maximum value at some 〈k〉 < 〈k〉c. As 〈k〉 increases beyond 〈k〉c, the core

emerges and the number of leaves decreases. For ER network, 〈k〉c = 2 e ≈ 5.436564 (see Fig. S9b).

For SF networks the overall behavior remains unchanged, s0 also develops a significant valley but

〈k〉c decreases with γ (see Fig. S9d).

V. CONTROL ROBUSTNESS

In the main text, we classify each link into three different types according to its role in main-

taining controllability: (1) critical if in its absence we need to increase the number of driver nodes

to maintain full control of the system; (2) redundant if it can be removed without affecting the

current set of driver nodes; (3) ordinary if it is neither critical nor redundant, i.e., its removal can

eliminate some control configurations, but the network can still be controllable in its absence with
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the same number of driver nodes ND. Note that, in engineered systems, this classification implies

that in order to make controllability more robust, one can simply double (or triple) each critical

link, formally making each of these links redundant and therefore ensuring there is no critical link

in the controlled system.

Now, we show that nodes can be classified similarly. Given a network, denote the minimum

number of driver nodes as ND. After a node is removed, denote the minimum number of driver

nodes as N ′
D. Then we classify each node into one of the following three categories: (1) A node is

critical if in its absence we have to control more driver nodes, i.e. N ′
D > ND. For example, remove

one node in the middle of a directed path will cause ND increase. (2) A node is redundant if in its

absence we have N ′
D < ND. For example, remove one leaf node in a star will decrease ND by 1.

(3) A node is ordinary if in its absence we have N ′
D = ND. For example, remove the central hub

in a star will not change ND at all.

Denote the density of critical, redundant, and ordinary nodes as nc = Nc/N , nr = Nr/N , and

no = No/N , respectively. In Fig. S10 we show nc, nr, and no for all the studied real networks. For

comparison, the result on link-category is also shown. In general, most networks have few or no

critical nodes and considerable number of redundant nodes, suggesting that networks are relatively

stable against node failure.

The 〈k〉 dependent nc, nr and no for ER and SF networks are shown in Fig. S11b, e, respectively.

The overall trend looks similar to that of lc, lr and lo (Fig. S11a, d). And it is also related to the

core percolation (Fig. S11c, f). Surprisingly, for ER networks we find that lr ≈ nc and lc ≈ nr for

any 〈k〉. For SF networks, this does not hold.

VI. NETWORK DATASETS

All the real-world networks analyzed in the paper are listed and briefly described in Table S1.
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Figure S10: Link- and node-categories for real networks listed in Table 1 of the main text.
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Figure S11: 〈k〉 dependent link- and node-categories and core percolation of random networks.

(a,b,c) Erdős-Rényi (ER). (d,e,f) ER and scale-free (SF). (a) The fractions of critical, redundant and ordinary

links (lc, lr and lo). (b) The fractions of critical, redundant and ordinary nodes (nc, nr and no). (c) For ER,

the core percolation occurs at k = 〈k〉c = 2e. (d, e, f) For SF random networks with smaller γ, the core

percolation is shifted to higher 〈k〉c value. Both the ER and SF networks are generated from the Chung-Lu

model [45] with N = 104.



W W W. N A T U R E . C O M / N A T U R E  |  4 1

SUPPLEMENTARY INFORMATION RESEARCH
41

TABLE SI: Real networks analyzed in the paper. For each network, we show its type, name and

reference; number of nodes (N) and edges (L); and brief description.

name N L description

Regulatory TRN-Yeast-1 [48] 4,441 12,873 Transcriptional regulatory network of S. cerevisiae

TRN-Yeast-2 [49] 688 1,079 Same as above (compiled by different group).

TRN-EC-1 [50] 1,550 3,340 Transcriptional regulatory network of E. coli

TRN-EC-2 [49] 418 519 Same as above (compiled by different group).

Ownership-USCorp [51] 7,253 6,726 Ownership network of US corporations.

Trust college student [52, 53] 32 96 Social networks of positive sentiment (college students).

prison inmate [52, 53] 67 182 Same as above (prison inmates).

Slashdot [54] 82,168 948,464 Social network (friend/foe) of Slashdot users.

WikiVote [54] 7,115 103,689 Who-vote-whom network of Wikipedia users.

Epinions [55] 75,888 508,837 Who-trust-whom network of Epinions.com users.

Food Web Ythan [56] 135 601 Food Web in Ythan Estuary.

Little Rock [57] 183 2,494 Food Web in Little Rock lake.

Grassland [56] 88 137 Food Web in Grassland.

Seagrass [58] 49 226 Food Web in St. Marks Seagrass.

Power Grid TexasPowerGrid [59] 4,889 5,855 Power grid in Texas.

Metabolic E. coli [60] 2,275 5,763 Metabolic network of E. coli.

S. cerevisiae [60] 1,511 3,833 Metabolic network of S. cerevisiae.

C. elegans [60] 1,173 2,864 Metabolic network of C. elegans.

Electronic s838 [49] 512 819 Electronic sequential logic circuit.

Circuits s420 [49] 252 399 Same as above.

s208 [49] 122 189 Same as above.

Neuronal C. elegans [61] 297 2,345 Neural network of C. elegans.

Citation ArXiv-HepTh [62] 27,770 352,807 Citation networks in HEP-TH category of Arxiv.

ArXiv-HepPh [62] 34,546 421,578 Citation networks in HEP-PH category of Arxiv.

WWW nd.edu [63] 325,729 1,497,134 WWW from nd.edu domain.

stanford.edu [54] 281,903 2,312,497 WWW from stanford.edu domain.

Political blogs [64] 1,224 19,025 Hyperlinks between weblogs on US politics.

Internet p2p-1 [65] 10,876 39,994 Gnutella peer-to-peer file sharing network.

p2p-2 [65] 8,846 31,839 Same as above (at different time).

p2p-3 [65] 8,717 31,525 Same as above (at different time).

Social UCIonline [66] 1,899 20,296 Online message network of students at UC, Irvine.

Communication Email-epoch [67] 3,188 39,256 Email network in a university.

Cellphone [68] 36,595 91,826 Call network of cell phone users.

Intra- Freemans-2 [69] 34 830 Social network of network researchers.

organizational Freemans-1 [69] 34 695 Same as above (at different time).

Manufacturing [70] 77 2,228 Social network from a manufacturing company.

Consulting [70] 46 879 Social network from a consulting company.
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