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s u m m a r y

Characterizing root-zone soil moisture patterns in large gullies is challenging as relevant datasets are
scarce and difficult to collect. Therefore, we explored several statistical and modeling approaches, mainly
focusing on time stability analysis, for estimating spatial soil moisture averages from point observations
and precipitation time series, using 3-year root-zone (0–20, 20–40, 40–60 and 60–80 cm) soil moisture
datasets for a large gully in the Loess Plateau, China. We also developed a new metric, the root mean
square error (RMSE) of estimated mean soil moisture, to identify time-stable locations. The time stability
analysis revealed that different time-stable locations were identified at various depths. These locations
were shown to be temporally robust, by cross-validation, and more likely to be located in ridges than
in pipes or plane surfaces. However, we found that MRD (mean relative difference) operators, used to pre-
dict spatial soil moisture averages by applying a constant offset, could not be transferred across root zone
layers for most time-stable locations. Random combination analysis revealed that at most four randomly
selected locations were needed for accurate estimation of mean soil moisture time series. Finally, a sim-
ple empirical model was developed to predict root-zone soil moisture dynamics in large gullies from pre-
cipitation time series. The results showed that the model reproduced root-zone soil moisture well in dry
seasons, whereas relatively large estimation error was observed during wet seasons. This implies that
only precipitation observations might be not enough to accurately predict root-zone soil moisture
dynamics in large gullies, and time series of soil moisture loss coefficient should be modeled and
included.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Gullies occur globally in areas with crusting soils, such as loess
(European belt, Chinese Loess Plateau, North America), sandy soils
(Sahelian zone, north-east Thailand) and dispersive soils prone to
piping and tunneling following serious vegetation disturbance,
e.g. overgrazing (Valentin et al., 2005). Their occurrence can result
in serious soil erosion and land degradation, thus they are respon-
sible for most deposition of sediments in downstream pools in
these areas (Li et al., 2003; Melliger and Niemann, 2010; Valentin
et al., 2005). Their formation also impairs the ecology of adjacent
uplands, accelerating soil desiccation (Huo et al., 2008; Zheng
et al., 2006) and reducing both their grazing value and agricultural
potential (Avni, 2005; Krause et al., 2003).

Soil moisture is a key hydrological and ecological variable in
land surface systems. In gullies, root-zone soil moisture may con-
trol hydrological and ecological processes in the following ways.
First, it affects the generation of surface runoff (Ludwig et al.,
2005), the driving force of soil erosion. Second, it affects the soil
shear strength, because as soil moisture approaches saturation
the shear strength decreases and soils become prone to erosion
(Collins and Bras, 2008). Third, it may affect rates of gully incision
and reshape gully topography (Melliger and Niemann, 2010),
which may interactively change soil moisture distributions. Fourth,
soil moisture influences the streamflow along gully bottoms, and
thus outlet discharges (Kirchner, 2009). Finally, in arid and semi-
arid areas, soil moisture has major effects on vegetation structure
and organization (Rodriguez-Iturbe et al., 1999); under severe
water stress vegetation may die, leading to the acceleration of soil
erosion. Various studies have indicated that soil moisture patterns
in gullies differ substantially from those in uplands (Gao et al.,
2011a; Melliger and Niemann, 2010; Van den Elsen et al., 2003).
Furthermore, the hydrological connectivity between gullies and
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uplands may be weak because vertical hydrological fluxes are
much stronger than lateral fluxes in gullies (Grayson and Western,
2001). Thus, gullies should be considered separately from hill-
slopes (uplands) in attempts to elucidate soil moisture variations
and the associated hydrological and ecological processes in gullied
areas.

In situ soil moisture measurement techniques have greatly im-
proved recently following the introduction of instruments such as
neutron thermalization probes, electromagnetic sensors and heat
pulse sensors. However, knowledge of spatial–temporal soil mois-
ture patterns in gullies is still very limited, due to the difficulty of
sampling soil moisture in them and the associated expensive costs
(Gao et al., 2011a), which hinders elucidation of hydrological and
ecological processes in areas where they are prevalent. Satellite-
based sensors may provide soil moisture products at fine temporal
resolution (1–3 days), but their spatial resolution is relatively low
(�25–50 km) (Crow et al., 2012). Furthermore, they are sensitive
to land surface features (topography and vegetation) (Pathe et al.,
2009). Hence, ground calibration and validation are required to
interpret satellite soil moisture maps of gullies. As such, intensive
in situ measurements in space and time (expensive and laborious)
should be conducted to obtain accurate soil moisture information
(Zhou et al., 2007). In order to save economic and labor costs,
in situ soil moisture sampling locations should be optimized.
Therefore, upscaling methods or modeling approaches are needed
to obtain long-term soil moisture time series in gullies for evaluat-
ing soil wetness conditions and calibrating remote sensing soil
moisture products (Brocca et al., 2010; Zhou et al., 2007).

An effective method for upscaling spatial soil moisture means is
time stability analysis, introduced by Vachaud et al. (1985) to char-
acterize time-invariant associations between spatial locations and
classical statistical parametric values. Time stability is also known
as temporal stability (Vachaud et al., 1985), temporal persistence
(Kachanoski and de Jong, 1988), and rank stability (Chen, 2006).
The concept has been widely used to characterize the temporal
persistence of spatial patterns of soil moisture fields and identify
locations that accurately represent spatial averages for various
purposes, including: ground calibration of soil moisture maps ob-
tained by remote sensing (e.g., Brocca et al., 2010, 2012; Choi
and Jacobs, 2007; Cosh et al., 2004; De Lannoy et al., 2007; Grayson
and Western, 1998; Heathman et al., 2012; Jacobs et al., 2004,
2010; Joshi et al., 2011; Mohanty and Skaggs, 2001; Starks et al.,
2006); spatial soil water storage estimation (e.g., Gao et al.,
2011b; Gao and Shao, 2012; Hu et al., 2010a) and inferring missing
values (e.g., Dumedah and Coulibaly, 2011; Guber et al., 2008; Pac-
hepsky et al., 2005). However, time stability features of soil mois-
ture have never been tested in large gullies. Furthermore, although
time stability was considered in the cited studies, few attempted to
validate identified time-stable locations or address effects of tem-
poral variations in vegetation type and precipitation (Han et al.,
2012), with the exception of Hu et al. (2010a), Jacobs et al.
(2010) and Martínez-Fernández and Ceballos (2005). Moreover,
the time stability of soil moisture is closely linked to other environ-
mental factors, such as soil texture (e.g., Jacobs et al., 2004; Moh-
anty and Skaggs, 2001), topography (e.g., Gao et al., 2011b;
Grayson and Western, 1998), and vegetation features (Jacobs
et al., 2010; Joshi et al., 2011). For instance, both Joshi et al.
(2011) and Mohanty and Skaggs (2001) found that time stability
was generally higher in sandy loam fields than in silt loam fields
in the South Great Plain (SGP) region, and higher in gently rolling
fields than in areas with flat topography. Jacobs et al. (2004)
showed that locations with mild slopes had higher time stability
than hilltops and steep slopes, and that soil parameters were insuf-
ficient to predict temporally stable locations in Walnut Creek wa-
tershed, Iowa. Joshi et al. (2011) also found that time stability was
highest on hilltops in Iowa.

A prerequisite for time stability analysis is intensive soil mois-
ture sampling to identify robust time-stable locations (Teuling
et al., 2006). Thus, this method is not applicable in ungauged areas.
When previous soil moisture time series are not available, an alter-
native method is random combination analysis, introduced by
Wang et al. (2008). Brocca et al. (2010, 2012) found that only a
few locations are required to reliably estimate the mean soil mois-
ture for an area. Accordingly, combining time stability analysis and
random combination analysis may provide all the information re-
quired for optimizing in situ soil moisture networks (Brocca
et al., 2012). However, few studies have combined these methods
to analyze the spatiotemporal variability of soil moisture.

The main driver of changes in soil moisture is precipitation
(Entekhabi and Rodriguez-Iturbe, 1994), which (unlike soil mois-
ture) is usually recorded routinely at weather stations. Therefore,
several attempts have been made to develop models linking soil
moisture to precipitation (Entekhabi and Rodriguez-Iturbe, 1994;
Pan et al., 2003; Yoo et al., 1998). Entekhabi and Rodriguez-Iturbe
(1994) introduced a stochastic partial differential equation to char-
acterize the spatiotemporal variability of soil moisture. Pan et al.
(2003) modified this partial differential equation, by dropping a dif-
fusion term, in a successful attempt to obtain a simplified model
capable of predicting surface soil moisture (0–5 cm) from precipita-
tion observations. The key to reliable application of this model is
determination of appropriate time window sizes, which may vary
substantially among different areas. Moreover, this model also
requires inputs of land surface features and soil properties (e.g., infil-
tration rates). Thus, despite its success there is a need for a simpler
model for estimating root-zone soil moisture patterns in large
gullies from precipitation observations, without sampling and
determining soil properties, which is difficult in complex gully
topography.

On the Loess Plateau, gullies cover approximately 40% of the to-
tal area, at densities of 1.5–4.0 km km�2 (Zheng et al., 2006), rising
to 50–60% and densities of 3–8 km km�2 in hilly parts (Huang and
Ren, 2006). However, despite the very large area they cover in the
Loess Plateau, knowledge of spatiotemporal soil moisture varia-
tions in the gullies is very limited. Thus, the objectives of the pre-
sented study were to develop and evaluate methodologies for
estimating spatial root-zone soil moisture averages in large gullies,
by analyzing its time stability at various locations in a selected
gully and then estimating spatial averages of soil moisture from
point observations, using two approaches. The first approach,
applicable when previous time series of soil moisture data are
available, involves time stability analysis and use of a new metric
introduced for identifying time-stable locations to upscale point
observations. The second approach, applicable when previous time
series are not available, involves use of a random combination
method. In particular, a simple empirical model was developed
for estimating spatial mean root-zone (0–80 cm) soil moisture in
gullies during the growing season. Although the calibration and
validation of remote sensing soil moisture products in large gullies
are not the main purpose of this investigation, this study may facil-
itate the calibration and validation work for the Loess Plateau re-
gion, where little relevant work has been done. This is becoming
increasingly important with the increasing availability of coarse-
resolution satellite-based soil moisture maps (e.g., Advanced
Microwave Scanning Radiometer, AMSR; Advanced SCATterometer,
ASCAT; and Soil Moisture and Ocean Salinity, SMOS, maps).

2. Data description

2.1. Study site

The study field is located at the Yuanzegou catchment (37�150N,
118�180E) (Fig. 1) which is a typical gully catchment in the hilly
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areas of the Loess Plateau and gullies occupies approximately 53%
(0.31 km2) of the total area of the catchment (0.58 km2). This area
has a semiarid continental climate with (based on data for 1956–
2006): mean annual precipitation of 505 mm, 70% of which falls
during late summer and early autumn (August, September and
October); a mean annual temperature of 8.6 �C, with mean
monthly temperatures ranging from �6.5 �C in January to 22.8 �C
in July; 157 frost-free days and 2720 h of sunshine on average each
year (Weather Bureau of Qingjian county, Shaanxi province). The
elevation of the Yuanzegou catchment ranges from 865 to
1105 m. The main gully stretches from south to north, with preva-
lent steep slopes of 35–90�.

The gully sidewalls are the main part of the gullies (very typical
in hilly areas of the Loess Plateau) and they are weakly disturbed
by human activity. Soils in gullies are primarily composed of loess
with texture of fine silt and silt loam. The basic soil hydraulic prop-
erties in gullies refer to Gao et al. (2011a). Soil thickness ranges
from less than 0.2 m on the gully floor to more than 15 m at gully
edges. The soils are primarily vegetated with perennial grasses,
including Artemisia gmelinii, Bothriochloa ischemum and Lespedeza
davurica. According to Gao et al. (2011a), the root zone layer was
defined as the 0–80 cm because the majority (>90%) of root mass
for most of the plants in this site was within this depth.

2.2. Soil moisture collection

Because most of gully floors are consisted of exposed bedrock,
only soil moisture over gully sidewalls was sampled. Three tran-
sects (A, B and C), traversing the gully sidewalls to represent the
range of topography with the lengths of approximately 50, 80
and 50 m long, respectively, were established to collect soil mois-
ture (Fig. 1). In general, 9 locations were sampled along transect B,
and 5 along transects A and C; there was a distance of approxi-
mately 10–15 m between sampling points. According to Gao
et al. (2011a), the special topographic positions in gully sidewalls
includes ridges, pipes, plane surfaces, and cliffs. These sampling
locations covered the different topographic positions (except for
cliffs where it is impossible to conduct soil moisture sampling),
with at least five locations for each position. It seems that the total
number of locations may be not sufficient to obtain spatial statis-
tical results. However, the sampling locations here cover different
micro-topography in gullies. Therefore, this study assumes that
spatially distributed sampling locations could provide soil mois-
ture characteristics in gullies.

From September 3 2009 to September 19 2011, soil moisture in
0–80 cm was collected with an interval of 20 cm at each sampling
location and a total of 41 sampling days were conducted. The total

Fig. 1. Study site and sampling transects in gullies.
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precipitation for the year of 2009, 2010 and 2011 was 654.3, 426.8
and 499.6 mm, respectively. A portable Time Domain Reflectome-
try (TDR) system, TRIME-PICO IPH/T3 (IMKO, Ettlingen, Germany)
was used to collect soil moisture. The TDR system consists of a
TRIME-IPH probe, a TRIME-DataPilot datalogger and fiberglass ac-
cess tubes (/ = 40 mm). A hand auger (/ = 45 mm) was used to in-
stall fiberglass access tubes instead of the original accessories,
which are difficult to operate over gully sidewalls. To facilitate
installation of the tubes, the relief at some sampling points was
disturbed slightly. The space between the tube and soil was filled
with a mixture of the soil removed by the hand auger and water
(Gao et al., 2011a). For each sampling event, three repeats were
made at each depth and soil moisture was sampled within 4 min
at each sampling location. The soil moisture measurements for
all locations were taken within 2 h to diminish the temporal vari-
ation of soil moisture as much as possible. Before soil moisture
sampling, we conducted a local gravimetric calibration for this
TDR system. The detailed calibration process is described in Gao
et al. (2011a), using the following calibration equation:

y ¼ 0:9471x� 4:3796; R2 ¼ 0:904; RMSE ¼ 2:68% ð1Þ

where x is the TDR-derived moisture value (%, v/v); y is the volu-
metric moisture content transformed from the gravimetric mois-
ture content by multiplying it by the corresponding bulk density
(%, v/v).

2.3. Land surface features

Disturbed soil samples at the surface depth (0–20 cm) were col-
lected by a hand auger (/ = 40 mm) from close to each soil mois-
ture sampling location in order to determine the soil particle size
distribution; and this was achieved using the MS2000 particle size
analyzer (Malvern Instrument, Malvern, Britain). A geological com-
pass was used to determine the slope angle and the aspect, and a
portable global positioning system (GPS) (GPS 72H™, Garmin,
USA) was used to determine the elevation for each sampling loca-
tion in gullies. The vegetation cover was measured by using a
cross-hair point frame with a size of 50 cm � 50 cm and 100 grids,
and the number of the plants was counted within the frame. The
detailed information for these environmental factors was shown
in Table 1.

3. Methods

In this study, time stability analysis was the primary method for
estimating mean soil moisture in gullies. Random combination
analysis and an empirical model were also used for analyses in or-
der to provide more comprehensive information for mean soil
moisture estimation in large gullies, considering different cases
(previous soil moisture dataset available or not).

3.1. Time stability analysis

3.1.1. Method description
Following Vachaud et al. (1985), for a given depth k and sam-

pling day j, the relative difference (RD) for sampling location i with
respect to spatial mean soil moisture at the same depth (�hjk) is de-
fined as:

dijk ¼
hijk � �hjk

�hjk
ð2Þ

The temporal mean relative difference (MRD) and its standard
deviation (SDRD) during the study period are calculated as:

�dik ¼
1
T

XT

j¼1

dijk ð3Þ

and

rikðdÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T � 1

XT

j¼1

ðdijk � �dikÞ2
vuut ð4Þ

where T is the total number of sampling days over the study period.
Positive and negative MRD values signify that the considered loca-
tion is wetter and drier, respectively than the spatial mean soil
moisture. The SDRD can be used to discern time-stable locations;
the lower this parameter, the more temporally stable the location.
However, since the main purpose of time stability analysis is to esti-
mate spatial mean soil moisture from time-stable locations, a short-
coming of using SDRD is that it does not directly reflect estimation
errors (Hu et al., 2010a).

According to Grayson and Western (1998), time-stable loca-
tions with non-zero relative differences can be used to represent

Table 1
Overall information of environmental variables for sampling locations in the study site.

ID Sand
contenta (%)

Silt
contenta (%)

Clay
contenta (%)

SOCb

(g kg�1)
STNc

(g kg�1)
Slope
(%)

Cos
(aspect)

Relative
elevation (m)

Position Plant cover (%) Plant density
(plants m�2)

A1 15.7 63.8 20.5 3.50 0.311 64.9 0.14 21 Plane surface 54 22
A2 19.7 66.9 13.4 2.77 0.292 70.0 0.05 27 Plane surface 45 17
A3 23.2 62.1 14.7 1.67 0.178 90.0 0.10 41 Ridge 21 2
A4 23.4 61.4 15.2 3.61 0.303 83.9 0.10 51 Ridge 34 6
A5 22.5 64.6 12.9 2.33 0.246 55.4 0.26 62 Plane surface 59 18
B1 12.4 68.5 19.1 5.42 0.293 160.0 0.09 22 Pipe 52 9
B2 12.1 66.8 21.1 4.04 0.444 142.8 �0.09 33 Pipe 26 4
B3 17.2 66.3 16.5 3.59 0.329 103.6 0.00 42 Pipe 18 2
B4 22.5 66.0 11.5 2.56 0.223 32.5 �0.09 51 Plane surface 47 10
B5 15.3 65.8 18.9 3.21 0.179 64.9 0.42 61 Plane surface 49 9
B6 14.4 66.2 19.4 5.19 0.180 72.7 0.50 69 Plane surface 60 14
B7 24.1 65.7 10.2 1.98 0.336 72.7 �0.33 78 Ridge 29 5
B8 22.8 64.5 12.7 2.93 0.362 70.0 �0.42 90 Ridge 25 3
B9 23.6 63.3 13.1 3.24 0.389 60.1 �0.39 99 Ridge 30 5
C1 15.9 64.5 19.6 1.99 0.190 180.4 �0.53 46 Pipe 10 1
C2 16.8 67.2 16.0 2.43 0.243 103.6 �0.47 55 Pipe 24 4
C3 14.8 66.4 18.8 2.78 0.255 51.0 0.29 64 Plane surface 39 12
C4 17.6 66.5 15.9 3.59 0.317 60.1 0.37 72 Plane surface 61 18
C5 19.1 66.2 14.7 3.18 0.392 67.5 0.37 78 Plane surface 75 20

a Sand content: 0.02–2 mm; silt content: 0.002–0.2 mm; clay content: <0.002 mm.
b SOC: soil organic carbon.
c STN: soil total nitrogen.
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spatial mean soil moisture, provided the offset (RD) between the
non-zero time-stable locations and the mean value is known. Rear-
ranging Eq. (2), the spatial mean soil moisture at depth k can be ex-
pressed as:

�hjk ¼
hijk

1þ dijk
ð5Þ

Assuming a constant coefficient equaling the MRD, the spatial
mean soil moisture can then be indirectly estimated as:

~hjk ¼
hijk

1þ �dik
ð6Þ

Thus, the root mean square error (RMSE) of the estimated spa-
tial mean soil moisture, applying a constant offset, was calculated
as follows:

RMSEið~hÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT

j¼1

ð~hjk � �hjkÞ2
vuut ð7Þ

Grayson and Western (1998) further stated that the offset coef-
ficients (MRD) for time-stable locations are ‘‘constants’’ that are
independent of the time of year (or average wetness). However,
this has been questioned by Heathman et al. (2012), because sev-
eral studies have shown that the linear offset coefficients calcu-
lated in this manner are not necessarily transferable in time and
space, as they may be affected by variations in climate, temporal
sampling or vegetation. Although we agree with the arguments
of Heathman et al. (2012), offset coefficients (MRD) for time-stable
locations (with low SDRD), should theoretically be less sensitive to
variations in the time of year (and wetness) than those for other
locations. Therefore, the RMSE parameter used in this study is clo-
sely related to the time stability. For time-stable locations, the esti-
mated spatial mean soil moisture ð~hjkÞ should be more likely to
approximate the true spatial mean soil moisture ð�hjkÞ, and the
RMSE should be lower than corresponding parameters for other
locations. In this sense, the RMSE applied here can be used to iden-
tify time-stable locations and it directly reflects the estimation er-
ror when a constant offset coefficient is applied. Generally, the
lower the RMSE, the more temporally stable a location is. In this
study, we used RMSE to identify time-stable locations, and Eq.
(6) was then employed to estimate spatial averages of root-zone
soil moisture in gullies from measurements of time-stable loca-
tions. In addition, Eq. (6) has also been used as an observation
operator (Han et al., 2012) for spatial mean soil moisture estima-
tion. It was termed MRD operator here.

Han et al. (2012) argued that time-stable locations may differ in
different periods, partly at least because of limitations in sampling
periods. Therefore, to identify robust time-stable locations, the
whole data sets (covering 41 sampling days) were used for time-
stability analysis, and leave-one-out cross-validation was then em-
ployed to test their robustness, as described below.

3.1.2. Cross-validation
Cross-validation was conducted, according to Jacobs et al. (2010),

as follows. Each of the 40 datasets obtained by omitting soil moisture
data for one of the 41 sampling days (T) was used to identify time-
stable locations, for each depth, and the remaining data set in each
case (the jth data set, where j = 1,2, . . . ,T) was used for validation.
First, transform the soil moisture for time-stable locations derived
from the 40 subsets to spatial averages of gullies through Eq. (6); then
average the transformed spatial means according to Eq. (9) and com-
pared to the mean value of the remaining data set, again for each
depth. Here, the first five time-stable locations (based on the 40 sub-
sets) were identified for each sampling day, i.e., N = 5. The accuracy of
the averages was then evaluated by calculating the root mean square

error (RMSE). The equation for calculating RMSE at the jth sampling
day and depth k was:

RMSEjk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

s¼1

ð~hjkðsÞ � �hjkÞ2
vuut ð8Þ

~hjkðsÞ ¼
1
s

Xs

s¼1

~hsjk ð9Þ

where s is the number of time-stable locations; ~hsjk is the spatial
mean soil moisture of gullies estimated from the sth time-stable
location according to Eq. (6); ~hjkðsÞ is the estimated spatial mean soil
moisture of gullies based on time-stable locations.

3.1.3. Statistical metrics
The correlation coefficient (R), root mean square error (RMSE),

and mean bias error (MBE) were calculated as measures of the
goodness-of-fit between observed (Ejk) and estimated (Ojk) mean
soil moisture contents, using the following equations:

Rk ¼
PT

j¼1ðEjk � EjkÞðOjk � OjkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
j¼1ðEjk � EjkÞ2

PT
j¼1ðOjk � OjkÞ2

q ð10Þ

RMSEk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT

j�1

ðEkj � OkjÞ2
vuut ð11Þ

MBEk ¼
1
T

XT

j�1

ðEkj � OkjÞ ð12Þ

where T is the total number of sampling days, while Ejk and Ojk are
the temporal means of Ejk and Ojk, respectively.

3.2. Random combination method

If previous soil moisture time series are not available, a random
combination method was used to obtain the number of locations
(randomly selected) needed to estimate spatial mean soil moisture
within a given accuracy (Brocca et al., 2010, 2012; Wang et al.,
2008). In particular, the following steps are included for this meth-
od (Brocca et al., 2010, 2012):

(1) For a given depth k, randomly select M point measurements
(1 6M 6 N) from the available N observations with R
replicates.

(2) For each replicate, the time series of spatial mean soil mois-
ture is calculated, and thus a total of R soil moisture time
series are obtained.

(3) These time series are compared statistically with the one based
on all the N sampling locations (termed as benchmark time
series). Two metrics, the determination coefficient (R2) and
the root mean square error, are used for this comparison.

(4) The mean and standard deviation of the two statistical
moments are assessed.

(5) Steps (1)–(4) are repeated for M ranging from 1 to N.

Here we set a criterion to select the minimum number of ran-
domly selected locations, that is the determination coeffi-
cient >98% and the root mean square error < 1%.

3.3. Estimating spatial mean values from precipitation time series

We hypothesized that precipitation and evapotranspiration are
the main factors controlling root-zone soil moisture dynamics at
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the study site because the groundwater table in the Loess Plateau is
usually deeper than 50 m (Yang and Shao, 2000). Therefore, it
should be possible to estimate root-zone soil moisture from pre-
cipitation observations.

In this part of the study we developed a simple empirical model
to estimate spatial mean soil moisture in gullies from precipitation
time series. Generally, the relationship between root-zone soil
moisture content and daily mean evapotranspiration is strong,
and linear under water stress conditions (Basara and Crawford,
2002; Shang et al., 2000). According to Shang et al. (2000), the rela-
tionship over a period without rainfall can be expressed as:

dx
dt
¼ �kx ð13Þ

where x is the spatial mean root-zone soil moisture in a given gully
(mm); and k is the soil moisture loss coefficient (d�1), the minus
symbol denoting the reduction of soil moisture. Integrating Eq.
(13) for time interval [ti, tj] gives:

xtj
¼ xti

expð�kiDtiÞ ð14Þ

and

ki ¼
ln xti

� ln xtj

tj � ti
ð15Þ

Here, xtj
is the spatial mean root-zone soil moisture at time tj;

xti
is the spatial mean root-zone soil moisture at time ti; and ki is

the loss coefficient for time interval [ti, tj]. Including a precipitation
term in Eq. (14) gives:

xtj
¼ xti

expð�kiDtiÞ þ Pi ð16Þ

If the time interval is 1 day, i.e., Dti = 1 d, then,

xtj
¼ xti

expð�kiÞ þ Pi ð17Þ

If the initial time is t1, and the initial spatial mean root-zone soil
moisture is xt1, then,

xt2 ¼ xt1 expð�k1Þ þ P1 ð18Þ

xt3 ¼ xt1 exp½�ðk1 þ k2Þ� þ P1 expð�k2Þ þ P2 ð19Þ

Applying the above procedure, we can now derive the following
equation,

xti
¼ xt1 exp �

Xi�1

i¼1

ki

 !
þ P1 exp �

Xi�1

i¼2

ki

 !
þ � � � þ Pi�1 ð20Þ

where P1 is the precipitation during time interval Dt1, and Pi�1 is the
precipitation during time interval Dti�1. Using the temporal mean
(�k ¼ 1

N

PN
i¼1ki, where N is the total number of time intervals for a gi-

ven period) of ki to substitute ki at each time interval, one has,

xti
¼ xt1 exp½�ði� 1Þ�k� þ P1 exp½�ði� 2Þ�k� þ � � � þ Pi�1 ð21Þ

In Eq. (21), only precipitation is temporally variable, and in this
study it was used to predict spatial mean root-zone soil moisture
in the studied gully from precipitation time series recorded at a
nearby weather station (�200 m from the edge of the gully). The
estimation error was also calculated.

4. Results and discussion

4.1. Statistical description

The soil moisture datasets for analyses were derived from dif-
ferent topographic positions (pipe, plane surface and ridge) of the
large gully and spanned dry, medium and wet seasons of this study
area. Therefore, the datasets used here could represent the spatial–

temporal features of soil moisture in the large gully. Fig. 2 shows
the temporal dynamics of root zone soil moisture and its standard
deviation. In general, surface soil moisture (0–20 cm) was highly
dependent on rainfall events; it increased sharply following rainfall
events and decreased slowly over the periods without rainfall
(interstorm periods). In particular, surface soil moisture showed
the lowest value over the interstorm periods while the highest va-
lue fallowing relatively large precipitation. Unlike with surface
layer, soil moisture in deeper depths showed lags in response to
rainfall events, especially in the 60–80 cm. The lags might be a con-
sequence of infiltration delay or insufficient rainfall amount into
deeper depths. Moreover, S.D. also fluctuated during the study
period.

4.2. Time stability analysis

4.2.1. The feasibility of the new metric RMSE
Fig. 3 shows the time series of offset coefficients (MRD) for loca-

tions with different SDRD values. As shown there, locations having
lower SDRD values showed less temporal variations of MRD, sug-
gesting offset coefficients more approximate constants. According
to Eqs. (5)–(7), these locations with lower SDRD values also would
have lower RMSE values. Fig. 4 characterizes the relationship be-
tween the RMSE parameter used here and SDRD over the study
period to examine the robustness of the RMSE for identifying
time-stable locations. Generally, there were strong and positive
correlations between them, with R2 ranging from 0.65 to 0.81
and an overall R2 of 0.72, and the strongest correlation was in
the 20–40 cm (R2, 0.81). These findings indicate that the RMSE
parameter used in this study was useful for identifying time-stable
locations. Despite the strong correlations between them, RMSE
used here is a higher-efficiency metric than SDRD in estimating
areal mean soil moisture since it not only can identify time-stable
locations but also directly indicate the estimation error. It should
be noted that the RMSE used here is different from the root mean
square error of the relative difference of soil moisture introduced
by Jacobs et al. (2004), which does not directly reflect estimation
errors. It also differs from the MABE (mean absolute bias error)
developed by Hu et al. (2010a), although the MABE can be used
to identify time-stable locations and reflects estimation errors.
Mathematically, the RMSE can be divided into two, variance (pre-
cision) and bias (accuracy), components, whereas MABE only re-
flects the bias error of estimated soil moisture, providing no
indication of the precision of estimations. Therefore, we would rec-
ommend the RMSE here for time stability analysis when estimat-
ing spatial soil moisture averages.

4.2.2. Identification and validation of time-stable locations across the
root zone

RMSE values calculated for various depths at each of the sam-
pling locations in the studied gully are shown in Fig. 5. Like with
other studies (e.g., Brocca et al., 2010; Gao et al., 2011b; Hu
et al., 2010a; Jacobs et al., 2004; Starks et al., 2006), the most tem-
porally stable location would be identified and be used for spatial
averages estimation. As in several other studies (Biswas and Si,
2011; Guber et al., 2008; Heathman et al., 2012; Hu et al., 2010b;
Starks et al., 2006), we identified different time-stable locations
at different depths. The location C4 was identified as the most sta-
ble location for the 0–20 and 40–60 cm with RMSE equaling to
0.68% and 0.72%, respectively. For the 20–40 and 60–80 cm, the
most stable locations were B4 (RMSE, 0.58%) and A4 (RMSE,
0.72%), respectively. The results also showed that the time stability
of soil moisture was depth-dependent. Across all sampling loca-
tions the mean RMSE (1.19%) was lowest for the 0–20 cm layer,
higher for subsurface layers and highest (1.41%) for the 20–40 cm
layer, implying that soil moisture time stability was lower in the

X. Gao et al. / Journal of Hydrology 486 (2013) 466–478 471



Author's personal copy

subsurface layers than in the surface layer. In contrast, Guber et al.
(2008) found that time stability increased with depth. A possible
explanation for the discrepancy is that the steep slopes and rough
surface of gully sidewalls greatly affected the flow path of surface
runoff and vegetation distribution, which resulted in diverse pat-
terns of soil moisture infiltration for different sampling locations;
hence the spatial structure of subsurface soil moisture in them
may vary more with time. In addition, correlation analysis indi-
cated that there were strong correlations among RMSE values for
different layers (Table 4), suggesting that the time stability for a gi-
ven layer is a good indicator of the time stability of other root zone
layers.

The statistical results of soil moisture content at various depths
from cross validation are shown in Table 2. Note that the 40 data
subsets used to identify time-stable locations for each depth did
not include data for the focal sampling day. Error statistics showed
that errors (RMSE) rarely exceeded 1.5%. Moreover, approximately
50% of the error values (for 21 of the 41 days) were lower than 1.0%
for the 0–20 cm layer. For greater depths, the numbers of days
with <1.0% RMSE values were even higher (at least 28 of the
41 days). Further analysis showed that estimation errors were lar-
ger for the wet season than the dry season, and large errors were
usually associated with days when rain fell. Jacobs et al. (2010)
found similar patterns for validated time-stable locations in the
Southern Great Plains hydrology experiments of 1997 (SGP97)

and 1999 (SGP99). This implies that additional soil moisture sam-
pling is needed during wet seasons, especially for days when rain
begins (Jacobs et al., 2010).

4.2.3. Transferability of the MRD operator across root zone layers
A major goal of any time stability analysis of soil moisture is to

find the most temporally stable location for estimating average
spatial soil moisture contents. However, the most time-stable loca-
tion usually varies for different layers (Guber et al., 2008; Heath-
man et al., 2012; Hu et al., 2010b; Pachepsky et al., 2005; Starks
et al., 2006), despite significant correlations of RMSE values be-
tween different layers. In this part of the investigation, we tested
if the MRD operator for a given layer could be reliably transferred
across root zone layers. If so, only one MRD operator would be
needed to estimate the mean soil moisture of different layers. Ta-
ble 3 presents the statistical results of applying MRD operator for
one layer to other root zone layers in order to test the vertical
transferability of MRD operators. Although high R and near-zero
MRD values were observed, root mean square error statistics were
not satisfactory; specifically, when the MRD operator for one given
layer was transferred to other layers, the root mean square error of
spatial averages estimation increased by a factor of 1.5 to 2.5. This
suggests that MRD operators cannot be transferred across to all of
the other layers. However, Han et al. (2012) showed a successful
transferability of MRD operator at two different layers (5 cm versus

a

b

c

Fig. 2. Soil moisture time series at different depths over 3 years gullies: (a) 2009, (b) 2010, and (c) 2011. Error bars represent ± one standard deviation.
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20 cm). This is probably because transferability was only con-
ducted at two layers in their study. Our results suggest that when
transferability is done among deeper depths, it is not necessarily
transferable.

4.2.4. Topographical features of time-stable locations
Correlation analysis was applied to examine the relationships

between soil moisture time-stability (RMSE) and environmental
variables, including soil properties of the 0–20 cm layer. Generally,
the correlations, for various depths, were weak (Table 4), implying
that use of one single environmental variable to identify time-sta-
ble locations would not be reliable. The most practically feasible
way to identify time-stable locations, as yet, is to characterize sites
in terms of environmental variables, such as soil texture, topo-
graphic attributes and land use/land cover properties (e.g., Gao

et al., 2011b; Grayson and Western, 1998; Hu et al., 2010b; Jacobs
et al., 2004, 2010; Joshi et al., 2011; Teuling et al., 2006). However,
the results may have serious limitations for application in areas
other than those where the data were collected.

In this part of the study we attempted to classify time-stable
locations based on topographic attributes, because locations with
similar topography generally have relatively low variations in soil
texture (silt loam) and other soil properties (Table 1). Moreover,
we also excluded several commonly used topographic indices such
as contributing area and topographic wetness index (Beven and
Kirkby, 1979; Kim, 2012; Quinn et al., 1991) due to the relatively
coarse-resolution DEM of the gully. With the purpose of a priori
selection of time-stable locations via feasible and simple indica-
tors, we mainly focused on topographic position (ridge, plane sur-
face or pipe) here as it correlates more strongly with RMSE than
other topographic attributes (Table 4), and is a particularity strong
determinant of soil moisture in gully landscapes of the Loess Pla-
teau (Gao et al., 2011a). The observed relationships between topo-
graphic position and RMSE are shown in Fig. 6. For the 0–20 and
20–40 cm layers, the lowest RMSE was observed in ridges and
the highest in pipes, suggesting that time stability is highest at
ridge locations. This might be explained as follows: soil moisture
at dry period, according to Grayson et al. (1997), is mainly con-
trolled by soil properties such as clay content. Because of the rela-
tively low clay content for ridge locations (Table 1), soil moisture
for ridge locations was lower than gully averages during dry days.
Over wet period, soil moisture at shallow depth (0–20 and 20–
40 cm in this study) is mainly dominated by topography. Due to
the convex shape, steep slope (�75%) and low vegetation cover
(Table 1), a large part of precipitation on ridges would lose in terms
of runoff and thus soil moisture for ridge locations would be also
lower than gully averages during wet days. Therefore, the relative
difference values of soil moisture were stable for ridge locations
independent of wetness conditions and thus showed relatively
high time stability. This conclusion is consistent with the observa-
tions that four out of seven locations within 1% RMSE for the 0–
20 cm layer (B9, A4, B8 and B7) were located in ridges (Fig. 5).

a b

c d

Fig. 3. Temporal variations of relative difference for locations with different SDRD (standard deviation of relative difference) values (numbers in parenthesis) at various
depths, (a) 0–20 cm, (b) 20–40 cm, (c) 40–60 cm, and (d) 60–80 cm.

Fig. 4. Relationship between root mean square error (RMSE) of estimated soil
moisture and standard deviation of relative difference (SDRD) for soil moisture.
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4.3. Random combination analysis

When previous soil moisture data sets are not available, an
alternative method is to use the random combination method
introduced by Wang et al. (2008). We randomly selected from 1
to 19 upland locations for R = 1000 replicates, and then compared
the time series of the spatial mean soil moisture obtained from
these locations with the benchmark time series. The determination
coefficient (R2) and root mean square error for various depths
when comparing benchmark time series and that obtained by aver-
aging a different number of randomly selected locations were
shown in Fig. 7. Generally, only several sampling locations were re-
quired to accurately estimate the spatial mean soil moisture in the
gully. For the 0–20 cm layer, only three locations were needed to
obtain a mean soil moisture time series with root mean square er-
ror < 1.0% and R2 > 0.98. For the other depths, only four locations
were needed to reach this accuracy. Brocca et al. (2010) also found
that data from just five locations (of 30 in total) were needed to ob-
tain mean soil moisture temporal patterns with corresponding
accuracy at the field scale. Furthermore, when eight locations
and nine locations were randomly selected the root mean square
error for the 0–20 cm and greater depths dropped to <0.05% and
the R2 exceeded 0.99. These results imply that a moderate reduc-
tion in the number of sampling locations in this study site would
not lead to a significant reduction of accuracy in mean soil mois-
ture estimation. However, how many randomly selected locations
are needed for an accurate estimation is site-specific and may vary
from different study sites. It is also worthy noting that the error
statistics of random combination analysis was based on 1000 rep-
licates of random selection. In practice, it is impossible to conduct
such a magnitude of replicates. Other information may be needed
for the selection of sampling locations. Further study showed that
the best choices of randomly selected locations for estimating soil
moisture in large, ungauged gullies in the Loess Plateau using this
approach would be in ridges, since ridge locations showed the
highest time stability (Fig. 6).

The finding that only three or four locations are needed for
accurate mean soil moisture estimation is probably due to the con-
siderable time stability of soil moisture fields at our study site. In
this sense, previous intensive soil moisture campaigns may be
not necessary to obtain spatial–temporal soil moisture characteris-
tics at this site. However, we should note that the accuracy of esti-
mating areal means through the most time-stable locations was
higher than that by averaging soil moisture values of three or four
randomly selected location (Figs. 5 and 7). Furthermore, estimating
areal mean soil moisture through only a few randomly selected
locations can result in great uncertainty (high standard deviation)
(Fig. 7) and thus repeats (maybe a large magnitude) are needed to
diminish the uncertainty. Overall, time stability analysis is a robust
method than random combination analysis for mean soil moisture
estimation when previous soil moisture datasets are available
whereas the latter may be a feasible alternative as previous soil
moisture campaigns are not available.

4.4. Estimation of spatial averages from precipitation observations

Initially, 11 time intervals during which there was no precipita-
tion during the two study years were selected to calculate the tem-
poral mean loss coefficient K. These 11 time intervals spanned wet
and dry soil conditions. The results show that the coefficient (K)
changed with time, and values were relatively low during periods
with dry soil conditions (Table 5). With a time step of 1 day, the
empirical model introduced in Section 3.3 was then used to repro-
duce soil moisture time series for 2010 and 2011. The simulated
and observed soil moisture time series for the 0–80 cm layers in
these years are shown in Fig. 8a and b, respectively. Generally,
the model successfully captured the temporal behavior of root
zone soil moisture over the 2 years. The simulated time series were
similar to the observed series, whereas several deviations were ob-
served, especially during wet conditions. For instance, the model
notably underestimated the soil moisture peak (August 28–Sep-
tember 9) in 2010, and overestimated the peak (August 27–Sep-

a b

c d

Fig. 5. Ranked RMSE for sampling locations in gullies based on time stability analysis, (a) 0–20 cm, (b) 20–40 cm, (c) 40–60 cm, and (d) 60–80 cm.
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tember 19) in 2011. The deviations between simulated and ob-
served soil moisture storages in wet conditions could be attributed
to three factors: (1) the constant loss coefficient assumption in the
model being inconsistent with the real temporal variations of the
coefficient; (2) deviations between the true precipitation and pre-

cipitation records obtained from the nearby weather station, due to
the steep slopes (average slope 84.5%) and rough surface (Fig. 1) at
our study causing spatially uneven distribution of precipitation
(Prudhomme and Reed, 1999); (3) the model failing to reflect the
lateral flow path during wet season including that prolonged and
high-intensity rainstorm in wet season could result in considerable
amount of hillslope runoff, which may contribute to water storage
in gullies, however, high-density rainstorm could also reduce the
amount of water for infiltration through surface runoff over gully
sidewalls. Overall, the model simulated the 2010 data significantly
better than the 2011 data (determination coefficients: 0.968 and
0.880, respectively). Moreover, the prediction error for 2010 was
9.948 mm, significantly lower than the error (12.229 mm) for
2011. The poorer performance of the model in 2011 may have been
because data for only four time intervals (of 11 in total) in 2011
were used to calculate the temporal mean loss coefficient. This im-
plies that long-term soil moisture measurements at different
hydrological years are needed to obtain the robust temporal mean
loss coefficient K.

These results suggest that precipitation observations can pro-
vide estimations of mean soil moisture time series in gullies with
certain accuracy. Using an analytical method, Pan et al. (2003) suc-

Table 4
Results of correlation analysis between root mean square errors (RMSEs) of estimated
mean soil moisture at various depths in gullies and their correlations with selected
environmental variables. Significant correlations (P < 0.05) are shown in italics and
significant correlations (P < 0.01) in bold.

Variables RMSE20a RMSE40b RMSE60c RMSE80d

RMSE20 1.00 0.87 0.67 0.64
RMSE40 1.00 0.79 0.73
RMSE60 1.00 0.74
RMSE80 1.00
Sand content �0.43 �0.38 �0.24 0.01
Silt content 0.43 0.33 �0.04 0.13
Clay content 0.30 0.30 0.32 �0.08
Soil organic carbon 0.20 0.20 �0.02 �0.16
Soil total nitrogen �0.21 �0.21 �0.47 �0.25
Slope 0.29 0.28 0.15 �0.23
Cos (aspect) 0.19 0.15 0.27 0.27
Relative elevation �0.28 �0.09 0.00 0.22
Position 0.45 0.32 0.13 �0.06
Plant cover 0.06 0.11 0.12 0.22
Plant density 0.03 0.08 0.10 0.20

a RMSE20: RMSE for the 0–20 cm.
b RMSE40: RMSE for the 20–40 cm.
c RMSE60: RMSE for the 40–60 cm.
d RMSE80: RMSE for the 60–80 cm.

Table 2
Statistical results of cross-validation analysis for the whole data sets.

Date RMSE (%)

0–20 cm 20–40 cm 40–60 cm 60–80 cm

2009/9/3 1.64 1.30 1.20 1.35
2009/9/11 1.22 1.02 1.01 1.47
2009/9/18 0.84 1.05 0.92 1.15
2009/9/25 0.57 0.77 1.30 1.40
2009/10/20 1.62 0.60 0.73 0.91
2010/5/3 1.43 0.82 0.50 0.84
2010/5/5 1.28 0.77 0.85 0.80
2010/5/6 1.17 0.65 0.52 0.70
2010/5/19 1.17 0.70 0.65 0.50
2010/5/25 1.24 0.84 0.93 0.66
2010/5/28 1.41 0.72 0.74 0.65
2010/6/13 1.02 1.11 1.01 0.55
2010/6/23 0.68 0.75 0.65 0.99
2010/6/28 0.55 0.66 1.10 1.02
2010/7/12 0.60 0.71 0.94 0.76
2010/7/15 0.51 0.76 0.77 0.77
2010/7/22 0.64 0.46 0.69 0.67
2010/7/29 0.50 0.59 0.54 1.03
2010/8/10 1.22 1.08 1.30 1.18
2010/8/12 0.87 2.07 1.17 0.90
2010/8/16 1.11 1.34 0.89 0.90
2010/8/28 1.35 0.59 1.57 0.96
2010/9/6 0.85 0.69 0.26 0.60
2010/9/9 1.00 1.55 0.57 0.75
2011/4/12 1.19 0.85 0.58 0.54
2011/4/24 1.39 0.67 0.43 0.57
2011/5/19 0.80 0.65 0.64 0.36
2011/5/20 0.70 1.04 1.00 0.65
2011/5/28 0.62 1.14 1.21 0.77
2011/6/16 0.41 0.55 0.87 0.66
2011/6/20 0.22 0.67 0.37 0.46
2011/7/13 0.50 0.90 0.50 0.61
2011/7/17 0.87 0.45 0.45 0.70
2011/7/20 1.19 0.39 0.76 0.52
2011/7/22 0.70 0.76 0.90 0.62
2011/8/6 1.61 1.21 0.69 0.48
2011/8/27 0.94 1.04 0.55 1.41
2011/9/1 0.70 0.70 1.18 1.33
2011/9/2 0.65 0.45 0.64 1.55
2011/9/4 1.30 0.74 0.71 1.47
2011/9/19 1.01 1.04 0.78 1.26
Mean 0.96 0.85 0.81 0.87

Table 3
Statistics for vertical transferability of MRD operator across root zone layers.

Statistics R RMSE MBE R RMSE MBE R RMSE MBE

20–40 cm 40–60 cm 60–80 cm

0–20 cm Mean 0.987 0.014 0.005 0.988 0.013 0.005 0.983 0.013 0.002
SD 0.012 0.004 0.008 0.006 0.005 0.007 0.014 0.004 0.007

0–20 cm 40–60 cm 60–80 cm

20–40 cm Mean 0.990 0.010 �0.001 0.990 0.010 0.002 0.990 0.014 0.000
SD 0.004 0.002 0.007 0.005 0.002 0.004 0.003 0.005 0.012

0–20 cm 20–40 cm 60–80 cm

40–60 cm Mean 0.987 0.010 �0.002 0.988 0.010 �0.006 0.986 0.012 �0.002
SD 0.011 0.003 0.005 0.010 0.003 0.009 0.009 0.003 0.010

0–20 cm 20–40 cm 40–60 cm

60–80 cm Mean 0.990 0.015 0.001 0.989 0.018 0.002 0.989 0.014 0.002
SD 0.004 0.008 0.014 0.005 0.007 0.011 0.003 0.004 0.014

a SD: standard deviation.
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cessfully predicted surface soil moisture (0–5 cm) from precipita-
tion observations. However, the applicability of the analytical
method for estimating root zone soil moisture has not been evalu-
ated. Although the empirical model presented here is simple and
estimated root zone soil moisture with relatively good accuracy,
a serious limitation is that initial soil moisture content is a required
input parameter. Moreover, the relatively large estimation error in
wet seasons suggest that only precipitation observations might be
not enough to accurately predict root-zone soil moisture dynamics
in large gullies, and time series of K should be modeled and in-
cluded. In order to model temporal dynamics of K, future studies
should collect more soil moisture observations during dry-down
periods at both dry and wet seasons.

5. Summary and conclusions

In order to estimate spatial mean soil moisture in large gullies,
statistical methods in terms of time stability analysis and random
combination analysis were first used in the presented study to up-
scale point measurements to spatial averages based on soil mois-
ture datasets collected on 41 days over 3 years. We then
developed an empirical model to test if precipitation is a good esti-
mator of root-zone soil moisture time series in large gullies.

Analysis of the correlation between SDRD and the new metric
RMSE showed that the latter can robustly identify time-stable loca-
tions. Time stability analysis based on RMSE indicated that there is
considerable soil moisture time stability in large gullies and spatial
averages were accurately estimated through time-stable locations.
Cross-validation analysis confirmed the temporal robustness of
time-stable locations. However, MRD operators provided to have
insufficient vertical transferability across root-zone layers,
although significant correlations were found between RMSE values
for different depths. This suggests that it is necessary to identify
specific time-stable locations for given layers. In addition, differ-
ences in time stability were observed among various topographic
positions, and greater time stability was observed in ridges than
in pipes and plane surfaces.

Random combination analysis revealed that not more than four
randomly selected locations were needed to obtain the mean soil
moisture in the gully within a good accuracy (root mean square er-
ror < 1.0% and R2 > 0.98). These results indicate that a moderate
reduction in the number of sampling locations at our study site
would not lead to a significant reduction in the accuracy of mean
soil moisture estimates. Nevertheless, how many randomly se-
lected locations are needed for an accurate estimation is site spe-
cific and may vary for different sites. However, we should note
that time stability analysis could save more efforts compared to
random combination analysis since only one single time-stable
location can accurately estimate areal means. In addition, estima-
tions through only several randomly selected would result in great
uncertainty.

a

b

c

d

Fig. 6. RMSE at different depths for different topographic positions in gullies. Error
bars represent ± one standard deviation.

a

b

Fig. 7. Determination coefficient (a) and root mean square error (b) when
comparing the benchmark time series with those obtained by averaging a different
number of randomly selected locations at various depths. Error bars represent ± one
standard deviation.
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The simple empirical model used in this study successfully cap-
tured the root-zone soil moisture dynamics, suggesting that pre-
cipitation observations can provide relatively good estimation of
mean soil moisture time series in large gullies. The constant loss
coefficient assumption in this study may be mainly responsible
for the significant deviations between simulated and observed val-
ues in wet seasons. Another serious shortcoming (the requirement
for initial soil moisture as an input parameter) for this simple mod-
el would limit its applicability in areas where soil moisture is dif-
ficult to sample.

Based on the above, time stability analysis is a robust method
for spatial average estimation in gullies if detailed previous soil
moisture datasets are available and thus is recommended in this
study area. Nonetheless, the simple empirical model would be rec-
ommended for prediction if we have only precipitation, initial soil
moisture and soil moisture loss coefficient data. However, if no soil
moisture data is available, application of random combination
analysis may be a feasible alternative.
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