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a b s t r a c t

A multi-agent system (MAS) consists of multiple agents, each under the influence of a local rule that
represents its interaction with other agents. Most recent research on discrete-timeMASs concentrates on
local rules that are linear and does not deal with communication constraints on the information exchange
among agents. However, local interactions between agents in the real world are more likely governed
by nonlinear rules and are in the presence of time-varying delays. This paper aims to investigate the
consensus of a discrete-time MAS with transmission nonlinearity and time-varying delays. In particular,
based on a representative general nonlinear model, we obtain several basic criteria for the consensus
of the MAS. These results cover several existing results as their special cases. Moreover, the model we
consider does not satisfy the convexity assumptionwhichwas commonly taken as an important condition
for the consensus of discrete-time MASs. The assumptions we make on the nonlinear transmission
function are necessary in the sense that, if they are not satisfied, a connected topology can be constructed
that does not guarantee consensus.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past decade, consensus (or synchronization, coordina-
tion) of multi-agent systems (MASs) has received increasing atten-
tion in various disciplines, including control theory, computer sci-
ence, physics, mathematics, and artificial intelligence (Jadbabaie,
Lin, & Morse, 2003; Li & Wang, 2004; Liu & Guo, 2007; Vicsek,
Czirok, Ben-Jacob, Cohen, & Sochet, 1995). It is well known that
consensus or synchronization is a typical collective behavior in an
MAS and is a fundamental nature phenomenon with a very long
history (Lü & Chen, 2005). By consensus we mean a general agree-
ment among all members of a group or community, each exercis-
ing some discretion in its decision making and in its interactions
with other members. A typical example is the heading synchro-
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nization of the Vicsek model (Vicsek et al., 1995). To reveal the in-
herent mechanism of consensus in anMAS, manymathematical or
physical models have been introduced, including the classical Vic-
sek model (Vicsek et al., 1995) and the Couzin–Levin model and
its variants (Lü, Liu, Couzin, & Levin, 2008). Based on these models,
many interesting results have been obtained on the consensus of
MASs (Cao, Morse, & Anderson, 2008a; Jadbabaie et al., 2003; Lin &
Jia, 2009; Liu & Liu, 2011; Olfati-Saber, Fax, & Murray, 2007).

There are several well-developed approaches to dealing with
the consensus of continuous-time MASs, such as the Lyapunov
method (Bauso, Giarré, & Pesenti, 2006; Cortes, 2008; Cucker
& Smale, 2007; Hui & Haddad, 2008; Munz, Papachristodoulou,
& Allgower, 2008; Olfati-Saber, 2006). However, the analysis of
discrete-time MASs is quite different from that of the continuous-
time MASs. Olshevsky and Tsitsiklis have recently proven in
Olshevsky and Tsitsiklis (2008) that it is impossible to construct
a common quadratic Lyapunov function for a discrete-time MAS
with a switching topology, even for the basic case of

xi(t + 1) =

n
j=1

aij(t)xj(t). (1)

Therefore, it is necessary to develop some new methods for deal-
ing with discrete-time MASs based on, for example, graph theory
(Cao et al., 2008a; Cao, Morse, & Anderson, 2008b), stochastic ma-
trix theory (Wolfowitz, 1963), convex analysis (Blondel, Hendrickx,

0005-1098/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.automatica.2013.02.021



Author's personal copy

Y. Chen et al. / Automatica 49 (2013) 1768–1775 1769

Olshevsky, & Tsitsiklis, 2005; Gazi, 2008; Li & Wang, 2004; Savkin,
2004), and the set-valued Lyapunov function method (Goebel,
2011; Moreau, 2005).

Recently, there have been some results on the consensus of
discrete-time MASs (see, e.g., Blondel et al., 2005; Chen, Lü, & Lin,
2009; Jadbabaie et al., 2003; Li & Wang, 2004; Ren & Beard, 2005;
Sarlette, Sepulchre, & Leonard, 2006; Xiao & Wang, 2008). The
matrix product approach in Wolfowitz (1963) lays a foundation
for the theoretical analysis of consensus of discrete-time MASs
in many works (Cao et al., 2008a; Jadbabaie et al., 2003; Ren &
Beard, 2005; Xiao & Wang, 2008). Most of these results pertain to
the situation where the interaction among agents is governed by
linear local rules (i.e., modified versions of (1)) and communication
constraints are seldom considered (see, e.g., Cao et al., 2008a;
Jadbabaie et al., 2003; Li & Wang, 2004; Ren & Beard, 2005).
Even though models that are more general than (1) have been
considered, these models are required to satisfy the convexity
conditions proposed in Moreau (2005) (see Cortes, 2008).

Moreover, in most real-world applications, the information
transmitted among agents is often subject to various constraints
(Tsitsiklis, Bertsekas, & Athans, 1986). In this paper, inspired by
Blondel et al. (2005); Li and Wang (2004), we aim to further
investigate the consensus in a discrete-time MAS (1) with nonlin-
ear transmission and time-varying delays. On the basis of a repre-
sentative nonlinear model, several basic criteria for consensus are
established. These results include several existing results as spe-
cial cases. Furthermore, we discover that the abovemodel does not
satisfy the convexity condition in Moreau (2005), which was often
taken as a necessary condition for the consensus of discrete-time
MASs. The assumptions we make on the nonlinear transmission
function are necessary in the sense that, if they are not satisfied, a
connected topology can be constructed that does guarantee con-
sensus.

This paper is organized as follows. Section 2 describes the
consensus problem for discrete-time MASs with nonlinear trans-
mission and time-varying delays. Several consensus criteria are
proposed in Section 3. In Section 4, an example is given to illus-
trate the proposed consensus criteria. Finally, Section 5 concludes
the paper.

2. Description of the problem

Consider a discrete-time MAS of n agents, labeled from 1 to n.
Denote all the agents by the set V = {1, 2, . . . , n}. Let the state of
agent i ∈ V be denoted by xi(t) ∈ Rm (t ≥ 0). There exist some
communication connections among these n agents. If agent i has
access to the information of agent j, then j is said to be a neighbor
of agent i and the set of all neighbors of agent i at time t is denoted
by Ni(t). Consequently, i ∈ Ni(t) if and only if agent i has access
to the information of itself. Let graph G(t) = (V , E(t)) be the
communication topology at time t , where E(t) : Z+

→ V × V
is the set of edges and (i, j) ∈ E(t) if and only if j ∈ Ni(t). A graph
G = (V , E) is undirected if (i, j) ∈ E ⇒ (j, i) ∈ E. For several
different graphs Gk = (V , Ek) with 1 ≤ k ≤ K , their union isK

k=1 Gk = (V ,
K

k=1 Ek). A graph G can also be represented by a
matrix A = (aij)n×n, where aij is the weight of the edge (j, i) and
aij > 0 if and only if (j, i) ∈ E.

For any two nodes i and j in a graph G = (V , E), if there ex-
ist k different nodes is ∈ V (1 ≤ s ≤ k) such that (i, i1), (i1, i2),
. . . (ik−1, ik), (ik, j) ∈ V , then there is a path from i to j. If there are
paths from a node i ∈ V to any other node j ∈ V (i ≠ j), then this
graph contains a spanning tree rooted at node i. If there are paths
from any node i ∈ V to any other node j ∈ V , the graph is said to
be strongly connected.

For an ε > 0, denote Oε = {x ∈ Rm
: ∥x∥ ≤ ε}. Given a

set B ⊆ Rm, let bd(B) be the set of boundary points of B. For

x ∈ Rm, let d(x, B) = infy∈B ∥x − y∥ be the distance from x to B.
For A, B ⊆ Rm, define A + B = {x + y : x ∈ A, y ∈ B}.

Assume that the transmission function is nonlinear and there
exist time-varying delays in the communication channels among
agents. In this case, the evolution of agent i complies with

xi(t + 1) =

n
j=1

aij(t)fij

xj(t − τ i

j (t))

, (2)

where aij(t) ∈ R, xi(t) ∈ Rm, and aij(t) are the weights in the
graph G(t) representing the coupling strength from agent j to
agent i at time t . Here, the term fij


xj(t − τ i

j (t))

represents the

nonlinearity and time delays in the transmission of information
from agent j to agent i. The overall updating rule (2) describes the
process of transmitting the information of the neighboring agents
into the state of agent i in the next time instant after collecting the
information from all its neighbors.

For the local interactions (2), the question of interest is what
kinds of functions fij and communication topology G(t) will
guarantee the consensus of all the agents, that is,

lim
t→∞

∥xi(t) − xj(t)∥ = 0, ∀i, j ∈ V .

3. Consensus criteria

Let the MAS considered in this paper be denoted by (V ,G(t),
(2)) and make the following definition.

Definition 1. A function f belongs toF if the following conditions
are satisfied:

(a) f : Rm
→ Rm is continuous.

(b) There exists a nonempty compact convex set B ⊂ Rm and a
nonempty bounded convex set U ⊂ B such that: (i) f (x) ∈ B
for all x ∈ B; (ii) f (x) = x for all x ∈ U, and d(f (x), U) <
d(x, U) for all x ∈ B such that f (x) ≠ x.

For example, let f (x) = x3 with B = [−1, 1] and U = {0}.
Then, it is obvious that f ∈ F .

3.1. Consensus when G(∞) is connected

Let G(∞) = limk→∞


t≥k G(t). We make the following as-

sumptions.

A1 fij ∈ F for any i, j ∈ V , and {fij}ni,j=1 share two common sets B
and U.

A2 There exists an integer Γ ≥ 0 such that, whenever (i, j) ∈

E(∞) and (i, j) ∈ E(t), there exists a t ′ satisfying t ≤ t ′ ≤

t + Γ and (j, i) ∈ E(t ′).
A3 G(∞) is undirected and connected.
A4 There exists an integer B > 0 such that, for any t ≥ 0,

0 ≤ τ i
j (t) < B for any i ≠ j and τ i

i (t) = 0.
A5 aij(t) ≥ 0, aii(t) > 0,

n
j=1 aij(t) = 1 for any i, j ∈ V and

infaij(t)>0, t≥0 aij(t) ≥ α for some α ∈ (0, 1
2 ].

Assumption A1 defines conditions on the nonlinear functions,
A2 and A3 pose conditions on the topology structure, A4 states that
the time delay should be bounded, and A5 is an assumption on the
weights of the topology.

For the state xi(t) in (2), denote di(t) = d(xi(t), U) and,

Mi(t) = max
0≤τ<B

di(t − τ), Mi = lim sup
t→∞

Mi(t),

M(t) = max
1≤i≤n

Mi(t), M = max
1≤i≤n

Mi,

mi(t) = min
0≤τ<B

di(t − τ), mi = lim inf
t→∞

mi(t).
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For 0 < a′ < b′, denote Vt(a′) = {i ∈ V : Mi(t) ≤ a′
} and

Λt(a′, b′) = {i ∈ V : a′
≤ Mi(t) ≤ b′

}. For any V ′
⊆ V and

G(t) = (V , E(t)), let ∂ t
in(V

′) and ∂ t
out(V

′) be the in-degree and out-
degree of V ′ with respect to G(t), respectively. Furthermore, let
∂ t(V ′) = ∂ t

in(V
′) + ∂ t

out(V
′).

In what follows, we will state several lemmas. The proofs of the
first two lemmas are obvious and omitted.

Lemma 2. For a convex set U ⊆ Rm, x, y ∈ Rm, and α ∈ [0, 1], one
has

d(αx + (1 − α)y, U) ≤ αd(x, U) + (1 − α)d(y, U).

Furthermore, d(x, U) is continuous in x.

Lemma 3. Let Assumptions A1, A4 and A5 hold for MAS (V , G(t),
(2)). Then, for any initial states xi(t0) ∈ B (i ∈ V , −B < t0 ≤ 0),
xi(t) ∈ B for any t > 0 and i ∈ V .

The proofs of the following three lemmas can be found in the
(Appendix).

Lemma 4. Let Assumptions A1, A4 and A5 hold for MAS (V , G(t),
(2)). Then, limt→∞ M(t) = M.

Lemma 5. Given any 0 ≤ l < M and any positive integer N, there
exist an ε > 0 and a sequence {lp}, with l0 = l, lp+1 > lp, such that,
for any 0 ≤ p ≤ N,

lp+1 + ε > (1 − α)(M + ε) + α(lp + ε), (3)

M − ε > lp + ε. (4)

Lemma 6. There exists an increasing sequence {tk}∞k=1 of natural
numbers satisfying limtk→∞ Mi(tk) = ri and M = maxi∈V Mi =

maxi∈V ri.

Theorem 7. Let Assumptions A1–A5 hold for MAS (V ,G(t), (2)).
Then, for any given initial states xi(t0) ∈ B (i ∈ V , −B < t0 ≤ 0),
one of the following three cases holds:

(a) The MAS (V , G(t), (2)) will reach consensus.
(b) There exists H > 0 such that

lim
t→∞

d(xi(t), U) = H

for any i ∈ V . Furthermore,

lim
t∈Tij,t→∞

d(xj(t), {x : fij(x) = x}) = 0

for any j ∈ V , where

Tij = {t − τ i
j (t) : aij(t) > 0, (j, i) ∈ E(∞)}.

(c) limt→∞ d(xi(t), bd(U)) = 0 for any i ∈ V .

For the above three cases of Theorem7, Case (a)means thatMAS
(2) will reach consensus; Case (b) means that the states of theMAS
will approach a surface on which each point has equal distance
to U; and Case (c) means that the states of agents will approach
the surface of U. The intuitive meanings of the above cases are
illustrated in Fig. 1.

To illustrate the basic idea of the following proof of Theorem 7,
denotem(t) = min1≤i≤n mi(t) and consider the following two sets:

C(t) = {x ∈ Rm
: d(x, U) = M(t)},

C(t) = {x ∈ Rm
: d(x, U) = m(t)}.

The aim of the proof is to show that the gap betweenC(t) andC(t)
will gradually approach zero, as illustrated in Fig. 2.

Proof of Theorem 7. By Lemma 6, there exists a subsequence
{tk} of natural numbers satisfying limk→∞ Mi(tk) = ri and M =

Fig. 1. Illustration of the three cases of Theorem 7. Upper left plot: Case (a); upper
right plot: Case (b); lower plot: Case (c).

Fig. 2. Illustration of the proof of Theorem 7.

maxi∈V ri. Denote R = mini∈V ri. In what follows, the proof is
separated into three cases, as illustrated by the roadmap of the
technical analysis shown in Fig. 4 in the Appendix.

CASE 1: If R < M ≠ 0, let l = max{ri | ri < M} and
N = n(B + Γ ). By Lemma 5, there exist an ε > 0 and a sequence
{lp} satisfying inequalities (3) and (4).

For a sufficiently large tk in {tk}, one has

Vtk(l + ε) = Vtk+s(l + ε) ≠ V ,

Λtk(M − ε,M + ε) = Λtk+s(M − ε,M + ε) ≠ Ø,

Vtk+s(l + ε)


Λtk+s(M − ε,M + ε) = Ø,

for ∀ s > 0. Given the following iteration

#(tk + p + 1)

=


0, p < p1 − 1,
#(tk + p) + 1, p ∈ [pi − 1, pi + B + Γ − 1),
#(tk + p), p ∈ [pi + B + Γ − 1, pi+1 − 1),
#(tk + p) + 1, p = pn − 1,

Ap+1 = Vtk+p+1(l#(tk+p) + ε), (5)

Cp = V − Ap, (6)

pj+1 = min{p : p ≥ pj + B + Γ , ∂ tk+p(Ap) ≠ 0},

where 0 ≤ p ≤ pn and the initial states are given by

A0 = Vtk(l + ε), p1 = min{p : ∂ tk+p(Ap) ≠ 0, p ≥ 0}.

Intuitively speaking, #(tk + p) denotes the number of times when
At is affected by the nodes of Ct for t ∈ [tk, tk + p]. Fig. 3 illustrates
the meaning of #(tk + p).

It should be noted that the definition of Ap and pj+1 are
interdependent. Initially, one can get the value of A0, then one
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Fig. 3. #(tk + p) denotes the number of small circles in the interval [tk, tk + p], and
there are B + Γ consecutive small circles in each subinterval.

checks whether p1 = 0 or not. If p1 = 0, then one gets the values
of #(tk),#(tk +1), . . . ,#(tk +B+Γ −1), and next check whether
p2 = tk+B+Γ or not; If p1 ≠ 0, one gets the value of #(tk) = 0 and
consequently the value of A1, then repeat the process and check
p1 = 1 or not.

Here, the connectivity of G(∞) can naturally guarantee the
existence of p1. According to the above definition, there is #(tk +

pj) = #(tk+pj−1)+B+Γ . Consequently, #(tk+pn) = (n−1)(B+

Γ ) + 1 < N .
According to Appendix A.4 in the Appendix, one gets Ap ⊆

Ap+1. By the definition of p1 and Ap, one has ∂
tk+p1
out (Ap1) ≠ 0 or

∂
tk+p1
in (Ap1) ≠ 0. Then, we have the following detailed discussion.

(i) If ∂
tk+p1
out (Ap1) ≠ 0, then there exists an i ∈ Cp1 satisfying

Ni(tk + p1) ∩ Ap1 ≠ Ø. According to Appendix A.5 in the
Appendix, one obtains i ∈ Ap1+B and Ap1 ( Ap1+B ⊆ Ap1+B+Γ .

(ii) If ∂
tk+p1
in (Ap1) ≠ 0, then there exists an i ∈ Ap1 satisfying

Ni(tk + p1) ∩ Cp1 ≠ Ø, then one can select some j ∈ Cp1
satisfying (i, j) ∈ E(tk+p1). In view of Assumption A2, if Ap1 =

Ap1+B+Γ , then there exists some τ with 0 ≤ τ ≤ Γ satisfying
(j, i) ∈ E(tk + p1 + τ). Hence, similarly to the reasoning of
Appendix A.5 in theAppendix, there isAp1+τ ( Ap1+τ+B, which,
in view of Ap ⊆ Ap+1, is in contradiction with the assumption
of Ap1 = Ap1+B+Γ .

Based on the above discussion, one obtains Ap1 ( Ap1+B+Γ . By
the definition of pi, one has Ap1 ( Ap2 . Since Ap1 has at least one
element, by inductive reasoning, there exists some △, 1 ≤ △ ≤

n − 1, such that Ap1 ( Ap2 ( · · · ( Ap△
= V . Consequently,

according to the definition of Λt , there exists some tk+s > tk + p△

satisfying Λtk+s(M − ε, M + ε) = Ø, which contradicts with
Λtk+s(M − ε, M + ε) ≠ Ø.

CASE 2: If M = R ≠ 0, then one has ri = Mi = M for any i ∈ V .
The detailed analysis is given in the following.

(i) If mi = Mi for any i ∈ V , then limt→∞ d(xi(t), U) = M . For
the Tij given in Case (b) of the theorem, denote Sij = {xj(t) :

t ∈ Tij}. Moreover, if there exist a pair of indices î, ĵ and an
accumulation ξ̂ of Sî̂j satisfying fî̂j(ξ̂ ) ≠ ξ̂ , according to the
definition of F , it holds that

d(fî̂j(ξ̂ ), U) < d(ξ̂ , U) = M.

Let ε > 0 be such that

M − ε > (1 − α)(M + ε) + α(d(fî̂j(ξ̂ ), U) + ε).

According to the definition of ξ̂ , there exists a T ∈ Tî̂j satisfying
M − ε < dî(t) for t ≥ T and

d

fî̂j(xĵ(t − τ î

ĵ
(t))), U


< d


fî̂j(ξ̂ ), U


+ ε

for any t − τ î
ĵ
(t) ∈ Tî̂j and t − τ î

ĵ
(t) ≥ T . Consequently,

according to Lemma 2, it holds that

dî(t + 1) ≤

n
j=1

aîj(t)d(fîj(xj(t − τ î
j (t))), U)

≤ (1 − α)(M + ε) + α · (d(fî̂j(ξ̂ ), U) + ε),

for any t − τ î
ĵ
(t) ∈ Tij and t − τ î

ĵ
(t) ≥ T . In view of M − ε <

dî(t + 1), this leads to a contradiction with the definition of ε.
Therefore, limt∈Tij,t→∞ d(xj(t), {x : fij(x) = x}) = 0 for any

j ∈ V and it becomes Case (b) of the theorem.
(ii) If there exists an i ∈ V satisfying lim inft→∞ Mi(t) ≠ M , then

there exists a sequence {t ′k} satisfying Mi(t ′k) → ri ≠ M and
Mj(t ′k) → rj for ∀ j ∈ V . Similar to the proof of CASE 1, the
proof of this case can be easily deduced and hence omitted
here.

(iii) Beside the above two cases, one only needs to consider the
following case A .

case A : There exists an i ∈ V satisfying mi ≠ Mi and
limt→∞ Mj(t) = M for any j ∈ V .

For some i satisfying mi ≠ Mi, one can select an accumulation
point x∗ of {xi(t)} with d(x∗, U) = η0 < M . By Lemma 5, there
exists a sequence {ηp}

B+1
p=0 and an ε > 0 such that (1−α)(M +ε)+

α(ηp + ε) < ηp+1 + ε , ηp + ε < M − ε, and ηp < ηp+1 < M for
0 ≤ p ≤ B.

Therefore, for the above ε, there exists a positive integer T
satisfying d(xi(T ), U) < η0 + ε and M − ε < Mj(t) < M + ε

for ∀ j ∈ V and t ≥ T . Since τ i
i = 0, by the definition of ε, one gets

di(T + 1) ≤ (1 − α)(M + ε) + α(η0 + ε) < η1 + ε.
Furthermore, di(T + τ) < ητ + ε < M − ε for any 1 ≤ τ ≤ B.

Consequently, one obtains

Mi(T + B) < max{η1, η2, . . . , ηB} + ε = ηB + ε < M − ε.

Obviously, this is contradictory with the fact that M − ε <
Mj(t) < M + ε holds for any j ∈ V and t ≥ T .

CASE 3: IfM = 0, denoteU∗
ε =


(j,i)∈E(∞){x : ∥fij(x)− x∥ ≤ ε}.

Then one has U ⊆ U∗
ε . By the uniform continuity of fij on U∗

ε , for
this ε, one can choose a suitable 0 < ε̃ < ε satisfying Uε̃ = {x ∈

Rm
: d(x, U) ≤ ε̃} ⊆ U∗

ε . Thus, for any ε > 0, there exists some
Ñ > 0 such that xi(t) ∈ Uε̃ for any t ≥ Ñ − B. Consequently, there
is fij(xj(t − τ)) = xj(t − τ) + εij(t − τ) with ∥εij(t − τ)∥ ≤ ε for
any i, j ∈ V and t ≥ Ñ .

In detail, one has the following three cases:

(i) If there exists an integer T > 0 satisfying {xi(T −

τ)}i∈V ,0≤τ<B ⊆ U, then xi(t) ∈ U for any i ∈ V and t ≥ T .
Construct two sets B̃ = U and Ũ1 = {x̂1}, where x̂1 is any
element of U. Repeating the reasoning of CASES 1 and 2, one
obtains that there exists an h1 ≥ 0 satisfying

lim
t→∞

d(xi(t), bd{{x̂1} + Oh1}) = 0

for any i ∈ V . Iteratively, for any 1 ≤ k ≤ m, let x̂k+1 ∈k
r=1 bd{{x̂r} + Ohr }, there exists an hk+1 ≥ 0 satisfying

lim
t→∞

d(xi(t), bd{{x̂k+1} + Ohk+1}) = 0

for any i ∈ V . Therefore, one has

lim
t→∞

d


xi(t),

m+1
k=1

bd{{x̂k} + Ohk}


= 0.

According to the construction of x̂k, one knows thatm+1
k=1 bd{{x̂k} + Ohk} must be a singleton. Therefore, MAS

(V , G(t), (2)) will reach consensus.
(ii) If lim supt→∞ d(xi(t), bd(U)) = 0 for any i ∈ V , it becomes

Case (c) of the theorem.
(iii) Excluding the above two cases, one has

V−

bd = {i ∈ V : lim inf
t→∞

d(xi(t), bd(U)) = 0} ≠ Ø,

V+

bd = {i ∈ V : lim sup
t→∞

d(xi(t), bd(U)) = 0} ≠ V .
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Then, there exists an i ∈ V such that {xi(t)}t≥0 has some
accumulation point x∗

i ∈ U − bd(U). For any ε, there exist 0 <
ε̃ < ε and t0 > 0 satisfying xi(t0) ∈ {x∗

i } + Oε̃ and xj(t) ∈ Uε̃ for
any j ∈ V and t ≥ t0. Consequently, for t ≥ t0,

xi(t + 1) =

n
j=1

aij(t)xj(t − τ i
j (t)) + ε′

i(t), (7)

where ε′

i(t) =
n

j=1 aij(t)εij(t − τ i
j (t)) satisfies ∥ε′

i(t)∥ ≤ ε.
Denote P1 = {x∗

i } + Oε̃ and recursively Pk+1 =


β∈[α,1−α]

(βPk + (1 − β)Uε̃). Then, for sufficiently small ε, one has
Pn(B+Γ ) ( U. Similarly to the proof in CASE 1, one can prove that
there exists some T > 0 satisfying xi(t) ∈ Pn(B+Γ ) for any i ∈ V
and t > T . As a result, it leads to a contradiction with the fact that
V−

bd ≠ Ø.
Therefore, summarizing the above reasoning, the proof is

completed. �

Although Theorem 7 cannot tell us that consensus will be
reached once G(∞) is connected, one gets the following result for
m = 1, whose proof is omitted due to space limitation.

Corollary 8. Suppose that AssumptionsA1–A5hold forMAS (V ,G(t),
(2)) and m = 1. Then, for any given initial states xi(t0) ∈ B (i ∈

V , −B < t0 ≤ 0), MAS (V ,G(t), (2)) will reach consensus.

3.2. Consensus when {G(t)}t≥0 is jointly connected

Consider the following assumptions:

A3.1 Each
tk+1−1

t=tk G(t) is strongly connected, where 1 ≤ tk+1 −

tk ≤ Γ for some Γ ≥ 1.
A3.2 Each

tk+1−1
t=tk G(t) contains a spanning tree rooted at some

common node ṽ ∈ V where ṽ has zero in-degree in eachG(t),
and 1 ≤ tk+1 − tk ≤ Γ for some Γ ≥ 1.

When Assumption A3.1 is satisfied, we say that {G(t)}t≥0 is jointly
connected. We recall the following lemma.

Lemma 9 (Chen, Lü, & Yu, 2011). Suppose that AssumptionsA3.1,A4
and A5 hold for the MAS

xi(t + 1) =

n
j=1

aij(t)xj(t − τ i
j (t)) + ωi(t), (8)

with ∥ωi(t)∥ ≤ ε. Then, there exists a nonnegative continuous
function h : R → R with h(0) = 0 such that lim supt→∞ maxi,j∈V
∥xi(t) − xj(t)∥ ≤ h(ε).

Let C1 = {A1, A3.1, A4, A5} and C2 = {A1, A3.2, A4, A5}. The
following results can be obtained.

Theorem 10. If the set of conditions C1 are satisfied for MAS
(V ,G(t), (2)), then the MAS will reach consensus for any initial states
xi(t0) ∈ B (i ∈ V , −B < t0 ≤ 0).

Proof. Similarly to the proof of Theorem 7, one can get that one
of Cases (a)–(c) will hold. In fact, for Case (b) or (c), similarly to the
reasoning in (iii) of CASE 3 in the proof of Theorem7, one can obtain
formula (7). Then, by Lemma 9 and in view of the arbitrariness of
ε and the continuity of h(·),

lim sup
t→∞


max
i,j∈V

∥xi(t) − xj(t)∥


= 0,

and the consensus is reached. �

The following result can be viewed as the counterpart of the
leader–follower case in Ren and Beard (2005).

Theorem 11. If the set of conditions C2 are satisfied for MAS
(V , G(t), (2)) and xṽ(0) ∈ U, then the MAS will reach consensus
at xṽ(0) for any initial states xi(t0) ∈ B (i ∈ V , −B < t0 ≤ 0).

Proof. The main idea of the proof is similar to that of Theorem 10
and the proof is thus omitted. �

Remark 12. The set of conditions C2 alone cannot guarantee the
consensus of MAS (V , G(t), (2)). It can be easily verified that
(x1(t), x2(t))T = (0, 3

2 )
T for any t ≥ 0, when

f (x) =


3x, 0 ≤ x ≤ 1,
3, 1 ≤ x ≤ 3, (9)

and A(t) = ((1 0.5)T (0 0.5)T )with initial states (x1(0), x2(0))T
= (0, 3

2 )
T .

3.3. Necessity and comparison with the existing results

The condition f ∈ F is necessary for the consensus of MAS
(V ,G(t), (2)) whenm = 1 in the sense of the following theorem.

Theorem 13. Let f be a continuous and monotonically increasing
function defined on some bounded closed interval B ( R and f (x) ∈

B for any x ∈ B . If the MAS

xi(t + 1) =

n
j=1

aijf (xj(t)) (10)

will reach consensus for any initial states xi(t0) ∈ B (i ∈ V , −B <
t0 ≤ 0), and any fixed stochastic matrix A with aii > 0 and strongly
connected G(A), then f ∈ F .

Proof. Let B = [a, b].
For f : B → B, one knows that the set {x : f (x) = x} must be

nonempty. Denote

a′
= inf{x : f (x) = x}, b′

= sup{x : f (x) = x}.

Without loss of generality, suppose that a = a′ and b = b′. Indeed,
if, for example, b′ < b (the case of a < a′ can be considered in
a similar way), one knows that there is f (x) > x or f (x) < x on
the interval (b′, b]. If f (x) > x for x > b′, then f (b) > b, which
contradictswith f (x) ∈ B for x ∈ B. Therefore, f (x) < x for x > b′.
Consider each x ∈ (b′, b], since f is monotonously increasing, there
is d(f (x), U′) ≤ d(x, U′) for any U′

⊆ [a′, b′
]. Consequently, one

just needs to construct the set U which belongs to the set [a′, b′
].

If there does not exist x̂ ∈ [a, b] satisfying f (x̂) ≠ x̂, let U =

[a, b], then f ∈ F .
If there exists an x̂ ∈ [a, b] satisfying f (x̂) ≠ x̂, then, for any

such x̂, by the continuity of f , there exists an interval (ai(x̂), bi(x̂))
satisfying x̂ ∈ (ai, bi), f (ai) = ai, f (bi) = bi, and f (x) ≠ x
for any x ∈ (ai, bi). Let the set of all these intervals (ai, bi) be
H = {(ai, bi) : i ∈ I}. Then, for any (ai, bi) ∈ H, f (x) − x will
not change its sign on it because of the continuity of f . Let

H+
= {(ai, bi) ∈ H : f (x) > x for x ∈ (ai, bi)},

H−
= {(ai, bi) ∈ H : f (x) < x for x ∈ (ai, bi)},

b∗
= sup{bs : (as, bs) ∈ H+

}, when H+
≠ ∅,

a∗
= inf{as : (as, bs) ∈ H−

}, when H−
≠ ∅.

If H+ is empty but H− is not, let U = [a, a∗
], then f ∈ F .

If H− is empty but H+ is not, let U = [b∗, b], then f ∈ F .
If neither H+ nor H− is empty, one will prove that a∗

≥ b∗. If
a∗ < b∗, by the definitions of a∗ and b∗, there exist c1, c2 and c3
satisfying a∗ < c1 < c2 < c3 < b∗, f (c1) < c1, f (c2) = c2, and
f (c3) > c3.
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Consider an MAS (10) with 3 agents. Let the initial states be
x1(0) = c1, x2(0) = c2, x3(0) = c3, and

A =



c1 − c2
f (c1) − c2

f (c1) − c1
f (c1) − c2

0

c2 − f (c3)
2(f (c1) − f (c3))

1
2

f (c1) − c2
2(f (c1) − f (c3))

0
c3 − f (c3)
c2 − f (c3)

c2 − c3
c2 − f (c3)

 .

Then, one gets that A is stochastic and G(A) is strongly connected.
It is easy to verify that xi(t) = xi(0) for i = 1, 2, 3 and t ≥ 0.
That is, the MAS (10) does not reach consensus. Similarly, one can
construct counterexamples for the MAS with n agents. Therefore,
b∗

≤ a∗.
Hence, let U = [b∗, a∗

], then f ∈ F . �

In fact, the conditions on f in Theorem 13 can be reduced to:
f : B → B is continuous and defined on some bounded interval
B ( R,D+f (x) ≥ −1 and D−f (x) ≥ −12 for any x ∈ B. Because
of space limitations, the related proof is omitted here.

Let m = 1 and fij(x) = x. It is obvious that fij(x) = x ∈ F

since we can take B = conv{xi(t0) : i ∈ V , −B < t0 ≤ 0}3 and
U = {x̂}with x̂ ∈ B. When τ i

j (t) = 0, Theorem11 covers Theorem
2 of Jadbabaie et al. (2003). When τ i

j (t) ≠ 0, Theorem 11 covers
Theorem 3 of Blondel et al. (2005). When τ i

j (t) ≠ 0, Corollary 8
covers Theorem 5 of Blondel et al. (2005).

Moreau (2005) investigated the general nonlinear MAS

xi(t + 1) = fi(t, x1(t), . . . , xn(t)). (11)

It should be pointed out that our MAS (V , G(t), (2)) does not
always satisfy the convexity condition proposed inMoreau (2005).
From Assumption 1 in Moreau (2005), convexity implies that

xi(t + 1) ∈ convi∈V {xi(t)} (12)

hold for any i ∈ V and t ≥ 0. This is equivalent to the existence
of nonnegative coefficients aij(t) satisfying

n
j=1 aij(t) = 1 and

xi(t + 1) =
n

j=1 aij(t)xj(t).
Consider the case of m = 1. Let τ i

j (t) = 0 for all i, j ∈ V , and
f (x) be given by Eq. (9). It is easy to verify thatB = [0, 3], U = {3}
and f ∈ F .

Given a simpleMAS of 2 agents with initial states x1(0) = 0 and
x2(0) = 1. Let its topological structure be fixed: aij(t) =

1
2 for any

i, j ∈ {1, 2} and t ≥ 0. Then, one has x1(1) = x2(1) =
1
2 (f (x1(0))+

f (x2(0))) =
3
2 . Therefore, one gets xi(1) =

3
2 ∉ convi∈V {xi(0)} =

[0, 1], which contradicts with (12). In fact, based on this idea,
similar counterexamples can be constructed form > 1.

Angeli and Bliman (2006) generalized the result of Moreau
(2005). According to Assumption A in Angeli and Bliman (2006),
one deduces that

xi(t + 1) = x∗ if {xi(τ )}i∈V ,t−B<τ≤t = {x∗
}, (13)

which does not hold for our model (2). In fact, let B = 1, n = 2,
and f (x) be given by Eq. (9), aij(t) = 0.5, xi(0) = 0.1 for model (2),
then xi(1) = 0.3 ≠ 0.1. This contradicts with (13).

Lorenz and Lorenz (2010) further investigated the nonlinear
MAS (11) by introducing a novel concept of y-averaging. Our main
results are different from themain results of Theorem2.4 in Lorenz
and Lorenz (2010). Connectivity for each iteration is not required
in our model (2), while for the model in Lorenz and Lorenz (2010),
each iteration contains the connectivity information.

2 D+f (x) = lim infh→0+
f (x+h)−f (x)

h , D−f (x) = lim infh→0−
f (x+h)−f (x)

h .
3 If B = convi∈V ,−B<τ≤0{xi(τ )} is a singleton, then MAS reaches consensus and it

is not necessary to make the following deduction.

4. An illustrative example

Consider the following nonlinear MAS
ẋi(t) = vi(t),
v̇i(t) = ui(t),

(14)

where

ui(t) = −γ0vi(tk) + γ1

n
j=1,j≠i

aij(tk)(fij(xj(tk)) − xi(tk)), (15)

for t ∈ [tk, tk+1). Denote Ak = (aij(tk))ni,j=1, xi(tk) = xik, vi(tk) = vi
k

and ui(tk) = ui
k.

One obtainsxik+1 = xik + hkv
i
k +

h2
k

2
ui
k,

vi
k+1 = vi

k + hkui
k.

For brevity, let h = hk = tk+1 − tk be the fixed sampling interval.
However, Theorem 14 below can be easily extended to the case of
time-varying hk = tk+1 − tk.

The consensus in (14) is defined by limt→∞ xi(t) = x∗ and
limt→∞ vi(t) = 0 for any i ∈ V . This consensus is equivalent to
limk→∞ xik = x∗ and limk→∞ vi

k = 0 for any i ∈ V .

Theorem 14. The MAS (14) and (15) will reach consensus under the
following three conditions:

(i) fij ∈ F for any i, j ∈ V and i ≠ j.
(ii) {Ak}k≥0 are stochastic matrices with zero diagonal entries;

{G(Ak)}k≥0 is jointly connected and infi,j∈V ,k≥0 aij(tk) ≥ α for
some α ∈ (0, 1

2 ].
(iii) γ0 > 2

√
γ1 and

h < min


1,

2
γ0

,
1

γ0 +
1
2γ0

√
γ1 −

√
γ1


.

Proof. Define ξ i
k = xik + γ vi

k. The dynamics of (14) and (15) is
transformed to one characterized by the topology matrix Hk as
given in (16), shown in Box I on the top of the next page. The
rest of the proof can be derived easily from Theorem 10 and hence
omitted. �

5. Concluding remarks

In this paper, we have further investigated the consensus
of discrete-time MASs with nonlinear transmission and time-
varying delays. The obtained results generalized several well-
known results. Detailed comparisons with some existing results,
especially with respect to the commonly assumed convexity
condition, were given in this paper.

Appendix

A.1. Proof of Lemma 4

By Lemma 2, it holds that di(t +1) ≤
n

j=1 aij(t)dj(t − τ i
j (t)) ≤

M(t). Hence,

M(t + 1) = max
i∈V ,0≤τ<B

di(t + 1 − τ)

≤ max{ max
i∈V ,0<τ<B

di(t + 1 − τ),M(t)}

≤ max{ max
i∈V ,0≤τ<B

di(t − τ),M(t)}

= M(t).
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Hk =



1 −

h
γ

+
h2γ0

2γ
−

h2γ1

2


I +

h2γ1

2
Ak


h
γ

−
h2γ0

2γ


I

h2

2
+ γ h


γ0

γ
− γ1


−

h
γ


I +


h2

2
+ γ h


Ak


1 −

γ0

γ


h2

2
+ γ h


+

h
γ


I

 . (16)

Box I.

Fig. 4. Roadmap of technical analysis in the proof of Theorem 7.

Consequently, M(t) is decreasing and M(t) ≥ 0. Thus there is an
M ′ satisfying limt→∞ M(t) = M ′.

By the definition of M(t), there exists some j ∈ V such that the
set S = {t : M(t) = Mj(t)} is an infinite set. Select a subsequence
{tp} ⊆ S. One has lim suptp→∞ M(tp) = lim suptp→∞ Mj(tp) ≤

lim supt→∞ Mj(t). That is,M ′
≤ Mj ≤ M .

On the other hand, since M = maxi∈V Mi, for any given
infinitesimal ϵ > 0, there exists a sequence {tq} and some i ∈ V
satisfying Mi(tq) ≥ M − ϵ. By the definition of M(t), one gets
M(tq) ≥ M − ϵ. Thus, one obtains M ′

= limtq→∞ M(tq) ≥ M − ϵ.
Since ϵ is infinitesimal, one deducesM ′

≥ M .
It then follows that M ′

= M . �

A.2. Proof of Lemma 5

One can find a sequence {lp} with l0 = l, lp+1 > lp such that
lp+1 > (1 − α)M + αlp and M > lp hold for any 0 ≤ p ≤

N . Consequently, this result holds once ε is chosen sufficiently
small. �

A.3. Proof of Lemma 6

Since Mi(t) ≤ M(0) for any i ∈ V and t ≥ 0, there exists
a subsequence {tk} of {t} satisfying limtk→∞ Mi(tk) = ri. In what
follows, one only needs to show thatM = maxi∈V Mi = maxi∈V ri.

On the one hand, since Mi ≥ ri, one has M = maxi∈V Mi ≥

maxi∈V ri. On the other hand, by the definition ofM(t), there exists
some j ∈ V satisfying that the set S = { tk : Mj(tk) = M(tk) } is an
infinite set. Taking upper limits of Mj(tk) and M(tk) along S, one
obtains from Lemma 4 thatM ≤ rj ≤ maxi∈V ri.

Therefore, M = maxi∈V ri. �

A.4. Proof of Ap ⊆ Ap+1

For i ∈ Ap, one hasMi(tk + p) ≤ l#(tk+p−1) + ε. In the following,
the proof is separated into two cases.

(i) If ∂ tk+p
in (Ap) ≠ 0, one gets #(tk + p) = #(tk + p − 1) + 1. Then

one deduces

di(tk + p + 1) ≤ α(l#(tk+p−1) + ε) + (1 − α)(M + ε)

< l#(tk+p−1)+1 + ε

= l#(tk+p) + ε.

Hence,

Mi(tk + p + 1) ≤ max{Mi(tk + p), di(tk + p + 1)}
< l#(tk+p) + ε

and i ∈ Ap+1.
(ii) If ∂

tk+p
in (Ap) = 0, one obtains #(tk + p) = #(tk + p − 1) + 1

or #(tk + p) = #(tk + p − 1). Thus one has di(tk + p + 1) ≤

l#(tk+p) + ε. Therefore, one gets

Mi(tk + p + 1) ≤ max{l#(tk+p−1) + ε, di(tk + p + 1)}
≤ l#(tk+p) + ε

and i ∈ Ap+1. �

A.5. Proof of Ap1 ( Ap1+B

Since i ∈ Cp1 and Ni(tk + p1) ∩ Ap1 ≠ Ø, one gets

di(tk + p1 + 1) ≤ α(l#(tk+p1−1) + ε) + (1 − α)(M + ε)

< l#(tk+p1−1)+1 + ε

= l#(tk+p1) + ε.

Similarly, by the definition of #(t), for any 1 ≤ τ ≤ B,
one obtains di(tk + p1 + τ) < l#(tk+p1+τ−1) + ε. Thus, one has
Mi(tk + p1 + B) < l#(tk+p1+B−1) + ε and i ∈ Ap1+B. Therefore,
Ap1 ( Ap1+B. �

A.6. Roadmap of the proof of Theorem 7

See Fig. 4.

References

Angeli, D., & Bliman, P. A. (2006). Stability of leaderless discrete-time multi-agent
systems. Mathematics of Control, Signals and Systems, 18(4), 293–322.

Bauso, D., Giarré, L., & Pesenti, R. (2006). Non-linear protocols for optimal
distributed consensus in networks of dynamic agents. Systems & Control Letters,
55(11), 918–928.

Blondel, V. D., Hendrickx, J. M., Olshevsky, A., & Tsitsiklis, J. N. (2005). Convergence
in multiagent coordination, consensus, and flocking. In Proceedings of the 44th
IEEE conference on decision & control and European control conference (pp.
2996–3000).

Cao, M., Morse, A. S., & Anderson, B. D. O. (2008a). Agreeing asynchronously. IEEE
Transactions on Automatic Control, 53, 1826–1838.

Cao, M., Morse, A. S., & Anderson, B. D. O. (2008b). Reaching a consensus in a
dynamically changing environment: convergence rates, measurement delays,
and asynchronous events. SIAM Journal on Control & Optimization, 47(2),
601–623.



Author's personal copy

Y. Chen et al. / Automatica 49 (2013) 1768–1775 1775

Chen, Y., Lü, J., & Lin, Z. (2009). Consensus of discrete-time multi-agent systems
with nonlinear local rules and time-varying delays. In Proceedings of the 48th
IEEE conference on decision and control & 28th Chinese control conference (pp.
7018–7023).

Chen, Y., Lü, J., & Yu, X. (2011). Robust consensus of discrete time multi-agent
systems with time-varying delays. Science China Technological Sciences, 54(8),
2014–2023.

Cortes, J. (2008). Distributed algorithms for reaching consensus on general
functions. Automatica, 44(3), 726–737.

Cucker, F., & Smale, S. (2007). Emergent behavior in Flocks. IEEE Transactions on
Automatic Control, 52(5), 852–862.

Gazi, V. (2008). Stability of an asynchronous swarm with time-dependent
communication links. IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics, 38(1), 267–274.

Goebel, R. (2011). Set-valued Lyapunov functions for difference inclusions.
Automatica. http://dx.doi.org/10.1061/ j.automatica.2010.10.018.

Hui, Q., & Haddad, W. M. (2008). Distributed nonlinear control algorithms for
network consensus. Automatica, 44(9), 2375–2381.

Jadbabaie, A., Lin, J., & Morse, A. S. (2003). Coordination of groups of mobile
autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic
Control, 48, 988–1001.

Li, S., & Wang, H. 2004. Multi-agent coordination using nearest-neighbor rules:
revisiting the Vicsek model. arXiv:cs/0407021.

Lin, P., & Jia, Y. (2009). Consensus of second-order discrete-time multi-agent
systems with nonuniform time-delays and dynamically changing topologies.
Automatica, 45(9), 2154–2158.

Liu, Z., & Guo, L. (2007). Connectivity and synchronization of Vicsek model. Science
in China Series F , 37, 979–988.

Liu, C., & Liu, F. (2011). Stationary consensus of heterogeneous multi-agent systems
with bounded communication delays. Automatica, 47(9), 2130–2133.

Lorenz, J., & Lorenz, D. A. (2010). On conditions for convergence to consensus. IEEE
Transactions on Automatic Control, 55(7), 1651–1656.

Lü, J., & Chen, G. (2005). A time-varying complex dynamical network models and
its controlled synchronization criteria. IEEE Transactions on Automatic Control,
50(6), 841–846.

Lü, J., Liu, J., Couzin, I. D., & Levin, S. A. (2008). Emerging collective behaviors of
animal groups. In Proceedings of the 7th world congress on intelligent control and
automation (pp. 1060–1065).

Moreau, L. (2005). Stability of multiagent systems with time-dependent communi-
cation links. IEEE Transactions on Automatic Control, 50(2), 169–182.

Munz, U., Papachristodoulou, A., & Allgower, F. (2008). Nonlinear multi-agent
system consensus with time-varying delays. In Proceedings of the 17th IFAC
world congress (pp. 1522–1527).

Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: algorithms and
theory. IEEE Transactions on Automatic Control, 51(3), 401–420.

Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and cooperation in
networked multi-agent systems. Proceedings of the IEEE, 95(1), 215–233.

Olshevsky, A., & Tsitsiklis, J. N. (2008). On the nonexistence of quadratic Lyapunov
functions for consensus algorithms. IEEE Transactions on Automatic Control,
53(11), 2642–2645.

Ren, W., & Beard, R. W. (2005). Consensus seeking in multiagent systems under
dynamically changing interaction topologies. IEEE Transactions on Automatic
Control, 50, 655–661.

Sarlette, A., Sepulchre, R., & Leonard, N. E. (2006). Discrete-time synchronization on
the n-torus. In Proceedings of the 18th international symposium on mathematical
theory of networks and systems (pp. 2408–2411).

Savkin, A. V. (2004). Coordination collective motion of groups of autonomous
mobile robots: analysis of Vicsek’s model. IEEE Transactions on Automatic
Control, 49(6), 981–983.

Tsitsiklis, J. N., Bertsekas, D. P., & Athans, M. (1986). Distributed asynchronous de-
terministic and stochastic gradient optimization algorithms. IEEE Transactions
on Automatic Control, 31(9), 803–812.

Vicsek, T., Czirok, A., Ben-Jacob, E., Cohen, I., & Sochet, O. (1995). Novel type of
phase transition in a system of self-propelled particles. Physical Review Letters,
75, 1226–1229.

Wolfowitz, J. (1963). Products of indecomposable, aperiodic, stochastic matrices.
Proceedings of the American Mathematical Society, 14(5), 733–737.

Xiao, F., &Wang, L. (2008). Asynchronus consensus in continuous-timemulti-agent
systems with switching topology and time-varying delays. IEEE Transactions on
Automatic Control, 53(8), 1804–1816.

YaoChen received his B.S. degree inmathematics from the
Three Gorges University, Yichang, China in 2007, and his
Ph.D. degree from the Academy of Mathematics and Sys-
tems Science, Chinese Academy of Sciences, Beijing, China,
in 2012.

Currently, he is a Postdoctoral Fellow with the School
of Electronic and Information Engineering, Beijing Jiao-
tong University, Beijing, China. He was a Research Assis-
tant in the Department of Mathematics, City University of
Hong Kong from November 2009 to March 2010. Also, he
was a Research Assistant in the School of Electrical and

Computer Engineering, RMIT University, Australia, fromNovember 2010 to Novem-
ber 2011. His research interests include complex networks, multi-agent systems,
rail traffic control and optimization.

Jinhu Lü received his Ph.D. degree in appliedmathematics
from the Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing, China, in 2002.

Currently, he is a Professor of the Academy of
Mathematics and Systems Science, Chinese Academy of
Sciences. He was a Visiting Fellow in Princeton University,
USA from 2005 to 2006. He is the author of two research
monographs and more than 100 international journal
papers published in the fields of complex networks and
complex systems, nonlinear circuits and systems, with
more than 5500 SCI citations and h-index 38, including 19

papers with more than 100 SCI citations. He also has two authorized patents.
He is now serving as the Chair of Technical Committees on Neural Systems and

Application and the Secretary of Technical Committees on Nonlinear Circuits and
Systems in the IEEE Circuits and Systems Society. Prof. Lü served and is serving
as Editors in various ranks for 11 SCI journals including the IEEE Transactions
on Circuits and Systems I: Regular Papers, IEEE Transactions on Circuits and
Systems II: Brief Papers, IEEE Transactions on Neural Networks, IEEE Transactions
on Industrial Informatics, PLoS Computational Biology, International Journal of
Bifurcation and Chaos, and Asian Journal of Control. He is the Publication Chair of
ISCAS 2013 and Program Co-Chair of the 9th Asian Control Conference. He was the
International Publicity Co-Chair of IECON 2011. Prof. Lü received the prestigious
National Natural Science Award from the Chinese government, the First Prize of
Science and Technology Award from the Beijing City of China and the First Prize of
Natural Science Award from the Ministry of Education of China, the 11th Science
and Technology Award for Youth of China and the Australian Research Council
Future Fellowships Award. Moreover, Prof. Lü attained the National Natural Science
Fund for Distinguished Young Scholars and 100 Talents Program from the Chinese
Academy of Sciences. He is also a Fellow of the IEEE.

Zongli Lin is a professor of Electrical and Computer
Engineering at the University of Virginia. He received his
B.S. degree in mathematics and computer science from
Xiamen University, Xiamen, China, in 1983, his Master
of Engineering degree in automatic control from Chinese
Academy of Space Technology, Beijing, China, in 1989, and
his Ph.D. degree in electrical and computer engineering
from Washington State University, Pullman, Washington,
in 1994. His current research interests include nonlinear
control, robust control, and control applications. He was
an Associate Editor of the IEEE Transactions on Automatic

Control, IEEE/ASME Transactions on Mechatronics and IEEE Control Systems
Magazine. He was an elected member of the Board of Governors of the IEEE Control
Systems Society (2008–2010) and has served on the operating committees and
program committees of several conferences. He currently serves on the editorial
boards of several journals and book series, including Automatica, Systems & Control
Letters, and Science China Information Sciences. He is a Fellow of the IEEE, IFAC and
AAAS.


