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a b s t r a c t

The study on collective circular motion has attracted researchers over the past years. Many control
algorithms have been successfully developed for achieving various circular motion patterns. However,
the existing algorithms rely on more or less global information including a reference beacon, a common
reference frame, agent labels, or agent homogeneity. In this paper, an improved algorithm is proposed
for a group of heterogeneous agents, not relying on any of the aforementioned global information. The
algorithm is supported by analytical analysis and verified in both simulation and experiments.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Collective behaviors are often encountered in natural, social
and engineering systems. The particularly interesting collective
behavior studied in this paper is that, individuals perpetually rotate
around a real or virtual center, which is called collective circular
motion or torus. It can find many examples in various natural
systems like foraging ants around a piece of rice, a swirlingly
growing epiphyte colony, and panic escaping fish school around
a predator (Couzin, Krause, James, Ruxton, & Franks, 2002; Vicsek,
2008). From the engineering point of view, due to the high cost
and low flexibility to maintain a centralized controller, a collective
controller should be decentralized and independent of global
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information. For instance,we expect to propose a control algorithm
which does not rely on a common reference frame, a reference
beacon, a group leader, agent labels, or agent homogeneity.
However, tracing back into the literature, we find it is actually
a challenging task to construct such an algorithm free of any
global information. For example, one of the earliest contributions
was given in Leonard and Friorelli (2001), where circular motions
are obtained with a virtual reference beacon. Following this line,
more control algorithms were developed to gain collective stable
circular motions with allowable equilibrium configurations (Justh
&Krishnaprasad, 2004; Paley, Leonard, & Sepulchre, 2004). Circular
motions were also studied in the scenario of cyclic pursuit in
Jeanne, Leonard, and Paley (2005), Marshall, Broucke, and Francis
(2004), Pavone and Frazzoli (2007) and Chen and Iwasaki (2008)
etc., where no virtual reference beacon is required. In particular, a
group of mobile agents was studied in Pavone and Frazzoli (2007)
where each agent pursues the leading neighbor along the line of
sight rotated by a common offset angle, resulting in a circular
motion. The cyclic pursuit formation is based on a fixed network
topology, especially, represented by a circulant matrix. The result
was extended in Ren (2009) by introducing amore general rotation
matrix for double integrator dynamics. Along this research line,
the latest work is referred to in Lin and Jia (2010) and Lin, Qin, Li,
and Ren (2011) where control protocols were proposed to make
all agents surround a common point with a desired formation
structure, in 2D and 3D spaces, respectively. A technical feature in
the Refs. (Li, Liu, Ren, & Xie, 2013; Lin & Jia, 2010; Lin et al., 2011;
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Pavone & Frazzoli, 2007; Ren, 2009) is the analysis of the Laplacian
corresponding to a fixed network topology, which requires the
individuals to be labeled. Recently, there was some work on time
varying communication graphs. For instance, a framework on
stabilization of planar collectivemotionwas provided in Sepulchre,
Paley, and Leonard (2008) which includes circular formations. But
the work was based on identical steered particles moving in a
plane with a uniform constant speed. Another control method was
studied in Ceccarelli, Di Marco, Garulli, and Giannitrapani (2008)
which guarantees the global asymptotical stability of the circular
motion. In such a configuration, however, a leader exists who
always knows the position of the reference beacon. More recently,
we proposed a leader-free no-beacon algorithm for generating a
collective circular motion behavior in Chen and Zhang (2011), and
showed that, a stable torus phenomena emerges under a certain
uniformly jointly connected condition. The condition was further
studied in Chen and Zhang (2012). In this sense, the generality of
collective circulation control has been substantially improved.

However, the aforementioned torus control algorithms, includ-
ing our previous work (Chen & Zhang, 2011), are still not com-
pletely decentralized, relying on more or less global information.
It motivates the research of this paper, which follows the research
line set in Chen and Zhang (2011). In particular, it is required in
Chen and Zhang (2011) that, each agent has a same rotational ra-
dius and an identical reference frame (e.g., the earth). Therefore,
we aim to propose an improved controller to further remove these
requirements. This improvement may generalize the potential ap-
plications of the collective circularmotion controller. Themain fea-
tures of the improved controller include: (i) each agent does not
require the motion radii of its neighbors; (ii) each agent makes its
motion decision solely based on the relative distances and the rel-
ative moving directions with respect to its neighbors. As a result,
this work is expected to help reveal the interactive mechanism be-
hind more natural collective circular motion behaviors and to be
more practical in engineering applications.

2. Problem formulation and preliminaries

Consider a group of n ≥ 2 nonholonomic agents moving in
a planar space, each of which has the velocity of v⃗i ∈ R2. Let
v⃗i := vi[cos θi, sin θi]

T and vi = ∥v⃗i∥ where vi and θi are the
velocity magnitude and direction, respectively. Let pi := [xi, yi]T
be the agent’s Cartesian coordinate in a fixed reference frame Σ .
Then, we have the following dynamics for each individual agent:

ẋi = vi cos θi, ẏi = vi sin θi, θ̇i = ωi,

i ∈ N := {1, 2, . . . , n}, (1)

where ωi is the rotational speed. In Chen and Zhang (2011), the
n agents are assumed homogeneous in the sense that they, when
isolated, share the same linear and rotational speeds, i.e.,

vi = vo, ωi = ωo, i ∈ N

and hence the same circular motion radius r = vo/ωo. The
common radius is the global information for all agents. In this
paper, we will further consider the case where the agents are
heterogeneous and they do not share any global information. More
specifically, we assume an isolated agent has linear and rotational
speeds

vi = voi, ωi = ωoi, i ∈ N

for some constant voi and ωoi, and hence a circular motion radius
ri = voi/ωoi. We assume ωoi’s have a finite resolution, therefore,
there exists a constant ωo such that ωoi = ℓiωo for different
integers ℓi’s.

For notational convenience we define

pij := pi − pj, i.e., xij := xi − xj, yij := yi − yj
as the relative position between two agents. For each individual
agent, we define its neighborhood with a radius ρ. More precisely,
for a complete position distribution p = col(p1, . . . , pn), the i-th
agent has a neighborhood

Ni(p) := {j ∈ N | ∥pij∥ < ρ}.

This neighborhood reflects the distance limit of communication
between two agents. Let r = maxi∈N ri and assume ρ > 2r .We cite
the definition of collective circular motion from Chen and Zhang
(2011) with a slight modification to accommodate heterogeneous
agents as follows.

Definition 2.1. A trajectory p(t) of the group of agents (1) is called
a collective circular motion if there exist Ti > 0, ri > 0, and
qo = [ξo, ζo]

T, such that,

pi(t + Ti) = pi(t), pi(t) − qo = ri[cosφi(t), sinφi(t)]T,
φ̇i(t) ≥ 0, i ∈ N, ∀t ≥ 0.

Clearly, in a collective circular motion, all agents move in circles
around qo with different radii ri’s. Without loss of generality, a
counter-clockwise motion is considered here by assuming φ̇i(t) ≥

0. The main feature of the controller proposed in this paper,
compared with the existing one in Chen and Zhang (2011), is
twofold. On one hand, the individual rotation information ri of the
agent i is unavailable for any other agent. On the other hand, the
fixed reference frame Σ is unavailable for any agent. In fact, the
agent i has its own reference frame Σi which is Σ rotated by an
angle ϕi (see Fig. 1). It is noted that, Σi is not attached to the agent
i but a constant reference frame seen by the agent i only. Therefore,
the agent i can measure the following states:

(i) ri and ωi: its own rotational radius and speed;
(ii) ϑi := θi − ϕi: its own moving direction with respect to its

reference frame Σi (the absolute angle θi is not assumedmea-
surable; for instance, the agent may take the initial direction
as 0, i.e., ϑi(0) = 0 or ϕi = θi(0), then, ϑi(t) can be calculated
as ϑi(t) =

 t
0 ωi(t)dt);

(iii) θij := θi − θj: the relative moving direction between the agent
i and its neighbor agent j;

(iv) ℘ij := Ripij: the relative position between the agent i and its
neighbor agent j with respect to the reference frame Σi for
Ri :=


cosϕi sinϕi

− sinϕi cosϕi


.

Remark 2.1. A simple calculation shows that

℘ij = Ripij = ∥pij∥Ri[cos ̸ pij, sin ̸ pij]T

= ∥pij∥[cos(̸ pij − ϕi), sin(̸ pij − ϕi)]
T

where ̸ pij represents the angle of pij in the reference frame Σ .
In other words, to measure ℘ij in (iv) is equivalent to measure
the distance ∥pij∥ and the angle of pij in the reference frame Σi,
i.e., ̸ pij − ϕi. �

In the existing work (Chen & Zhang, 2011), ri = r is a kind of global
information to all agents, and the absolute values θi and θj aremea-
surable by assuming Σi = Σ is another kind of global information
(or by assuming ϕi = 0). However, no global information is as-
sumed in this paper. The main objective of this paper is to find a
control algorithm for each individual agent in (1) using the feed-
back from its neighbors, say,

vi =


j∈Ni(p)

κ(ri, ωi, ϑi, θij, ℘ij), i ∈ N (2)

for some function κ , such that the trajectory p(t) of the closed-loop
system converges to a collective circular motion p̆(t), i.e.,

lim
t→∞

(p(t) − p̆(t)) = 0. (3)
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It is worth emphasizing that, in the present scenario, the network
communication topology always varies over time as every agent
determines its neighbors based on the time varying relative dis-
tances. Also, the proposed algorithm focuses on speed control for
v rather than steering control for ω to achieve a collective circu-
lar motion (the rotational speed controller ωi = ωoi is simply used
here). In fact, a proper steering controller forω can be further incor-
porated for phase distribution (i.e., how the agents are distributed
along the circles once a collective circular motion is formed) as
studied in Chen and Zhang (2011) for homogeneous agents.

Next, we define a class of dynamics whose trajectories may
converge to a collective circular motion. For convenience, we
introduce a coordinate transformation, with q = col(q1, . . . , qn),

Φ : (p, θ) → (q, θ) =


ξi := xi − ri sin θi
ζi = yi + ri cos θi,

qi := [ξi, ζi]
T, i ∈ N,

and a class S function

S(x) =


f : [0, ∞) → [0, a] | f is Lipschitz continuous and

f (τ ) =


0, τ ≥ x
> 0, τ < x, 0 < a < ∞


.

Throughout the paper, we call the dynamics

q̇ = −f (q, θ) (4)

collective circular motion dynamics if

f (q, θ) := col(f1(q, θ), . . . , fn(q, θ)),

fi(q, θ) =


j∈N,j≠i

α(∥pij∥)qij/4, qij := qi − qj (5)

under the coordinate transformationΦ and the function α belongs
to the class S, i.e., α ∈ S(ρ).

Obviously, under the coordinate transformation Φ , the coordi-
nate qi represents the circular motion center of the agent pi. So, the
collective circular motion problem for pi reduces to a consensus
problem for qi. The dynamics (4) are called collective circular mo-
tion dynamics because they govern trajectories which converge to
a collective circular motion. This claim is supported by the follow-
ing proposition. The special casewith homogeneous agents (ri = r)
was studied in Chen and Zhang (2011), which can be easily ex-
tended to the following general case by using the same proof with
a slight modification.

Proposition 2.1. Consider the collective circular motion dynam-
ics (4), i.e., q̇ = −f (q, θ). Suppose there exists an infinite time se-
quence t1 < t2 < t3 < · · ·, such that, for any [ti, ti+1), i = 1, 2, . . . ,
the trajectory p(t) of (4)with the proximity net G(p) (under (p, θ) =

Φ−1(q, θ)) is jointly-connected with a uniformly bounded joint con-
nectivity intensity. Then, there exists a collective circular motion p̆(t),
such that p(t) asymptotically converges to p̆(t), i.e., limt→∞(p(t) −

p̆(t)) = 0. �

Now, an interesting design objective is to find the controller (2)
such that the closed-loop system is governed by the collective
circular motion dynamics (4). However, this objective is usually
too strong to ask for. In fact, the closed-loop system of the form
(4) implies

q̇i = −fi(q, θ) = −


j∈N,j≠i

α(∥pij∥)qij/4,

and hence

ṗi = −


j∈N,j≠i

α(∥pij∥)qij/4 + riωi


cos θi
sin θi


= vi


cos θi
sin θi


.

Fig. 1. The main control algorithm for an agent. The controller component µij for
the agent i is designed along the direction qji (qji = qj − qi , represented by the
dotted arrow line from qi to qj) when qj is available in Chen and Zhang (2011) and
along the direction lji when qj is unavailable in the present scenario. Similarly, the
controller component µji for the agent j is designed along the direction lij when qi
is unavailable in the present scenario.

But it is usually impossible to design vi to make the vector
[cos θi, sin θi]

T be parallel to the weighted summation of the
vectors qij to satisfy the above equation. This impossibility is caused
by the fact that the agent’s dynamics are nonholonomic (vi is a
scalar). So we must turn to a more practical solution, that is, to
find the controller (2) such that the closed-loop system is governed
by approximate collective circular motion dynamics in a certain
sense, which are rigorously described as follows. Let q̇ = −f (q, θ)
be collective circular motion dynamics. Then, the dynamics q̇ =

−F (q, θ) are called approximate collective circularmotion dynamics
if the trajectory q(t) satisfies

q̄(t) − q(t) = O(1/ωo), (6)

˙̄q(t) = −f (q̄(t), θ) + O(1/ωo) (7)

for a signal q̄(t), where O(1/ωo) represents the first order of
smallness as 1/ωo → 0. Recall that ωo is defined by ωoi = ℓiωo
for different integers ℓ1, . . . , ℓn.

In the above definition, if the smallness O(1/ωo) is ignored, the
dynamics q̇ = −F (q, θ) governing q(t) reduce to q̇ = −f (q, θ).
The approximation is defined in this sense. As a result, we expect
the trajectories of q̇ = −F (q, θ) to be approximated by those of
q̇ = −f (q, θ). In what follows, we will focus on the controller syn-
thesis problem as defined below. Also, numerical simulation will
run on the original system q̇ = −F (q, θ) to illustrate the effec-
tiveness of the approximation.

Controller synthesis problem: For the system (1), design the
controller (2) such that the closed-loop system is governed by
approximate collective circular motion dynamics.

3. Main results

Aswehave discussed in the previous section, themain objective
of this paper is to design a decentralized speed controller such
that the closed-loop system is governed by approximate collective
circular motion dynamics. More specifically, we aim to design the
forward motion speed vi to achieve a special closed-loop system
q̇ = −F (q, θ) whose trajectories satisfy the conditions (6) and
(7). The problem has been solved in Chen and Zhang (2011) for the
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special case with ri = r and Σi = Σ . Here we will deal with the
general case.

Let [ẋdi ẏdi]T be the desired velocity of the agent, then we
have vi = [cos θi sin θi][ẋdi ẏdi]T. Hence, we have the geometric
constraint [ẋdi ẏdi]T = [cos θi sin θi]

Triωi + µi where µi is the
desired velocity of the agent’s circular center. This motivates a
controller in the following form:

vi = riωi + [cos θi sin θi]µi, ri = voi/ωoi.

The desired motion of the agent’s circular center is µi =
j∈N,j≠i µij with µij being the influence caused the agent j in the

neighborhood. When ri = r, i ∈ N, the control µij was designed in
Chen and Zhang (2011) as follows

µij = α(∥pij∥)qji = −α(∥pij∥)

xij − r(sin θi − sin θj)
yij + r(cos θi − cos θj)


.

Geometrically speaking, the agent i first finds the circular motion
center of the agent j andmakes its ownmotion centermove toward
that of the agent j (i.e., along the direction qji represented by the
dotted arrow line from qi to qj in Fig. 1). However, this scheme is
not valid when r is not a common information. In particular, the
agent i does not know the motion radius rj or the center qj of the
agent j.

Therefore, a novel idea is inspired to drive the motion center
along lji instead of qji for the agent i, i.e.,

µij = α(∥pij∥)lji.

Here lji is the projection of qi on the normal axis of the agent j
(see Fig. 1). In particular, lji can be calculated as follows. The vector
(pj − qi)’s projection on [cos θj, sin θj]

T has the magnitude |lji| =

[cos θj, sin θj](pj − qi), therefore, lji = [cos θj, sin θj]
T
|lji|, that is,

lji = −k(θj)

xij − ri sin θi
yij + ri cos θi


/2,

k(θj) := 2


cos2 θj cos θj sin θj
sin θj cos θj sin2 θj


.

A technical lemma about the property of the function k is given
below.

Lemma 3.1. Assume θi(t), θj(t) ∈ R satisfy θ̇i = ℓiωo and θ̇j = ℓjωo
for two positive integers ℓi and ℓj (ℓi ≠ ℓj). Then,

(1/T )

 t+T

t
k(θi(τ ))k(θj(τ ))dτ = I, T := 2π/ωo. � (8)

Proof. Denote a matrix

A :=


A11 A12
A21 A22


= (1/T )

 t+T

t
k(θi(τ ))k(θj(τ ))dτ .

It suffices to show A = I . We note that, θi(τ ) = ℓiωoτ + ci
and θj(τ ) = ℓjωoτ + cj for two constants ci and cj. Now, a direct
calculation shows

A11 =
4
T

 t+T

t
[cos2 θi cos2 θj + cos θi sin θi sin θj cos θj]dτ

= 1

where we ignore the augment (τ ) for θi and θj to save notations.
Similarly, we have A12 = 0, A21 = 0 and A22 = 1. The proof is thus
complete. �

In particular, one can see that, the agent j’s radius rj is not
necessary in the calculation of lji. But the self motion radius ri is
obviously available for the agent i. Moreover, we have

µij = −α(∥pij∥)k(θj)

xij − ri sin θi
yij + ri cos θi


/2

= −α(∥pij∥)k(θj)

ξij − rj sin θj
ζij + rj cos θj


/2

= −α(∥pij∥)k(θj)qij/2

by noting k(θj)[− sin θj, cos θj]
T

= 0.
In summary, we have developed the following controller:

vi = riωi − [cos θi sin θi]

×


j∈N,j≠i

α(∥pij∥)k(θj)

xij − ri sin θi
yij + ri cos θi


/2 (9)

or

vi = riωi − [cos θi sin θi]R−1
i

×


j∈N,j≠i

α(∥pij∥)Ri[cos θj sin θj]
T
[cos θj sin θj]

× R−1
i Ri(pij + ri[− sin θi, cos θi]

T).

We note the following facts:

∥pij∥ = ∥℘ij∥, [cos θi sin θi]R−1
i = [cosϑi sinϑi],

Ri[− sin θi, cos θi]
T

= [− sinϑi, cosϑi]
T,

Ri[cos θj sin θj]
T
[cos θj sin θj]R−1

i

= [cos(θj − ϕi) sin(θj − ϕi)]
T
[cos(θj − ϕi) sin(θj − ϕi)]

= k(ϑi − θij).

As a result, the controller (9) can be rewritten as

vi = riωi − [cosϑi sinϑi]


j∈N,j≠i

α(∥℘ij∥)

× k(ϑi − θij)(℘ij + ri[− sinϑi, cosϑi]
T)/2. (10)

Obviously, the controller (10) is of the form (2). From the
above development, an interesting property of this controller is
summarized as follows.

Theorem 3.1. Consider the multi-agent system (1) under the decen-
tralized controller (10) of the form (2). The closed-loop system is in-
dependent of the agents’ individual reference frames, i.e., ϕ′

i s. �

Proof. The proof easily follows the explicit controller develop-
ment. In particular, with this controller (10), the closed-loop sys-
tem becomes

q̇i = [cos θi sin θi]
T(vi − riωi)

= [cos θi sin θi]
T
[cos θi sin θi]µi,

and hence

q̇i = −


j∈N,j≠i

k(θi)k(θj)α(∥pij∥)qij/4.

The system can be put in a compact form

q̇ = −F (q, θ) (11)

with

F (q, θ) = col(F1(q, θ), . . . , Fn(q, θ)), Fi(q, θ)

=


j∈N,j≠i

k(θi)k(θj)α(∥pij∥)qij/4.

The closed-loop system (11) is obviously independent of ϕ′

i s. �
Now, the solution to the main controller synthesis problem is

stated below.
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Fig. 2. Profile of a collective circular motion under the joint connectivity condition. Left: random initial distribution of the group; middle: trajectories of three agents (the
initial potions are marked as ⃝); right: a collective circular motion is formed.
Theorem 3.2. Consider the multi-agent system (1) under the decen-
tralized controller (10) of the form (2). The closed-loop system is gov-
erned by approximate collective circular motion dynamics. �

Proof. In the proof of Theorem3.1, the closed-loop system is of the
form (11). For the trajectory q(t) of (11), we define a signal

q̄(t) = (1/T )

 t+T

t
q(τ )dτ , T = 2π/ωo.

It suffices to show that, for any t ≥ 0, the properties (6) and (7) are
satisfied.

First, we will show q̄(t) − q(t) = O(1/ωo). For any pair of
agents i and j, if ∥pij∥ > ρ, we have α(∥pij∥) = 0 since α ∈ S(ρ);
otherwise, we have ∥qij∥ ≤ ∥pij∥ + 2r ≤ ρ + 2r is bounded and
α(∥pij∥) is bounded. Recall that r = maxi∈N ri. As a result, in any
case, q̇ are bounded, i.e., ∥q̇∥ < σ < ∞, and hence

∥q(τ ) − q(t)∥ =

 τ

t
q̇(s)ds

 ≤ σ(τ − t) ≤ 2πσ/ωo,

∀τ ∈ [t, t + T ],

which easily implies ∥q̄(t) − q(t)∥ ≤ 2πσ/ωo or q̄(t) − q(t) =

O(1/ωo).
Next, we will prove the Eq. (7). The function f (q, θ) is defined

in (5). In particular, one has

fi(q, θ) =


j∈N,j≠i

fij(q, θ), fij(q, θ) := α(∥pij∥)qij/4.

From the definition of fij(q, θ), in particular, that α is Lipschitz
continuous, it is easy to slightly modify the inequality (2.6) of Chen
and Huang (2004) to obtain

∥fij(q(1), θ (1)) − fij(q(2), θ (2))∥ ≤ a1∥q(1)
− q(2)

∥ + a2r,

∀q(1), θ (1), q(2), θ (2)

for some positive constants a1 and a2. As a result, by noting q(τ )−

q(t) = O(1/ωo) and r = maxi∈N(vio/ωio) = O(1/ωo), one has

fij(q(τ ), θ(τ )) − fij(q(t), θ(t)) = O(1/ωo), (12)

∀τ ∈ [t, t + T ]. (13)

Also, by noting q̄(t) − q(t) = O(1/ωo), one has

fij(q̄(t), θ(t)) − fij(q(t), θ(t)) = O(1/ωo). (14)

Then, we are ready to have the following calculation:

˙̄qi(t) =
1
T

d
dt

 t+T

t
qi(τ )dτ =

1
T

 t+T

t

d
dτ

qi(τ )dτ

= −
1
T

 t+T

t


j∈N,j≠i

k(θi(τ ))k(θj(τ ))fij(q(τ ), θ(τ ))dτ .
Fig. 3. Convergence performance of the circular motion centers.

Using (13) and (14), one has

˙̄qi(t) = −
1
T


j∈N,j≠i

 t+T

t
k(θi(τ ))k(θj(τ ))dτ(fij(q̄(t), θ(t))

+O(1/ωo)) = −fi(q̄(t), θ(t)) + O(1/ωo).

In the last equation, we note

(1/T )

 t+T

t
k(θi(τ ))k(θj(τ ))dτ = I.

The Eq. (7) is thus proved. �

4. Numerical simulation and experiments

We consider a model composed of (1) and (10) with α(x) =

0.05(1 − x/ρ) for 0 ≤ x ≤ ρ. The nominal individuals have
different linear speeds and rotational speeds. To address the joint
connectivity condition in Proposition 2.1, we restrain the group
starting within a square space of L× Lwith L = 150. Since all indi-
viduals start from a bounded space L×L, we assume that the union
of the proximity nets over sequential time-intervals [ti, ti+1), i =

1, . . . ,∞, is connected, and the condition of Proposition 2.1 is thus
satisfied. To describe how the circular motion center of each agent
asymptotically converges, we define the maximal value of the dis-
tances between two agents’ circular motion centers as follows:

dc(t) = max{∥qij(t)∥, i, j ∈ N}.

Once the circularmotion behavior is achieved, all centers converge
to one single point, i.e., limt→∞ dc(t) = 0. With n = 50 and
15 ≤ ri ≤ 25, i ∈ N, the simulation results are given in Fig. 2.
The left graph shows the initial distribution of the group of agents
at t = 0 s. A collective circular motion is formed as expected by
Proposition 2.1 when the distribution is shown in the right graph
at t = 100 s. The motion trajectories of three agents (not all 50
agents) are plotted in themiddle graph. The trajectories eventually
converge to circles with a common center. The convergence
performance of limt→∞ dc(t) = 0 is demonstrated in Fig. 3.

An experimental multi-robots system is used to examine the
practical applicability of the control algorithm proposed in this
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Fig. 4. Trajectories of three robots. The initial positions are marked as ⃝ and the
final positions are marked as �. The trajectories are highlighted in bold when a
collective circular motion is achieved.

paper. The multi-robots system is composed of three Pioneer 2-
DXe robots of Adept MobileRobots (Laffary, 2002). The detailed
description of the experimental platform in hardware and software
can be found in Zhang, Chen, Yan, and Yu (2012) where the
algorithm for homogeneous agents is studied. In the experiments,
the complete moving trajectories of all robots were recorded in an
odometer log andplotted in Fig. 4. Itwas observed that, all the three
robots initiallymoved along their own circular trajectories, and the
motion trajectories eventually converged to circleswith a common
center after several times of interactions. It is worth mentioning
that, an obstacle avoidance algorithm was added in the practical
controller implementation for the significant size of robots. The
sharp turns in the trajectories correspond to the activation of the
obstacle avoidance algorithm. A more detailed explanation of the
algorithm can be found in Zhang et al. (2012).

5. Conclusion

In this paper, a completely decentralized control algorithm
has been proposed for a group of autonomous multi-agents to
form a class of collective circular behavior without a common
rotational radius or a common reference frame. The approach has
been demonstrated by a 2D torus simulation and experimentswith
guaranteed convergence of circularmotion centers. In the resulting
torus pattern, all agents move in circles around a common center,
but with different radii. Such a torus pattern is more similar to
many real phenomena of natural systems than the existing torus
patternwith a same rotational radius andmay havemore potential
applications.
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