Front. Phys., 2013, 8(2): 199-216
DOI 10.1007/s11467-013-0315-y

REVIEW ARTICLE

Nucleosynthesis in thermonuclear supernovae

Claudia Travaglio"*, W. Raphael Hix>?1

LINAF-Astrophysical Observatory Turin, Strada Osservatorio 20, 10025 Pino Torinese, Italy
2 Physics Diwision, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
3 Department of Physics and Astronomy, University of Tennessee, Knozville, TN 87996, USA

E-mail: *travaglio@oato.inaf.it, T raph@utk.edu
Received January 4, 2013; accepted February 26, 2013

We review our understanding of the nucleosynthesis that occurs in thermonuclear supernovae and
their contribution to Galactic Chemical evolution. We discuss the prospects to improve the modeling
of the nucleosynthesis within simulations of these events.

Keywords supernovae, nuclear reactions, explosive nucleosynthesis, stellar spectra,

hydrodynamics, chemical evolution

PACS numbers 97.60.Bw, 26.20.Np, 26.30.-k, 26.50.4+x, 98.35.Bd

Contents
1 Introduction 199
Nucleosynthesis in thermonuclear supernovae:
Present understanding 200

3 Prospects for improvements in the simulation of

thermonuclear supernova nucleosynthesis 204
3.1 Solving thermonuclear reaction networks 205
3.1.1 The structure of the Jacobian
matrix 206
3.1.2 Equilibria in nuclear astrophysics 207
3.2 The quasi-equilibrium-reduced reaction
network 208
3.3 Explicit methods to solve thermonuclear
reaction networks 210
3.3.1 The asymptotic method 210
3.3.2  Applying explicit methods to
thermonuclear supernovae 211
3.3.3 Application of partial equilibria to
explicit integration methods 213
4 Conclusion 214
Acknowledgements 214
References and notes 214

1 Introduction

The nuclei heavier than lithium observed in stars and
galaxies are thought to be the result of thermonuclear
processing in previous generations of stars. The most

spectacular example of such processing occurs in the ex-
plosion of a star as a supernova. Determining the accu-
rate mass distribution of ejecta and the relative elemental
abundances of different supernovae types is of the utmost
importance in understanding the role each type plays.
Achieving a better understanding of the physics of super-
novae, by increasing the quality and predictive power of
numerical models and the resulting nucleosynthesis cal-
culations, is fundamental to a better understanding of
chemical evolution throughout the Universe. Some nu-
clear abundances can be used as cosmochronometers (to
determine the age of the Galaxy), others power light
curves, still others appear as anomalous abundances
found in tiny meteoritic grains in our Solar System.
The detailed theory of how thermonuclear supernovae
(hereafter SN Ia) evolve and explode is still the subject
of considerable effort, motivated in part by the role these
supernovae have played as cosmological distance indica-
tors. A number of scenarios have been suggested (see Ref.
[1], for a review), but there is a broad consensus that
Type Ia supernovae are the outcome of the thermonu-
clear explosion of a carbon-oxygen white dwarf, hereafter
CO-WD (see e.g., Refs. [2, 3]). These supernovae show no
signs of hydrogen in their spectra but intermediate mass
elements such as Si, S, Ca, and Mg are in evidence near
maximum light, and many lines of Fe are present at late
times. They also show no He. The CO-WD approaches
the Chandrasekhar mass (hereafter M.;,) by a yet uncer-
tain mechanism, presumably accretion from a companion
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star, and is completely disrupted by a thermonuclear ex-
plosion (see e.g., Ref. [1]). A strong argument in favor of
this hypothesis is the ability of models of these explosions
to fit the observed light curves and spectra well. Mod-
eling a Type Ia supernova explosion, therefore, requires
that we compute the thermonuclear disruption of a white
dwarf. However, the evolution of massive white dwarves
to explosion is very uncertain, leaving room for some di-
versity in the allowed set of initial conditions (such as the
temperature profile at ignition), and also the physics of
thermonuclear burning in degenerate matter is complex
and not fully understood.

The M., WD has long been been favored as the pro-
genitor for a majority of SNe Ia (e.g., Refs. [4-7]). The
mass of the WD could reach M., by several evolution-
ary paths, either by a mass transfer from a giant/main
sequence binary companion (single degenerate scenario;
e.g., Refs. [8, 9]) or as a result of merging with a de-
generate WD binary companion (double degenerate sce-
nario; see e.g., Refs. [10-12]. In addition, sub-M., ex-
plosions have also been investigated (see e.g., Ref. [13]).
Typically, in the explosion process the WD material is
converted to iron-peak elements (iron, nickel and neigh-
boring elements that form a prominent peak in the so-
lar system abundance profile) and a smaller fraction of
intermediate-mass elements (like Si, S, and Ca). How-
ever, it is only the radioactive decay of *°Ni that powers
the observed lightcurve.

In the generally accepted scenario, explosive carbon
burning is ignited either at the center of the star or
slightly off-center in a couple of ignition spots, depending
on the still uncertain details of the previous evolution.
Once the thermonuclear flame is ignited, there are two
possible modes of the propagation: subsonic deflagration
and supersonic detonation. A prompt ignition of the det-
onation flame is disfavored because the resulting nucle-
osynthesis yields fail to produce the strong intermediate-
mass element features observed in SNe Ia and conflict
with Galactic chemical evolution [14]. Thus, the explo-
sion should start as a subsonic deflagration flame. The
deflagration stage may last until the end of the explo-
sion (the deflagration model; Ref. [15]). Alternately, it
is also possible that the deflagration flame transforms
into a detonation wave (the delayed detonation model,
or the deflagration-detonation transition (DDT) model;
Refs. [16-19]). Numerical models that parameterize the
velocity of the burning front have been very successful
at reproducing observations, the archetype being the W7
model of Nomoto et al. [15].

Our understanding of nucleosynthesis in these events
is based on decades of modeling and nucleosynthesis cal-
culations in spherically symmetric models (for example,
Refs. [15, 19, 20]). In recent years, detailed estimates
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of the nucleosynthetic yields for multidimensional ex-
plosion models have become possible. Two dimensional
axisymmetric simulations [21-24] and three dimensional
simulations (see Refs. [25-27], and references therein) of
exploding M., WD have provided new perspectives on
thermonuclear supernova nucleosynthesis calculations. A
minimal nuclear reaction network is usually included di-
rectly in the hydrodynamic simulations in order to com-
pute the correct energy without drastically increasing the
computing time. In direct numerical simulations of local-
ized flame behavior (see e.g., Refs. [28-30]), this often
takes the form of an a-network composed of the 13 or 14
lightest nuclear species that have even numbers of pro-
tons and equal numbers of neutrons, linked by («a, ) and
(7, «) reactions with a few additional critical heavy ion
reactions, like 12C+'2C and 2C+160. In other cases, in-
cluding most multi-dimensional simulations of the whole
star, an even simpler flame scheme which tracks only 2
or 3 compositional stages is used. A much more extended
network is therefore considered in a post-processing step
using the tracer particles method. The nucleosynthesis
experienced by each marker is calculated and the to-
tal yield for the supernova is computed as a sum over
all the markers, after the decay of unstable isotopes. It
is very encouraging that such models predict explosions
with energies in the range of observed Type Ia super-
novae, and that these models also predict light curves
which fit well the observations. In addition, the nucle-
osynthesis products of these models are in reasonable
agreement with expectations. The undeniable influence
of SN Ia explosions on, among others, the chemical evo-
lution of galaxies makes the quest for solid theoretical
models and nucleosynthetic yields an urgent task.

2 Nucleosynthesis in thermonuclear
supernovae: Present understanding

Over the last three decades, one-dimensional spherically
symmetric models have been used to study the various
channels that may give rise to a successful SN Ia in terms
of nucleosynthesis, predicted spectra, and light curves.
Much of this work was centered on the M, scenario
wherein a C4+O white dwarf accretes H or He from a
binary companion [15, W7 model] and ignites explosive
carbon burning just before it reaches the critical mass
of M., = 1.4 Mg. The subsequent explosion produces
enough %SNi (~ 0.6 M) and intermediate mass ele-
ments to reproduce normal SN Ia lightcurves and spec-
tra, provided that the amount of C+O burned at any
given density is suitably chosen. This can be achieved
by parameterizing the thermonuclear flame speed and
the density at which a transition to supersonic burning
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(detonation) occurs (see e.g., Ref. [31]). Moreover, some
mixing of processed matter must to be assumed in order
to fit the observed spectra. On the nucleosynthesis front,
these models exhibit considerable production of the a-
elements (the elements between Mg and Ca with even
proton numbers) and iron-peak elements [32].

Since nuclear networks with hundreds of isotopes are
very expensive in terms of CPU time and memory, it
is possible to solve fully coupled systems of hydrody-
namic and nuclear kinetic equations directly only in one-
dimensional stellar codes. Instead in multi-dimensional
codes large networks are relegated to a post-processing
step. In the past, various authors implemented a method
to calculate nucleosynthesis from multi-dimensional sim-
ulations (e.g. Ref. [35] for Type II SNe; [36] for Type Ia
SNe). This tracer particle method is based on adding a
“Lagrangian component” to the Eulerian scheme in the
form of tracer (or marker) particles that correspond to
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fluid mass elements and are passively advected with the
flow in course of the Eulerian calculation. To the parti-
cles are assigned masses and positions in such a way that
a density profile reconstructed from their distribution
resembles that of the underlying star. During the hy-
drodynamical simulation, they are advected by the flow,
recording the history of thermodynamic conditions along
their path (an example is shown in Fig. 1). The tracers
are nevertheless considered massless in the sense that
the mass they represent does not couple to the hydrody-
namic flow via gravity or inertia. They are simply pas-
sively advected by the flow along streamlines and their
temperature, density and energy histories are recorded.
Given these values, for individual marker particles it is
possible to calculate their nucleosynthetic evolution from
their initial abundances and compute the total yields.
The resolution, i.e., the number of tracer particles fill-
ing the volume of the star, has to be high enough in order
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Fig. 1 Snapshots from a delayed detonation model at 0.95s and after ignition. The thermonuclear burning front is ignited
in multiple sparks [33] near the center of the WD. Specifically, 90 ignition kernels of 6 km radius are randomly placed in the
radial direction according to a Gaussian distribution with a width of 150 km. On the left, the hydrodynamic evolution is
illustrated by color-coded density and the locations of the deflagration flame (cyan contour) and the detonation front (blue
contour). In the model, the first detonation triggers at 0.755 s after ignition. The plots on the right hand side show the tracer
distribution. While the locations correspond to the current time, the color coding is according to the maximum temperature
reached during the entire explosion: Black tracers peak with Tgpeak > 7.0; grey tracers with 3.7 < Tgpeak < 7.0; tracers
marked in green (1.5 < Tgpe'dk <24), red (2.4 < Tgpe'dk < 3.0) and blue (3.0 < Té)eak < 3.7) are reach peak temperatures in
ranges where p-process nucleosynthesis is possible. Reproduced from Ref. [34].
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to get accurate nucleosynthesis results. Seitenzahl et al.
[37] performed a resolution study, demonstrating that
in 2D SN Ia simulations with 802 tracer particles almost
all isotopes up to iron-peak with abundances higher than
about 107° are reproduced with an accuracy better than
5%. More recently, Seitenzahl et al. [27] calculated tracer
particle nucleosynthesis for different 3D SN Ia models.
These authors, extrapolating the tracer resolution and
yield convergence study from 2D to 3D, claimed that one
million tracer particles (100 per axis) is sufficient to re-
liably predict the yields for the most abundant nuclides.

A detailed discussion regarding nucleosynthesis results
for nuclei up to and including the iron-peak species can
be found in Refs. [27, 36, 37]. We note that neutron-rich
isotopes like *Ca, 59Ti, ®*Mn, **Fe, ®*Ni depend only
weakly on the particular choice of central density of the
WD at the time of ignition. These isotopes are expected
to be largely synthesized in nuclear statistical equilib-
rium condition in SNe Ia. Travaglio et al. [36], with a 3D
deflagration model, found that they are strongly under-
produced with respect to the standard 1D W7 model pre-
sented by Iwamoto et al. [19], but are in good agreement
with the Brachwitz et al. [20] predictions. This agreement
can be influenced by the differences in the electron cap-
ture rates adopted. We note that the most neutron-rich
stable Fe-peak isotopes **Cr, ®®Fe, and %*Ni are shielded
by %4Fe, 58Ni, and %4Zn from the Z = N line and thus
require the highest neutronization for direct production.
Consequently, these isotopes are the most sensitive to
the central density. Seitenzahl et al. [27] underlined the
link between a lower central density and a smaller over-
production of ®*Fe and °®Ni. The very pronounced un-
derproduction of °®Fe and %*Ni in all models does not
pose a problem, as the s-process is the dominant source
of these isotopes in galactic chemical evolution. The solar
abundances of the remaining isotopes, ®?Co, %°Ni, 6'Ni,
and %2Ni, include significant contributions from explo-
sive Si-burning in core collapse SNe, a-rich freeze-out
in both types of supernovae, and the s-process in AGB
stars. Production factors for SNe Ia, ranging from a few
to several tens of percent, are therefore also very reason-
able. Seitenzahl et al. [27] interpret the large overpro-
duction factor of ®*Cr (> 3) obtained in their models as
an indication that delayed detonation SNe Ia that ignite
at high central densities are rare and constitute at most
a small fraction of all SN Ia events. The iron-peak iso-
topes in SN Ia of normal brightness (where ®Ni masses
are around 0.6 M) are synthesized in the required pro-
portions in Seitenzahl et al. [27], Travaglio et al. [36],
indicating that delayed-detonations cannot be ruled out
as the dominant SN Ia explosion channel based on solar
iron-peak isotopic ratios.

The consequences for nucleosynthesis in SN Ia result-
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ing from progenitor metallicity has been analyzed by sev-
eral authors [27, 38, 39]. They all found that the 5SNi
production increases with decreasing initial 22Ne, follow-
ing a linear dependence due to the decreasing electron
fraction Y, with a corresponding reduction in the stable
iron-peak isotopes such as *®Ni or **Fe. Travaglio et al.
[39] found a variation in the °Ni mass of 25% in the
metallicity range explored (covering 0.1Z¢, to 3Z¢). The
largest variation in °°Ni occurs for metallicities greater
than solar. Very little variation occurs in the unburned
material *2C and 0. The largest metallicity effect is
seen in the a-elements. This effect must be carefully ac-
counted for in chemical evolution calculations, in order
to correctly evaluate the role of SN Ia in creating the
Solar System abundance of nuclei.

Using an extended nuclear network with 1024 species
from neutron and proton up to 2°?Bi combined with
neutron, proton, and a-induced reactions, recent work
by Travaglio et al. [34] has demonstrated that SN
Ia may be an important source for p-nuclei. p-nuclei
are a class of about 35 neutron-deficient isotopes be-
tween "Se and '96Hg. They are bypassed by the slow
(s-process) and rapid (r-process) neutron capture pro-
cesses, and are typically 10-1000 times less abundant
than the corresponding s- and/or r-isotopes in the Solar
System. The production mechanism that best fits the
creation of these nuclei is photo-disintegration. The p-
process nuclei seem to be formed in regions of tempera-
tures around 1.8-3.3 GK, however the nuclei do not com-
pletely photo-disintegrate, implying that some sort of
temperature variance, gradient, or something else trun-
cates the photo-disintegrations before reaching ordinary
light elements. Few models, up to now, properly predict
the abundances of several particular isotopes, specifically
the lighter isotopes of molybdenum (92-94) and ruthe-
nium (96-98). Laboratory experiments are being con-
ducted to help determine the nuclear properties of these
particular nuclei. One of the few investigations in this
direction is that of Travaglio et al. [34]. These authors
explored SNe Ia as p-process sources in the framework
of 2D SN Ta models and found SNe Ia to be good astro-
physical candidates for the production of these mysteri-
ous isotopes. But considerable work remains before the
role of SN Ta (as well as SNII) in p-process production is
fully understood.

The p-process nucleosynthesis occurs in SNe Ia only
if there is a prior s-process enrichment. It is therefore
essential to determine the source of the s-process en-
richment in the exploding WD. In the single-degenerate
progenitor model assumed here, there are two sources of
s-enrichment: (i) during the AGB phase leading to the
formation of the WD, thermal pulses occur during which
s-isotopes are produced (TP-AGB phase; see, e.g., Ref.
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[41]) and (ii) thermal pulses can also occur as matter is
accreted onto the WD, enriching the matter accumulat-
ing on the WD [42-45]. The first scenario would leave
s-enriched matter on the surface of the WD in a layer
of 0.1 M, prior to the accretion phase. During the accre-
tion phase, this layer would be convectively mixed into
the WD, diluting the s-seeds so that their abundances
are too low to produce significant yields of p-isotopes. In
the second scenario, s-process nucleosynthesis occurs in
the H-rich matter accreted by the CO-WD, due to re-
current He-flashes [42], with neutrons mainly produced
by the ¥C(a,n)%0 reaction. The conclusion obtained
by these studies is that a flat s-seed distribution directly
translates into a flat p-process distribution whose aver-
age production factor scales linearly with the adopted
level of the s-seeds, giving the indication for a primary
origin.

It has been recently demonstrated [40] that SNe Ia
could be responsible for at least 50% of the all p-nuclei
required for galactic chemical evolution, under the hy-
pothesis that SN Ia are responsible for 2/3 of the solar
56Fe, and assumption that delayed detonation model rep-
resents the typical SN Ia with a frequency of 70% [46].
Core-collapse supernovae are also expected to give an im-
portant contribution to the solar abundances of p-nuclei.
Using a simple chemical evolution code and accounting
for SNe Ia alone, production factors in comparison to the
Solar System composition are shown in Fig. 2. Red la-
bels identify the 35 nuclei classically identified as p-only.
As one can see in this Figure, only a few nuclei origi-
nally ascribed to the p-only group (}'3In, 11°Sn, ¥ La,
152Gd, 189Ta) are far below the average production fac-
tor of the other p-nuclei. This indicates a different nucle-
osynthetic stellar origin for these species. As discussed
by Dillmann et al. [47] and Nemeth et al. [48], 13In
and ''5Sn receive important contributions from delayed
r-process decay chains. Woosley et al. [49] demonstrated
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Fig. 2 Chemical evolution results at solar composition, normal-
ized to solar. Reproduced from Ref. [40].
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that neutrino-nucleus interactions can contribute appre-
ciably to the synthesis of '3¥La in the neon shell of
core collapse supernovae. 1°2Gd is now thought predom-
inantly to have an s-process origin [50, 51]. Likewise,
164Fr is also of predominantly s-process origin, driven
by the B-decay channel at 93Dy, which becomes unsta-
ble at stellar temperature [52]. 189Ta, as discussed by
Ref. [53], receives an important contribution from the s-
process due to the branching at '""Hf, a stable isotope
that becomes unstable at stellar temperatures. Neutrino—
Nucleus interactions may also substantially feed '°Ta.
The relative low abundance of the p-only nuclide *®Dy
should be analyzed in the framework of present nuclear
uncertainties of the y-proceses.

The analysis of the yields is fundamental in order to
understand the role of SNe Ia in the chemical enrich-
ment of the Galaxy, but how the yields are distributed
in mass and velocity space is also important in order
to compare the results with observed supernova spectra
or light curves. Such analysis has been performed for
the multidimensional models quoted above [27, 36, 54].
Travaglio et al. [36], with 3D pure deflagration models,
took selected isotope mass fractions at the end of the
simulation (at about 1 s after the explosion) and noted
that at the lowest velocities (1000 km/s), the dominant
component is represented by the unburned material (i.e.,
12C and '°0) for a floating bubble model, or by 56Fe for a
centrally ignited model. In contrast, at the highest veloc-
ities (>10 000 km/s) the unburned material dominates
in the centrally ignited model, but is comparable to the
56Fe component in the floating-bubble high resolution
model. Maximum velocities reached are about 12 000
km/s in both cases. These models are not yet in homol-
ogous expansion, i.e., pressure and gravity still play a
role, changing the velocity distribution and possibly also
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the density, therefore the velocity distribution of the el-
ements has to be taken with care (see Fig. 3). Seitenzahl
et al. [27]) with delayed detonation 3D models, found that
stable iron-peak nuclei are not present at the lowest ve-
locities as predicted by 1D models (e.g., Refs. [15, 16]),
but rather at intermediate velocities (3000-10000 km/s).
This agrees well with the results found by Maeda et al.
[54], with typical velocities of 5000-10000 km/s for the
deflagration ash in their two-dimensional DDT model.
Stehle et al. [55] find substantial amounts of stable iron
out to velocities of about 9000 km/s from analysis of the
spectra of SN 2002bo. Seitenzahl et al. [27] also find that
the central regions, which were burned by the detona-
tion at high densities to NSE, form homogeneous °°Ni
clumps.
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Fig. 4 The region around the [O I] AA6300, 6364 and [C I} AA8727
lines based on a 3D deflagration model at 350 days together with
observed spectra for SN 2000cx, SN 2001el and SN 1998bu. The
original model, containing 0.42 Mg of oxygen and 0.34 M of car-
bon (dotted curves), is compared to models where the masses of
oxygen and carbon have been artificially reduced. The dot-dashed
curve includes only the partially burned regions, with 0.03 Mg
carbon and 0.07 M oxygen, while the dashed curve also has ad-
ditional 0.03 Mg carbon and 0.04 M oxygen from unburned ma-
terial. Reproduced from Ref. [56].

For the 3D deflagration models presented by Travaglio
et al. [36], late time synthetic spectra have been per-
formed by Kozma et al. [56]. They found that the model
spectra after 300 to 500 days are in good agreement with
the observed Fe II-III features. However, they also show
O I and C I lines stronger than those observed in late
time spectra. The oxygen and carbon emission originates
from the low-velocity unburned material in the central
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regions of these models. Agreement between the mod-
els and observations requires that only a small mass of
unburned material may be left in the center after the
explosion. This may pose a problem for pure deflagra-
tion models. For the same 3D deflagration models of
Travaglio et al. [36], synthetic bolometric and broad-
band UBVRI light curves have been calculated by Blin-
nikov et al. [57]. These results show that Chandrasekhar
mass models exploded by pure deflagration produce both
UBYV light curves and photospheric expansion velocities
that match well with observed weak to normal SNe Ia. As
the majority of the flux during maximum light is emit-
ted within these passbands, this is an encouraging result.
Moreover, it is these passbands that are very important
in cosmological applications of SNe Ia. It is clear that
the models require some improvement in explaining the
shapes of the near infrared light curves and in explaining
fast spectral features that are observed in many normal
events. The bolometric light curves calculated from these
deflagration models also evolve slightly slower than what
is indicated from observations. These discrepancies hint
at the necessity of producing faster moving ejecta and
somewhat less mixed chemical composition. The latest
deflagration models (see Ref. [58], and references therein)
are promising in this respect.

3 Prospects for improvements in the
simulation of thermonuclear supernova
nucleosynthesis

The utilization of multi-dimensional simulations for ther-
monuclear supernovae has greatly improved our under-
standing of the flame propagation in these events. How-
ever, in order to offset the increased computational cost
of expanded dimensionality, this progress has come at
the cost of decreased sophistication in the treatment
of the nuclear composition. As discussed in other arti-
cles in this volume, multi-dimensional whole star simu-
lations generally employ a three level flame tracking al-
gorithm, dividing the star into regions of carbon & oxy-
gen, magnesium & silicon and iron, nickel & a-particles.
In contrast, spherically symmetric models of the entire
star have for more than a decade employed much large
reaction networks. For example, the models of Hoflich
(see, e.g., Refs. [59, 60]) employ 218 nuclear species
self-consistently within the simulations, while those of
Iwamoto et al. [19] and Brachwitz et al. [20] contained
299 nuclear species.

As documented in the previous section, to ameliorate
the small networks used in multi-dimensional simula-
tions, the post-processing approach is widely used in su-
pernova nucleosynthesis calculations. In this approach, a
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simplified approximation is used to calculate the compo-
sitional change and resulting rate of nuclear energy gen-
eration within the hydrodynamic model. Subsequently,
the temperature and density histories for individual mass
elements from the supernova model are then used as
input for separate, larger nucleosynthesis calculations.
Performing post-processing calculations based on one-
dimensional models is relatively straightforward, since
most one-dimensional simulations are Lagrangian. Thus
the needed temporal histories of temperature and density
are simply those of the individual Lagrangian mass ele-
ments. However, in multi-dimensions, non-smooth fluid
motions result in highly tangled Lagrangian grids. As
a result, Eulerian hydrodynamics, where the discretiza-
tion occurs in space rather than mass, is used to perform
most multi-dimensional stellar astrophysics simulations.
Because FEulerian codes use spatial discretization, the La-
grangian thermodynamic histories which are a natural
result in a Lagrangian code are unavailable. Instead pas-
sive tracer particles must be employed. Post-Processing
nucleosynthesis of tracer particles have been utilized in
simulations of core-collapse supernovae since Nagataki et
al. [35] and in simulations of thermonuclear supernovae
since Travaglio et al. [36].

Despite the wide use of post-processing in supernova
nucleosynthesis calculations, this approach has signif-
icant drawbacks. The primary limitations of a post-
processing approach are i) the accuracy of the energy
generation rate provided by the approximation included
within the hydrodynamics, ii) limitations in computing
the neutron-richness of the matter and iii) an underes-
timate of the effects of mixing. Calculation of the en-
ergetically important stages (carbon, oxygen and silicon
burning as well as the freezeout from Nuclear Statistical
Equilibrium) is the motivation for spherically symmetric
simulations to employ networks of 150-300 nuclei, de-
pending on the desired accuracy and range in neutron-
richness. To understand the path forward toward the uti-
lization of similar sized networks in multi-dimensional
simulations of thermonuclear supernovae we must ana-
lyze the cost of thermonuclear reaction networks before
we discuss ways to reduce this cost.

3.1 Solving thermonuclear reaction networks

The details of nuclear reaction network calculations have
been extensively reviewed elsewhere (see, e.g., Refs. [61—
65]), so we will include here only a brief outline, pri-
marily to define terms to aid the following discussion.
The nuclear population in each cell of a simulation is
frequently described in terms of the nuclear abundance
of each species, Y = n/pNa, where n is the number den-
sity of the species, p is the total mass density, and Ny
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is Avagadro’s number. For a nucleus with atomic mass
number A, AY = X is commonly referred to as the mass
fraction of this nucleus and the sum of all mass fractions
(>° A;Y;) is by construction equal to 1. The expression
> A;Y; = 1is in reality an expression of nucleon num-
ber conservation rather than mass conservation, since
the nuclear binding energy can approach 1% of the nu-
clear mass. In fact the conversion of mass into energy is
one of the primary reasons to include nuclear reactions
in an astrophysical model. The equation of charge con-
servation becomes Y Z;Y; = Y., where Y. (= n./pN,) is
the electron abundance, which provides a measure of the
neutron-richness of the matter.

If we operator-split spatial advection from nuclear
transmutations, the evolution of the nuclear abundances
in a thermonuclear reaction network takes the form of a
set of ordinary differential equations for the time deriva-
tives Y which depend only on nuclear reaction rates and
local thermodynamic conditions.

Yi= 2 NINYG + 3 NG upNalow) Y Vi
j Jk

+ Z A/J‘i,k,lf’QNi (00) k1YY
3okl

(1)

where the decay constants (\) and velocity-integrated re-
action cross sections ({ov)) contain the essential nuclear
data. The N's provide for proper accounting of numbers
of nuclei with N} = Ny, N, = Ni/ [y [N, |l and
Ni i = Ni/ TImy INj,.|!, where the Njs are positive
(or negative) numbers that specify how many particles
of species ¢ are created (or destroyed) in a reaction, while
the denominators, including factorials, run over the n,,
different species destroyed in the reaction and avoid dou-
ble counting of the number of reactions when identical
particles react with each other.

In principle, the initial value problem presented by the
nuclear reaction network can be solved by any of a large
number of methods discussed in the literature. However
the physical nature of the problem, reflected in the decay
constants and velocity-integrated reaction cross sections,
greatly restricts the optimal choice. The large number
of reactions display a wide range of reaction timescales,
with the mean lifetime of particle j against destruction

by reaction with particle k given by

1 1
or Ti(j) =+
J >\j

7 (j) = (2)

(ov) e
for a decay. Systems whose solutions depend on a wide
range of timescales are termed stiff. Gear [66] demon-
strated that even a single equation can be stiff if it has
both rapidly and slowly varying components. Practically,
stiffness occurs when the limitation of the timestep size
is due to numerical stability rather than accuracy. A
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more rigorous definition [67] is that a system of equa-
tions is stiff if the ratio of the real part of the largest
eigenvalue \,,q; of the Jacobian matrix of the system
of equations is much larger than the real part of the
smallest eigenvalue \,;,. Because of the wide range in
timescales between strong, electromagnetic and weak re-
actions, Apmaz/Amin > 10 is not uncommon in as-
trophysics, making thermonuclear reaction networks ex-
traordinarily stiff.

Nucleosynthesis calculations belong to the more gen-
eral field of reactive flows, and therefore share some char-
acteristics with related terrestrial fields. In particular,
chemical kinetics, the study of the evolution of chemi-
cal abundances, is an important part of atmospheric and
combustion physics and produces sets of equations much
like Eq. (1) (see Ref. [68] for a good introduction). These
chemical kinetics systems are known for their stiffness
and a great deal of effort has been expended on develop-
ing methods to solve these equations. Many of the con-
siderations for the choice of solution method for chem-
ical kinetics also apply to nucleosynthesis calculations.
In both cases, temporal integration of the reaction rate
equations is broken up into short intervals because of the
need to update the hydrodynamics variables. This favors
one step, self starting algorithms. Because abundances
must be tracked for a large number of computational
cells (hundreds to thousands for one dimensional mod-
els, millions to perhaps billions for the coming generation
of three dimensional models), memory storage concerns
favor low order methods since they do not require the
storage of as much data from prior steps. In any event,
both the errors in fluid dynamics and in the reaction
rates are typically a few percent or more, so the greater
precision of these higher order methods often does not
result in greater accuracy.

For a set of nuclear abundances 17, one can calcu-

late the time derivatives of the abundances, Y using Eq.
(1). The desired solution is the abundance at a future
time, Y (£+ At), where At is the network timestep. Since
coupling with hydrodynamics favors low order, one step
methods, many nucleosynthesis calculations use the sim-
ple finite difference prescription

Y (t+ At) — Y (1)
At

With & =1, Eq. (3) becomes the explicit Euler method
while for © = 0 it is the implicit backward Euler method,
both of which are first order accurate. For © = 1/2, Eq.
(3) is the semi-implicit trapezoidal method, which is sec-
ond order accurate. For the stiff set of non-linear differ-
ential equations which form most nuclear reaction net-
works, the implicit backward Euler method, introduced
to astrophysics by Arnett and Truran [69], is generally

—(1- OV ({t+A)+6Y(EH) (3)
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most successful, though the trapezoidal method has been
used in Big Bang nucleosynthesis calculations [70], where
coupling to hydrodynamics is less important. Solving the
fully implicit version of Eq. (3) is equivalent to finding
the zeros of the set of equations

Y (t+ At) — Y (1)
At

This is done using the Newton—-Raphson method (see,

e.g., Ref. [71]), which is based on the Taylor series ex-

pansion of Z (t+At), with the trial change in abundances

given by

- —1
A?:<&W+A@> 2 5)
AY (t + At)

Z(t+ At = Y+ A)=0 (4)

where 9Z/9Y is the Jacobian of Z. Tteration contin-
ues until Y(t + At) converges. Timmes [72] has ad-
vanced higher order semi-implicit methods (e.g. Bader—
Deuflhard) for network solution. These also involve a ma-
trix solution, thus they share the same computational
bottleneck as the backward Euler method.

3.1.1  The structure of the Jacobian matriz

For networks of the size we desire to include in multi-
dimensional simulations of thermonuclear supernovae,
the implicit and semi-implicit methods require solution
of moderate-sized (N = 100-300) matrix equations.
Since general solution of a dense matrix scales as O(N?3),
this can make these large networks progressively much
more expensive. While in principal, every species reacts
with each of the hundreds of others, resulting in a dense
Jacobian matrix, in practice it is possible to neglect most
of these reactions. Because of the Z;Z; dependence of the
repulsive Coulomb term in the nuclear potential, cap-
tures of free neutrons and isotopes of H and He on heavy
nuclei occur much faster than fusions of heavier nuclei.
Furthermore, reactions involving secondary isotopes of
H (deuterium and tritium) and He are neglectable in a
thermonuclear supernova. Likewise, photodisintegrations
tend to eject free nucleons or a-particles. Thus, with a
few important exceptions, for each nucleus we need only
consider twelve reactions linking it to its nuclear neigh-
bors by the capture of an n,p, « or v and release a dif-
ferent one of these four. The exceptions to this rule are
the few heavy ion reactions important for burning stages
like carbon and oxygen burning where the dearth of light
nuclei cause the heavy ion collisions to dominate.
Figure 5 demonstrates the sparseness of the resulting
Jacobian matrix, for a reaction network with a desirable
300 nuclei. Of the 90 000 matrix elements, less than 5000
are non-zero. In terms of the standard forms for sparse
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matrices, this Jacobian is best described as doubly bor-
dered, band diagonal. With a border width, AB, of 45
necessary to include the heavy ion reactions among *2C,
160 and ?°Ne along with the free neutrons, protons and
a-particles and a band diagonal width, AD, of 54, even
this sparse form includes almost 50 000 elements. With
solution of the matrix equation consuming 80% or more
of the computational time, there is a clear advantage for
solvers that take advantage of the sparseness of the Jaco-
bian. To date best results for small (N < 100) matrices
are obtained with machine optimized dense solvers (e.g.
LAPACK) or matrix specific solvers generated by sym-
bolic processing [73, 74]. For large matrices, generalized
sparse solvers, both custom built and from software li-
braries, perform best (see, e.g., Ref. [72]), though the
benefit is small for systems of the size one would like to
include with a thermonuclear supernova model.

Columns
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300 | NN

Fig. 5 Graphic demonstration of the sparseness of the Jacobian
matrix. The filled squares represent the non-zero elements.

A potential numerical problem with the solution of
Eq. (4) is the singularity of the Jacobian matrix, 0Z(t +
At)/OY (t + At). From Eq. (4), the individual matrix
elements of the Jacobian have the form

0Zi 0y  OY: 6

1
dY; _Kt_an_A_t_er(i)

(6)

where §;; is the Kronecker delta, and 7;(¢) is defined in
Eq. (2). The sum accounts for the fact that there may
be more than one reaction by which nucleus j is involved
in the creation or destruction of nucleus i. Along the di-
agonal of the Jacobian, there are two competing terms,
1/At and > 1/7;(i). This sum is over all reactions which
destroy nucleus 4, and is dominated by the fastest reac-
tions. As a result, > 1/7;(¢) can be orders of magnitude
larger than the reciprocal of the desired timestep, 1/At.
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This is especially a problem near equilibrium, where both
destruction and the balancing production timescales are
very short in comparison to the preferred timestep size,
resulting in differences close to the numerical accuracy
(i.e., 14 or more orders of magnitude). In such cases, the
term 1/At is numerically neglected, leading to numeri-
cally singular matrices.

3.1.2  Equilibria in nuclear astrophysics

While the approach to equilibrium can play havoc with
the numerics of the matrix solution, it also offers a way
around this problem. As is the case in many disciplines,
equilibrium expressions can be employed to simplify nu-
clear abundance calculations. The simplest application of
equilibrium is the expression for the relative abundances
of two species when the reactions linking them are equi-
librated. For reactions of the form i + j < k + /£, it is
four abundances that are interrelated

YiVe _ (ov)i; _ GuGel+6y (Mke>2exp (Q)
Y;Y; (o) GGy 1+ ke \ pij kT

(7)

The final equality in Eq. (7) is the result of the detailed
balance relation for a time-reversible processes (see, for
example, Refs. [75-77]. From this relation, the relative
abundances of the nuclear species depend only on their
properties (G; is the level density (2J; +1), p;; is the re-
duced mass, and Q is the energy released by the forward

reaction, my +m¢ —m; +m;, where m; the nuclear mass
of species 7).

In the highest temperature regions of a thermonu-
clear supernova, the fast strong and electromagnetic re-
actions can reach equilibrium while those involving the
weak nuclear force do not. Since the weak reactions are
not equilibrated, the resulting Nuclear Statistical Equi-
librium (NSE) requires monitoring of weak reaction ac-
tivity. The expression for NSE is commonly derived using
either chemical potentials or detailed balance (see, e.g.,
Refs. [75, 78, 79]). For a nucleus 4Z, composed of Z
protons and N = (A — Z) neutrons, in equilibrium with
these free nucleons, the chemical potential of 4Z can be
expressed in terms of the chemical potentials of the free
nucleons

(8)

For a collection of particles obeying Boltzmann statis-
tics, the chemical potential, including rest mass, of each

pz.a = Zpp+ Npn

species is given by

E ( 2k

Gi my kBT > (9)

i = m;c® + kT In PN 4
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Substituting Eq. (9) into Eq. (8) allows derivation of an
expression for the abundance of every nuclear species in
terms of the abundances of the free protons (Y,) and
neutrons (Y,,),

G(;Z) (%)AIA% exp (BISTZ)>

Y(4Z) =

(10)

where G(4Z) and B(4Z) are the partition function and
binding energy of the nucleus #Z, N4 is Avagadro’s num-
ber, kp is Boltzmann’s constant, p and T are the density
and temperature of the plasma, and 6 is given by

9 — (mukBT> 3/2

2mh? (11)

Thus abundances of all nuclear species can be ex-
pressed as functions of two. Two constraints are required
to uniquely define these abundances. Strong and electro-
magnetic reactions do not alter the total abundances of
protons and neutrons, thus the total proton abundance,
> ZY and the total neutron abundance, >  NY, pro-
vide the needed constraints. More frequently, total nu-
cleon number conservation, (D (N + 2)Y =>  AY =1)
is used as one constraint. This is colloquially referred to
as mass conservation, since A, the number of nucleons in
the nucleus, is also referred to as the atomic mass num-
ber. The second constraint then records the amount of
weak reaction activity and is often expressed in terms of
the total proton abundance, Y ZY", which charge conser-
vation requires equal the electron abundance, Y.. Thus
the nuclear abundances are uniquely determined for a
given (T, p, Ye).

Where applicable, NSE offers significant advantages,
since hundreds of abundances are uniquely defined by
the thermodynamic conditions and a single measure of
the weak interaction history or the degree of neutroniza-
tion. Computationally, this reduction in the number of
independent variables greatly reduces the cost of nuclear
abundance evolution. Because there are fewer variables
to follow within a hydrodynamic model, the memory
footprint of the nuclear abundances is also reduced, an
issue of importance in modern multi-dimensional mod-
els of supernovae. These advantages allow Seitenzahl et
al. [80] to include the effects of electron capture on 443
species within multi-dimensional whole star simulations,
at least in regions where NSE applies.

As with any equilibrium distribution, there are lim-
itations on the applicability of NSE. The first require-
ment for NSE to provide a good estimate of the nu-
clear abundances is that the temperature be sufficient
for the endoergic reaction of each reaction pair to oc-
cur. Since for all particle-stable nuclei between the pro-
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ton and neutron drip lines (with the exception of nu-
clei unstable against alpha decay), the photodisintegra-
tions are endoergic, with typical Q-values among (53)
stable nuclei of 8-12 MeV, this requirement reduces to
T > 3 GK. While this requirement is necessary, it is not
sufficient. In the rapidly changing conditions that occur
within supernovae, even when this condition is met, hy-
drodynamic flows can cause thermodynamic conditions
to change on timescales more rapid than NSE can be
maintained, breaking NSE down first between “He and
12C, at T ~ 6 GK [81] and later between the species near
silicon and the iron-peak nuclei, at T' ~ 4 GK [82]. The
breakdown of NSE leaves large groups of nuclei that re-
main in mutual equilibrium, termed Quasi-Equilibrium
[QSE; 83, 84], linked by series of reactions through out-
of-equilibrium species. As the temperature continues to
decline, these QSE groups fragment until eventually no
reactions are in equilibrium. Note, QSE is also referred
to as Nuclear Statistical Quasi-Equilibrium (NSQE) by
some authors [85]. The relative abundance of a nucleus,
47 in one of these QSE groups, compared to some focal
species 4" Z’ is given by
A

Vasswu(*2) = SiogsV (V2 EY I (12
where C(42) is defined in Eq. (10). Through the QSE
relation, the abundances of large groups of nuclei can be
expressed in terms of those of a single group member and
the free nucleons.

3.2 The quasi-equilibrium-reduced reaction network

If one can exploit this reduction in the number of species
that must be tracked, the size and therefore cost of the
nuclear reaction network can be reduced without reduc-
ing the network’s accuracy. In place of tracking the abun-
dances of each group member, we track the abundance
of the group as a whole,

Yoou(*Z) = > Y(*Z)

AzeA 7! group

(13)

Under conditions where large QSE groups exist, the
rapid series of reactions within the group which estab-
lishes QSE also determines the free proton and neutron
abundances, causing a QSE group involving the light nu-
clei (up to He) to form. The abundances in this light
QSE group obey the NSE relation [Eq. (10)], except
that the free nucleon abundances are not determined by
global constraints on the total neutron and proton abun-
dance, but instead by constraints for these populations
within the QSE groups. This leads to additional abun-
dance equations that must be evolved,
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Yya= Y NY+ D> (N-N)Y+ -
AZeLt group  AZecA Z' group
Yo=Y ZYV+ N (z-2z)Y+ - (14)

AZeLt group AZcA' Z' group

with the sums carried out over each QSE group. In the
special case of the a-network, free neutrons and protons
are absent leaving a-particles as the only light reactants.
Therefore in the QSE-reduced a-network, Yyg and Yz
are replaced by a single equation

3 A;A'YJF

AzeAz! group

YaG = Ya +

(15)

A system of abundance equations including Yya, Yza
and ngup(A/Z’) for each QSE group, along with the
abundances of the species which are not members of any
QSE groups, can be evolved in the same fashion as the
conventional network [see Eq. (3)]. One complication is
that the Y terms from Eq. (1) that appear on the right-
hand side of Eq. (3) depend on the abundances of individ-
ual species Y(AZ ) rather than these group abundances.
This requires evolution of the relative abundances with
the QSE groups, or equivalently the abundances of the
free nucleons. In the simpler case of the a-network, the
iso7 network of Timmes et al. [86] utilizes a direct solu-
tion of the free a-particle abundance, the only free parti-
cle abundance in that simplified system. This proves suf-
ficient for carbon and oxygen burning, but is less success-
ful for silicon burning, where the reaction flow between
QSE groups centered on silicon and the iron-peak species
is important. The o7 network of Hix et al. [87] takes a two
step approach wherein the QSE group abundances (Ya¢,
Yyroup(*8S1), Yyroup(PONi), -+ ) are evolved, then the in-
dividual abundances within the groups are determined in
each iteration. Y, and one group abundance per QSE
group provide sufficient constraints to iteratively solve
for Y., and Y(4' Z') for each group, thereby determin-
ing the abundances of all QSE group species. This ap-
proach proves more successful during silicon burning at
reproducing the abundances calculated from a complete
a-network.

Hix et al. [88] extended this approach to the general
case, wherein Yy¢g, Yz are evolved in addition to group
abundances for silicon and iron-peak QSE groups, pro-
viding sufficient constraints to solve for Y,,, Y, V(*3Si)
and Y (°°Ni). This again allows the calculation of abun-
dances for all species within the light, silicon and iron-
peak groups and accurate determination of reaction rates
that are needed to evolve the next iteration. Figure 6 il-
lustrates the accuracy with which the QSE-reduced net-
work replicates the results of a complete reaction net-
work, showing the evolution of key species and the energy
generation rate for a case of incomplete silicon burning as
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might occur in the outer layers of a thermonuclear super-
nova. The energy generation figure includes results from
two QSE-reduced network calculations, one (LQSE) as-
suming large QSE groups and, as a result, relatively few
non-QSE species, and the other (SQSE) assuming small
QSE groups, leaving more species outside of the QSE
groups. There is a trade-off of greater speed in the LQSE
case for moderately greater accuracy in the SQSE case.

541;e
R

58Ni

10° 4
107! 1
102 1 x
1073 - =
10 4
10° ~
10° 1
1084 >

ZSSi

40Ca

Mass fraction

Energy generation rate /(erg-g '-s™")

{ [x LQSE
1017 4 | + SQSE
E — Full network
T T T T T
107 1074 1073 102
Time /s

Fig. 6 An example of incomplete silicon burning. Top: The evo-
lution of illustrative mass fractions. Bottom: The evolution of the
energy generation rate. The solid lines represent the full network
calculation, crosses the LQSE network, plus signs the SQSE net-
work (bottom only). The dotted vertical line at 15 ms marks the
time when the temperature drops below 3.5 GK. Reproduced from
Ref. [88].

It is important to note that unlike a conventional net-
work, where abundance changes naturally cease as the
temperature declines, the QSE relations continue to alter
the relative abundances of the species in the QSE groups
even after reaction flows between the QSE groups have
ceased. As Fig. 6 illustrates, once the temperature drops
below 3.5 GK (the temperature at which QSE physi-
cally breaks down within the QSE groups), one must ei-
ther continue the evolution in a conventional network or
freeze the abundances. Thus the QSE-reduced network
does not represent global replacement for a conventional
network, as it is inaccurate for following the abundance
evolution at low temperatures. However, by significantly
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reducing the computational cost of the most expensive
parts of a supernova simulation, the QSE-reduced net-
work will be a valuable tool in accelerating the calcula-
tion of multi-dimensional models which track the desired
hundreds of species. Hix et al. [88], using 3 fixed QSE
groups, demonstrated that the QSE-reduced network can
be 5-10 times faster for these expensive nucleosynthesis
stages (depending on the size of the network and assumed
QSE groups, as well as the processor and matrix solver
packages used). Parete-Koon et al. [89, 90] have shown
that a further factor of 2 can be realized through dy-
namic changes in the QSE group assignments, primarily
by taking advantage of the extended period where the
composition is determined by 2 QSE groups separated
by a few species between helium and magnesium.

3.3 Explicit methods to solve thermonuclear reaction
networks

The success of the QSE-reduced network in reducing the
cost of thermonuclear evolution by reducing the cost of
building and solving the Jacobian matrix is simultane-
ously suggestive of a general approach to such speed
improvements and highly specialized to the conditions
under which QSE applies. A more generally applicable
method to evolve nuclear abundances without building
and solving a matrix is highly desirable. Such methods
are widely used in other disciplines to solve stiff systems
of equations that bear algebraic resemblance to the equa-
tions of a nuclear reaction network. Two examples which
have been applied with some success to astrophysical nu-
clear reaction networks are the asymptotic method [91,
92] and the quasi-steady state (QSS) method [93, 94].
Here we will discuss the simpler asymptotic method,
though the QSS is generally moderately faster.

3.3.1 The asymptotic method
Asymptotic methods have been widely studied in other
fields (see, e.g., Refs. [95, 96]). They exploit the fact
that exponential terms which impose stiffness often de-
cay rapidly, limiting the impact errors made in their ap-
proximation may have. The primary properties we note
here are that the asymptotic method is fully explicit and
never requires the creation or solution of a Jacobian ma-
trix, they are A-stable, and explicit asymptotic methods
such as described here scale linearly with network size.
These properties are shared by the more recently devel-
oped quasi-steady state (QSS) method [93, 94].

The system of differential equations shown in Eq. (1)
to represent a nuclear reaction network can be written
as
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Y, = Fy(Y,t) = ZFij(t)

(16)

where Fy(Y,t) is the net flux contributing to popula-
tion ¢, ¢ is the time, and Fj; is the individual flux be-
tween population ¢ and population j. For the purposes of
the asymptotic approximation, it is convenient to group
these fluxes into two new variables: one which is the sum
of all fluxes which add to the population of i (F;") and
one which is the sum of all fluxes which decrease popula-
tion 4 (F; ). These variables are chosen with a sign con-
vention such that they are both non-negative. Adopting
this notation, Eq. (16) can be expressed as
Yi=F(t) — F (1)

(2

(17)

For astrophysical networks the flux out of species i is
proportional to Y;, such that

Fy(t) = [k1(t) + k3 () + - + Ky, (1)]Yi(2) (18)
and equivalently
F7 (1) = K'(t)Yi(t) (19)

where the k! are rate parameters (either \,, or (0v), Y,
in units of inverse time) for each of the m reactions that
can remove population from Y;, and k' is an effective
rate parameter summing all of the other rate parameters
for species i. Note that k* may retain a dependence on
populations Y;, for reactions with 2 or more reactants.
Equation (19) allows Eq. (17) to be written as
Ff(t) - Y,

Yi(t) = BZIORE (20)
Taking a finite-difference approximation of Eq. (20) at
timestep t,, produces

Yi(tn)

Yz(tn) = F+(tn)ki(tn) - k’(tn)

(21)

Define an asymptotic limit for species i such that
F*(t) ~ F; (t), which implies Y;(t) ~ 0. Therefore Eq.
(21) can be rewritten as

Fy (ta)
ke (tn)
which is a first approximation to the asymptotic abun-
dance Y;(t) at time ¢ = t,,.

This approximation can be improved by the addition
of a correction term. We can approximate Y;(t,,) by the
backward difference
Y:L(t’ﬂ) - Yvi(tnfl)

At
where At is the timestep (¢, —t,—1), Y;(¢5) is the approx-
imated abundance evaluated at timestep n, and Y;(¢,,—1)

Yi(tn) ~ (23)
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is the same evaluated at timestep n— 1. Substituting Eq.
(22) into Eq. (23) gives

L (Ff(t)  F(te-1)
AL\ Ki(tn)  Ki(ta_1)

An improved approximation is gained by substituting
Eq. (24) back into Eq. (21),

L Ff(t) 1 Fi (ta)  Ff(ta-1)

ki (t Kitn)  Ki(ta1)
(25)

This approximation is most valid when the right-hand
term, which came from the approximated derivative, is
small. This can be accomplished if the fluxes into popu-
lation ¢ are small, but is more likely to occur because the
product kAt is large. If k;At > 1, then the flux out of
species 1 is greater than the population of species ¢, and
in an ordinary forward Euler timestep, the population of
species i would become over-depleted and have a negative
value. This would lead to the solution of the system of
equations becoming unstable. If however, we choose this
over-depletion point as the criteria for using the asymp-
totic formalism, the over-depletion is prevented and the
system will not become unstable. In any given timestep,
the asymptotic approximation of Eq. (25) is then em-
ployed only for those populations that meet the criteria
of k;At > 1. The remaining species are treated with a
different numerical technique, for example, forward Eu-
ler, but in principle higher order methods can be used to
provide greater accuracy if needed.

3.8.2  Applying explicit methods to thermonuclear
supernovae

To examine the utility of the asymptotic method to ther-
monuclear supernovae, we present a test case drawn from
Ref. [97], a thermodynamic profile extracted from a de-
flagrating white dwarf model from Brown et al. [98]. It
begins at an initial temperature of 0.033 GK with a den-
sity of 9.4 x 10® g-cm™3, reaches a peak temperature of
4.7 GK after 1.57 seconds, by which point the density has
dropped to 7.5 x 107 g-cm™3. The calculation concludes
at 2.0 seconds, with the temperature of 2.1 GK and den-
sity of 4.5 x 10% g-cm ™. Two nuclear reaction networks
are used, a 14 species a-network and more complete net-
work with 150 species. Table 1 compares the final mass
fractions for the a-network calculated by the asymptotic
solver to those computed by a standard backward Euler
solver.

Figure 7 shows a comparison of the timestep behavior
of the asymptotic solver to that of the backward Eu-
ler solver for this example. The upper panel illustrates
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the behavior of the a-network. Prior to 1.5 seconds,
the timestep behavior of the asymptotic solver is quite
comparable to that of the backward Euler, indicating
that the asymptotic solver is adept at Carbon burning.

Table 1 Comparison of final mass fractions using the a-network
for the Type Ia supernova test problem.

Isotope Asymptotic Backward Euler
4He 6.69 x 1012 5.71 x 10~ 12
2¢ 2.45 x 1077 2.88 x 10~7
160 7.22 x 1076 8.49 x 10—6
20Ne 2.64 x 10~10 2.65 x 10~10
24 Mg 5.06 x 10~6 6.12 x 10~6
288 2.88 x 10~1 3.15 x 10~1
329 2.97 x 10~1 2.95 x 10~1
36 Ar 9.00 x 10~2 8.41 x 10~2
140Ca 1.12 x 1071 1.01 x 101
44y 6.31 x 10~° 4.77 x 1075
48Cr 3.90 x 1073 3.78 x 1073
52Fe 2.81 x 1072 2.74 x 10~2
56Ni 1.84 x 1071 1.74 x 1071
607n 7.07 x 10710 5.78 x 1010
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Fig. 7 Comparison of the timesteps taken by the asymp-
totic solver (dashed blue lines) and backward Euler solver (solid
green lines) under Type Ia supernova conditions for a 14-isotope
anetwork (top panel) and 150 species network (lower panel).
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However once the temperature exceeds 2 GK the asymp-
totic solver begins to trail the backward Euler solver
dramatically. At the peak temperature, the asymp-
totic solver takes more than 10 000 timesteps for each
backward Euler timestep. While the asymptotic solver’s
timestep grows closer to that of the backward Euler
solver as the temperature declines from the peak, it does
not achieve equality until 1.8 seconds into the calcula-
tion, at which point the temperature has dropped below
3 GK and substantial nuclear processing has effectively
ceased with this reaction network. As a result of the much
smaller timesteps near the peak temperature, the total
number of timesteps taken by the asymptotic solver is
much larger than the backward Euler solver requires. In
the case of the alpha network, the calculation using the
asymptotic solver took 4.8 million timesteps compared
to the implicit solver taking only 636 timesteps. With
matrix operations in the alpha network requiring 66%
(or less) of the calculation time in the backward Euler
case, we can estimate the relative speed of the asymp-
totic method as (1/(1 —66%)) ~ 3 that of the implicit
solver, implying that a mature asymptotic solver would
compute each timestep at best three times faster than the
implicit method. Even with this per timestep advantage,
the asymptotic calculation is completely inadequate from
a performance perspective, except during carbon burn-
ing where it is very competitive. This mirrors previous
results from Mott et al. [93] for a similar problem.
Asymptotic calculations with larger networks per-
formed even more poorly at high temperatures. The
lower panel of Fig. 7 show the timestep comparisons for
the 150 isotope network. As in the a-network case, the
early timestep behavior during carbon burning is com-
parable between asymptotic and backward Euler solvers,
but diverge once the temperature exceeds 2 GK. At peak
both of the larger networks require the asymptotic solver
to take nearly 1 000 000 timesteps for each timestep
taken by the backward Euler. While the disparity be-
tween the asymptotic solver and backward Euler solver
diminishes with time, it does not do so as sharply in the
large network cases as it did in the a-network case. Even
at the end of the calculation, 2 seconds from its start with
a temperature of 2.1 GK and density of 4.5x10% g-cm ™3,
the asymptotic solver is taking several hundred timesteps
for each backward Euler timestep. This difference oc-
curs because the larger networks contain free neutrons
and protons, which continue to react, driving nuclear
abundance evolution, after declining temperatures pre-
vent « captures from occurring at a noticeable rate.
Hence, freezeout occurs much earlier in the a-network
because of its omission of free nucleons. The result of
this behavior is that the entire model requires more than
10 million timesteps for the asymptotic solver to com-
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plete these large network models, while the backward
Euler solver requires less than 2600. Even taking into
account the reduced cost per timestep, estimated to be
~1/(1—-0.8) =5 for the 150-isotope network where the
matrix build and solve takes 80% of the implicit method’s
cost, the asymptotic method is not competitive except
during carbon burning.

It is very revealing that the asymptotic solver is com-
petitive with implicit methods during carbon burning
(and also during hydrogen and helium burning, Refs. [92,
97]), but not for hotter burning stages. While it is tempt-
ing to ascribe the asymptotic solvers difficulties near the
peak temperature of this model simply to the tempera-
ture being in excess of 2 GK, the actual cause is more
subtle. For temperatures in excess of 2 GK, many pairs
of forward and inverse reaction reach equilibrium. Figure
8 plots the fraction of equilibrated reaction pairs as well
as the fraction of nuclear species for which the asymp-
totic algorithm is used to update the abundances, those
for which k; At > 1. While a significant number of reac-
tions are defined as “equilibrated” at early times, these
fluxes are in fact nearly zero. The rise of the fraction
of equilibrated reaction pairs after 1.5 seconds, peaking
above 75% for much of the burning, is the establishment
of detailed balance and corresponds to the rise in tem-
perature above 2 GK. At this same time, the majority of
species also satisfy the asymptotic condition. Unfortu-
nately, updating the abundance using Eq. (25) performs
poorly in cases where the reaction pairs involved in the
solution are equilibrated because the approximation of
Eq. (22) is not well justified, forcing a smaller timestep.
In contrast, the modest level of equilibration shown for

1,

Fraction equilibrated

= = = = Fraction asymptotic

—r—

0.20
log (Time /s)
Fig. 8 The fraction of isotopes that are being treated asymp-
totically (dotted line) and the fraction of reaction pairs that are
within 1% of the partial equilibrium condition [Eq. (7)] (solid line;
red online) for a 150-isotope network under Type Ia Supernova
conditions.
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hydrogen, helium and carbon burning does not affect
species being evolved via the asymptotic approxima-
tion [92, 97]. This absence of partial equilibrium allows
the asymptotic solver to perform competitively in these
stages.

3.8.8  Application of partial equilibria to explicit
integration methods

Just as was the case for the implicit network, were the
QSE-reduced network turned the numerical difficulty
posed by equilibrium into a virtue, equilibrium can also
be harnessed to speed up the solution of the explicit
methods. In general, the existence of equilibrium abun-
dance relations like Eq. (7) can be used in two ways.
First, they can be used to reduce the number of equa-
tions to be solved by grouping abundances together. Sec-
ond, they can be used to remove the equilibrated reac-
tions from the system of equations by providing algebraic
ways to update the equilibrated abundances. Since these
equilibrated reactions are in general among the fastest
in the network, their removal has the effect of reducing
the stiffness of the system. In the case of the implicit
network solution, the first approach is most efficacious,
because the implicit timestep is limited by accuracy not
stability and the need to solve a matrix equation places a
high premium on the number of equations, and hence the
size of the matrix, to be solved. For the explicit network,
the cost of additional differential equations is relatively
small, but as was shown in the preceding section, in-
stability can place a severe constraint on the timestep.
Thus for explicit systems, the second approach to utiliz-
ing equilibrium is most useful.

To explore the use of partial equilibrium in explicit
reaction network integrators, we begin by re-writing the
total fluxes, F' in Eq. (17) in terms of their component
fluxes, f,

Yi=) S-S =Y (- £ (1)

m

(26)

The second equality reflects a re-grouping of the terms
into individual pairs of forward and reverse reactions.
Mott [91, 99] introduced the idea of using partial equi-
librium to set ;"% (t)— f/"~(t) = 0 for equilibrated reac-
tion pairs, thereby removing their short timescales from
the integration. This idea has recently been extended
and improved for astrophysical problems by Guidry et
al. [100]. The removal of equilibrated reactions results
in a two stage abundance update. First, the equilibrated
rates pairs are set to 0 and the isotopic populations are
evolved by the system of differential equations including
the remaining non-equilibrated reactions. Second, the ef-
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fects of the equilibrated reactions are included via equi-
librium constraint equations derived from Eq. (7), restor-
ing equilibrium. Guidry et al. [100] contains a complete
list of these constraint equations, which differ depending
on the number of products and reactants involved in a
reaction.

One complication in this approach for utilizing partial
equilibrium within explicit integration is the evolution
of abundances which participate in more than one equi-
librated reaction pair. A common example is the free
nucleons and a-particles, which are among the reactants
or products in the vast majority of reactions at work
in an astrophysical nuclear reaction network, but even
heavier species may fall into this category. Indeed, under
conditions where QSE applies, most heavy nuclei belong
to this category since every strong or electromagnetic re-
action among QSE group members is equilibrated. Since
each equilibrium constraint suggests a (slightly) different
equilibrium abundance value for the shared species, some
method must be used to find a common abundance that
satisfies all equilibrium constraints. The most general ap-
proach is to find all of these equilibrium abundances si-
multaneously by iteration across the entire network. This
solution is directly analogous to the iterative determina-
tion of the abundances of the focal species from the group
abundances in the QSE-reduced network described in
Section 3.2. In that case, the iteration, which requires a
matrix solution if the Newton—Raphson method is used,
is over a small set of group abundance equations and
is therefore of small computational cost. In the case of
partial equilibrium applied to explicit methods, the iter-
ation is over a larger number of equilibrium constraints
for individual reaction pairs, making the computational
cost sizable. This is particularly distasteful for a method
whose chief virtue is the avoidance of a matrix solu-
tion during the network integration in time. Fortunately,
Guidry et al. [100] have found that a simpler approach,
obtaining each equilibrium abundance by averaging over
the values computed by the different relevant equilibrium
constraints, is sufficiently accurate, at least for the small
networks tested thus far.

Figure 9 shows an example of one such test, integra-
tion of an a-network over a simple thermodynamic pro-
file (shown in the lower panel of Fig. 9) similar to the
results of the passage of a thermonuclear flame through
the white dwarf. As in the case documented in Fig. 7,
the timestep used by the asymptotic solver trails that of
the implicit solver by almost 5 orders of magnitude. How-
ever, the use of partial equilibrium within the asymptotic
solver (labeled PE in Fig. 9) improves the timestep by
more than a factor of 1000, making the explicit solver
with partial equilibrium much more competitive with
the implicit solver in terms of time. Further refinement
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is needed in this new solver (for example, the PE solver
does not employ the same accuracy limit on the timestep,
likely the reason the PE solver’s time steps exceed those
of the implicit solver in the low temperature portion of
Fig. 9). Nonetheless it is clear that this explicit integra-
tor, including partial equilibrium where appropriate, is
much more effective and efficient for conditions encoun-
tered during thermonuclear supernovae than previous re-
sults found.

log (d#/s)

-12

5.6 -54 -5.0

log (Time/s)

-6.0 -5.8

Temperature /GK
W

p ~constant
S

1 L T
6.0

-5.8

5.6 -5.4 -5.2

log (Time/s)

-5.0

Fig. 9 Integration timesteps, shown in upper panel, for Asymp-
totic, PE, and implicit calculations with an alpha network for sam-
ple thermonuclear supernova conditions, shown in lower panel. Re-
produced from Ref. [100].

4 Conclusion

Our understanding of the mechanism that produces
Type Ia supernova has grown over time with models of
increasing sophistication. Initially, spherically symmet-
ric (1D) models with small nuclear networks revealed the
need for the flame to begin as a deflagration. Increasingly
sophisticated 1D models, using larger nuclear reaction
networks, now provide excellent reproduction of the ob-
served spectra and light curves, albeit using proscribed
flame speeds and mixing. These models predictions of
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the nucleosynthesis have revealed the contribution that
thermonuclear supernovae make to galactic chemical evo-
lution, especially for the iron-peak species.

The transition over the past decade to two dimen-
sional, axisymmetric models and now to three dimen-
sional models has removed the need for prescriptions on
flame speed and mixing, but at a cost of simplified ther-
monuclear evolution. This has been addressed in part by
post-processes calculations relying on tracer particles,
for example such studies have revealed the potential for
the p-process to occur in these supernovae. However,
the next step is to perform multi-dimensional simula-
tions with larger nuclear reaction networks, matching
the capabilities of 1D models. This next step however
comes at a considerable computational cost, as 10 times
more nuclear species requires at least 100 times more
computation. It seems clear that quasi-equibrium will be
critical to managing this computational cost, either in
the context of the fully implicit solutions to the network
equations (the QSE-reduced network) or as an com-
ponent in explicit solvers. With the savings that these
methods afford, the next step in simulating thermonu-
clear supernovae moves closer to hand.
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