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1 Introduction

Nowadays, Malliavin calculus is underpinning important developments in
stochastic analysis and its applications. In particular, research on SPDEs is
benefiting from the ideas and tools of this calculus. Unexpectedly, this hard
machinery is successfully used in financial engineering for the computation
of Greeks, and in numerical approximations of SPDEs. The analysis of the
dependence of the Malliavin matrix on its structural parameters is used in
problems of potential theory involving SPDEs, like obtaining the optimal
size of some hitting probabilities. The study of such questions, but also of
some classical issues like the absolute continuity of measures derived from
probability laws of SPDEs, is still an underdeveloped field.
These notes are a brief introduction to the basic elements of Malliavin calcu-
lus and to some of its applications to SPDEs. They have been prepared for a
series of six lectures at the LMS-EPSRC Short Course on Stochastic Partial
Differential Equations.
The first three sections are devoted to introduce the calculus: its motivations,
the main operators and rules, and the criteria for existence and smoothness
of densities of probabilities laws. The last three ones deal with applications
to SPDEs. To be self-contained, we provide some ingredients of the SPDE
framework we are using. Then we study differentiability in the Malliavin
sense, and non-degeneracy of the Malliavin matrix. The last section is de-
voted to sketch a method to analyze the asymptotic behaviour of densities
of small perturbations of SPDEs. Altogether, this is a short, very short,
journey through a deep and fascinating subject.
To close this short presentation, I would like to express my gratitude to
Professor Dan Crisan, the scientific organizer of the course, for a wonderful
and efficient job, to the London Mathematical Society for the financial sup-
port, and to the students whose interest and enthusiasm has been a source
of motivation and satisfaction.

Barcelona, August 2008
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2 Integration by parts and absolute continu-

ity of probability laws

This lecture is devoted to present the classical sufficient conditions for exis-
tence and regularity of density of finite measures on Rn and therefore for the
densities of probability laws. The results go back to Malliavin (see [35], but
also [74], [79] and [46]). To check these conditions, Malliavin developed a
differential calculus on the Wiener space, which in particular allows to prove
an integration by parts formula. The essentials on this calculus will be given
in the next lecture.

2.1 Properties derived from an integration by parts
formula

The integration by parts formula of Malliavin calculus is a simple but ex-
tremely useful tool underpinning many of the sometimes unexpected appli-
cations of this calculus. To illustrate its role and give a motivation, we start
by showing how an abstract integration by parts formula leads to explicit
expressions for the densities and their derivatives.
Let us introduce some notation. Multi-indices of dimension r are denoted
by α = (α1, . . . , αr) ∈ {1, . . . , n}r, and we set |α| = ∑r

i=1 αi. For any differ-
entiable real valued function ϕ defined on Rn, we denote by ∂αϕ the partial
derivative ∂|α|α1,...,αr

ϕ. If |α| = 0, we set ∂αϕ = ϕ, by convention.

Definition 2.1 Let F be a Rn-valued random vector and G be an integrable
random variable defined on some probability space (Ω,F , P ). Let α be a
multi-index. The pair F,G satisfies an integration by parts formula of degree
|α| if there exists a random variable Hα(F,G) ∈ L1(Ω) such that

E
(
(∂αϕ)(F )G

)
= E

(
ϕ(F )Hα(F,G)

)
, (2.1)

for any ϕ ∈ C∞b (Rn).

The property expressed in (2.1) is recursive in the following sense. Let α =
(β, γ), with β = (β1, . . . , βa), γ = (γ1, . . . , γb). Then

E
(
(∂αϕ)(F )G

)
= E

(
(∂γϕ)(F )Hβ(F,G)

)
= E

(
ϕ(F )Hγ(F,Hβ(F,G))

)
= E

(
ϕ(F )Hα(F,G)

)
.
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The interest of this definition in connection with the study of probability
laws can be deduced from the next result.

Proposition 2.1 1. Assume that (2.1) holds for α = (1, . . . , 1) and G =
1. Then the probability law of F has a density p(x) with respect to the
Lebesgue measure on Rn. Moreover,

p(x) = E
(
11(x<F )H(1,...,1)(F, 1)

)
. (2.2)

In particular, p is continuous and bounded.

2. Assume that for any multi-index α the formula (2.1) holds true with
G = 1. Then p ∈ C|α|(Rn) and

∂αp(x) = (−1)|α|E
(
11(x<F )Hα+1(F, 1)

)
, (2.3)

where α + 1 := (α1 + 1, . . . , αd + 1).

Proof: We start by giving a non rigorous argument for part 1. By (2.1) we
have

E
(
(∂1,...,111[0,∞))(F − x)

)
= E

(
11[0,∞)(F − x)H(1,...,1)(F, 1)

)
,

But ∂1,...,111[0,∞) = δ0, where the latter stands for the delta Dirac function at
zero, and the equality is understood in the sense of distributions. Moreover,
at least at a heuristically level, p(x) = E

(
δ0(F − x)

)
(see [79] for a proof),

consequently
p(x) = E

(
11[0,∞)(F − x)H(1,...,1)(F, 1)

)
,

Let us be more rigorous. Fix f ∈ C∞0 (Rn) and set ϕ(x) =
∫ x1
−∞ · · ·

∫ xn
−∞ f(y)dy.

Fubini’s theorem yields

E
(
f(F )

)
= E ((∂1,...,1ϕ)(F )) = E

(
ϕ(F )H(1,...,1)(F, 1)

)
= E

(∫
Rn

11(x≤F )f(x)dx)H(1,...,1)(F, 1)dx
)

=
∫

Rn
f(x)E

(
11(x≤F )H(1,...,1)(F, 1)

)
dx.

Let B be a bounded Borel set of Rn. Consider a sequence of functions
fn ∈ C∞0 (Rn) converging pointwise to 11B. Owing to the previous identities
(applied to fn) and Lebesgue bounded convergence we obtain

E
(
11B(F )

)
=
∫

Rn
11B(x)E

(
11(x≤F )H(1,...,1)(F, 1)

)
dx. (2.4)
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Hence the law of F is absolutely continuous and its density is given by (2.2).
Since H(1,...,1)(F, 1) is assumed to be in L1(Ω), formula (2.2) implies the con-
tinuity of p, by bounded convergence. This finishes the proof of part 1.
The proof of part 2 is done recursively. For the sake of simplicity, we shall
only give the details of the first iteration for the multi-index α = (1, . . . , 1).
Let f ∈ C∞0 (Rn), Φ(x) =

∫ x1
−∞ · · ·

∫ xn
−∞ f(y)dy, Ψ(x) =

∫ x1
−∞ · · ·

∫ xn
−∞Φ(y)dy.

By assumption,

E
(
f(F )

)
= E

(
Φ(F )H(1,...,1)(F, 1)

)
= E

(
Ψ(F )H(1,··· ,1)(F,H(1,...,1)(F, 1))

)
= E

(
Ψ(F )H(2,...,2)(F, 1)

)
.

Fubini’s Theorem yields

E
(
Ψ(F )H(2,...,2)(F, 1)

)
= E

(∫ F1

−∞
dy1 · · ·

∫ Fn

−∞
dyn

(∫ y1

−∞
dz1 · · ·

∫ yn

−∞
dznf(z)

)
H(2,...,2)(F, 1)

)

= E

(∫ F1

−∞
dz1 · · ·

∫ Fn

−∞
dznf(z)

∫ F1

z1
dy1 · · ·

∫ Fn

zn
dynH(2,...,2)(F, 1)

)

=
∫

Rn
dzf(z)E

(
Πn
i=1(Fi − zi)+H(2,...,2)(F, 1)

)
.

This shows that the density of F is given by

p(x) = E
(
Πn
i=1(Fi − xi)+H(2,...,2)(F, 1)

)
,

using a limit argument, as in the first part of the proof. The function
x 7→ Πn

i=1(F i − xi)
+ is differentiable, except when xi = Fi for some

i = 1, . . . , n, which happens with probability zero, since F is absolutely
continuous. Therefore by bounded convergence

∂(1,...,1)p(x) = (−1)nE
(
11[x,∞)(F )H(2,...,2)(F, 1)).

�

Remark 2.1 The conclusion in part 2 of the preceding Proposition is quite
easy to understand by formal arguments. Indeed, roughly speaking the func-
tion ϕ in (2.1) should be such that its derivative ∂α is the delta Dirac function
δ0. Since taking primitives makes functions smoother, the higher |α| is, the
smoother ϕ should be. Thus, having (2.1) for any multi-index α yields infinite

differentiability for p(x) = E
(
δ0(F − x)

)
.

9



Remark 2.2 Assume that (2.1) holds for α = (1, . . . , 1) and a positive,
integrable random variable G. By considering the measure dQ = GdP , and
with a similar proof as for the first statement of Proposition 2.1, we conclude
that the measure Q−1◦F is absolutely continuous with respect to the Lebesgue
measure and its density p̃ is given by

p̃(x) = E
(
11(x≤F )H(1,...,1)(F,G)

)
.

2.2 Malliavin’s results

We now give Malliavin’s criteria for the existence of density (see [35]). To
better understand the assumption, let us explore first the one-dimensional
case.
Consider a finite measure µ on R. Assume that for every function ϕ ∈ C∞0 (R)
there exists a positive constants C, not depending on ϕ, such that∣∣∣∣∫

R
ϕ′dµ

∣∣∣∣ ≤ C||ϕ||∞.

Define

ϕa,b(x) =


0 if x ≤ a
x−a
b−a if a < x < b

1 if x ≥ b,

(2.5)

−∞ < a < b < +∞. By approximating ϕa,b by a sequence of functions in
C∞0 (R) we obtain

µ ([a, b]) ≤ C(b− a).

Since this holds for any such a < b, it follows that µ is absolutely continuous
with respect to the Lebesgue measure.
Malliavin proved that the same result holds true in dimension n > 1 as is
stated in the next proposition

Proposition 2.2 Let µ be a finite measure on Rn. Assume that for any i ∈
{1, 2, . . . , n} and every function ϕ ∈ C∞0 (Rn), there exist positive constants
Ci, not depending on ϕ, such that∣∣∣∣∫

R
∂iϕdµ

∣∣∣∣ ≤ Ci||ϕ||∞. (2.6)

Then µ is absolutely continuous with respect to the Lebesgue measure and the
density belongs to L

n
n−1 .
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When applying this proposition to the law of a random vector F , we have
the following particular statement:

Proposition 2.3 Assume that for any i ∈ {1, 2, . . . , n} and every function
ϕ ∈ C∞0 (Rn), there exist positive constants Ci, not depending on ϕ, such that

|E((∂iϕ)(F ))| ≤ Ci||ϕ||∞. (2.7)

Then the law of F has a density.

In [35], the density obtained in the preceding theorem is proved to be in L1;
however in a remark the improvement to L

n
n−1 is mentioned and a hint for

the proof is provided. We prove Proposition 2.2 following [46] which takes
into account Malliavin’s remark.

Proof: Consider an approximation of the identity on Rn, for example

ψε(x) = (2πε)−
n
2 exp

(
−|x|

2

2ε

)
.

Consider also functions cM , M ≥ 1, belonging to C∞0 (Rn), 0 ≤ cM ≤ 1, such
that

cM(x) =

1 if |x| ≤M

0 if |x| ≥M + 1

and with partial derivatives uniformly bounded, independently on M . The
functions cM × (ψε ∗ µ) clearly belong to C∞0 (Rn) and give an approximation
of µ. Then, by Gagliardo-Nirenberg inequality (see a note at the end of this
lecture)

‖cM × (ψε ∗ µ)‖
L

n
n−1
≤

n∏
i=1

‖∂i(cM × (ψε ∗ µ))‖
1
n

L1 .

We next prove that he right-hand side of this inequality is bounded. For this,
we notice that assumption (2.6) implies that the functional

ϕ ∈ C∞0 (Rn) 7→
∫

Rn
∂iϕdµ

is linear and continuous and therefore it defines a signed measure with finite
total mass (see for instance [32], page 82). We shall denote by νi, i = 1, . . . , n
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this measure. Then,

‖∂i(cM × (ψε ∗ µ))‖L1 ≤
∫

Rn
cM(x)

∣∣∣∣∫
Rn
∂iψε(x− y)µ(dy)

∣∣∣∣ dx
+
∫

Rn
|∂icM(x)|

∣∣∣∣∫
Rn
ψε(x− y)µ(dy)

∣∣∣∣ dx
≤
∫

Rn

∣∣∣∣∫
Rn
ψε(x− y)νi(dy)

∣∣∣∣ dx
+
∫

Rn
|∂icM(x)|

∣∣∣∣∫
Rn
ψε(x− y)µ(dy)

∣∣∣∣ dx.
By applying Fubini’s theorem, and because of the choice of ψε, it is easy to
check that each one of the two last terms is bounded by a finite constant,
independent of M and ε. As a consequence, the set of functions {cM × (ψε ∗
µ),M ≥ 1, ε > 0} is bounded in L

n
n−1 . By using the weak compactness of the

unit ball of L
n
n−1 (Alouglu’s theorem), we obtain that µ has a density and it

belongs to L
n
n−1 .

�

The next result (see [74]) gives sufficient conditions on µ ensuring smoothness
of the density with respect to the Lebesgue measure.

Proposition 2.4 Let µ be a finite measure on Rn. Assume that for any
multi-index α and every function ϕ ∈ C∞0 (Rn) there exist positive constants
Cα not depending on ϕ such that∣∣∣∣∫

Rn
∂αϕdµ

∣∣∣∣ ≤ Cα‖ϕ‖∞. (2.8)

Then µ possesses a density which is a C∞ function.

When particularising µ to the law of a random vector F , condition (2.8)
clearly reads

|E ((∂α) (F ))| ≤ Cα‖ϕ‖∞. (2.9)

Remark 2.3 When checking (2.6), (2.8), we have to get rid of the deriva-
tives ∂i, ∂α and thus one naturally thinks of an integration by parts procedure.

Some comments:
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1. Let n = 1. The assumption in part 1) of Proposition 2.1 implies (2.6).
However, for n > 1, both hypotheses are not comparable. The conclu-
sion in the former Proposition gives more information on the density
than in Proposition 2.4.

2. Let n > 1. Assume that (2.1) holds for any multi-index α with |α| = 1.
Then, by the recursivity of the integration by parts formula, we obtain
the validity of (2.1) for α = (1, · · · , 1).

3. Since the random variable Hα(F,G) in (2.1) belongs to L1(Ω), the iden-
tity (2.1) with G = 1 clearly implies (2.9). Therefore the assumption
in part 2 of Proposition 2.1 is stronger than in Proposition 2.4 but the
conclusion more precise too.

Annex
Gagliardo-Nirenberg inequality

Let f ∈ C∞0 (Rn), then

‖f‖
L

n
n−1
≤

n∏
i=1

‖∂if‖
1
n

L1 .

For a proof, we refer the reader to [73], page 129.
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3 Stochastic calculus of variations on an ab-

stract Wiener space

This lecture is devoted to introduce the main ingredients of Malliavin calcu-
lus: the derivative, divergence and Ornstein Uhlenbeck operators, and rules
of calculus for them.

3.1 Finite dimensional Gaussian calculus

To start with, we shall consider a very particular situation. Let µm be the
standard Gaussian measure on Rm:

µm(dx) = (2π)−
m
2 exp

(
− |x|

2

2

)
dx.

Consider the probability space (Rm,B(Rm), µm). Here n–dimensional ran-
dom vectors are functions F : Rm → Rn. We shall denote by Em the expec-
tation with respect to the measure µm.
The purpose is to find sufficient conditions ensuring absolute continuity with
respect to the Lebesgue measure on Rn of the probability law of F , and the
smoothness of the density. More precisely, we would like to obtain expressions
such as (2.1). This will be done in a quite sophisticated way, as a prelude to
the methodology we shall apply in the infinite dimensional case. For the sake
of simplicity, we will only deal with multi-indices α of order one. Hence, we
shall only address the problem of existence of density for the random vector
F . As references of this section we mention [35], [74], [54].

The Ornstein-Uhlenbeck operator

Let (Bt, t ≥ 0) be a standard Rm-valued Brownian motion. Consider the
linear stochastic differential equation

dXt(x) =
√

2dBt −Xt(x)dt, (3.1)

with initial condition x ∈ Rm. Using Itô’s formula, it is immediate to check
that the solution to (3.1) is given by

Xt(x) = exp(−t)x+
√

2
∫ t

0
exp(−(t− s))dBs. (3.2)

The operator semigroup associated with the Markov process solution to (3.1)
is defined by Ptf(x) = Emf(Xt(x)), for a suitable class of functions f . Notice
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that the law of Zt(x) =
√

2
∫ t

0 exp(−(t− s))dBs is Gaussian, mean zero and
with covariance given by (1 − exp(−2t))I. This fact, together with (3.2),
yields

Ptf(x) =
∫

Rm
f(exp(−t)x+

√
1− exp(−2t)y)µm(dy). (3.3)

We are going to identify the class of functions f for which the right hand-side
of (3.3) makes sense, and we will also compute the infinitesimal generator of
the semigroup. This is the Ornstein-Uhlenbeck operator in finite dimension.

Lemma 3.1 The semigroup generated by (Xt, t ≥ 0) satisfies the following:

1. (Pt, t ≥ 0) is a contraction semigroup on Lp(Rm;µm), for all p ≥ 1.

2. For any f ∈ C2
b (Rm) and every x ∈ Rm,

lim
t→0

1

t

(
Ptf(x)− f(x)

)
= Lmf(x), (3.4)

where Lm = ∆− x · ∇ =
∑m
i=1 ∂

2
xixi
−∑m

i=1 xi∂xi.

3. (Pt, t ≥ 0) is a symmetric semigroup on L2(Rm;µm).

Proof. 1) Let X and Y be independent random variables with law µm. The

law of exp(−t)X+
√

1− exp(−2t)Y is also µm. Therefore, (µm×µm)◦T−1 =

µm, where T (x, y) = exp(−t)x +
√

1− exp(−2t)y. Then, the definition of
Ptf and this remark yields∫

Rm
|Ptf(x)|pµm(dx) ≤

∫
Rm

∫
Rm
|f(T (x, y))|pµm(dx)µm(dy)

=
∫

Rm
|f(x)|pµm(dx).

2) This follows very easily by applying the Itô formula to the process f(Xt).
3) We must prove that for any g ∈ L2(Rm;µm),∫

Rm
Ptf(x)g(x)µm(dx) =

∫
Rm

f(x)Ptg(x)µm(dx),

or equivalently

Em
(
f(exp(−t)X +

√
1− exp(−2t)Y )g(X)

)
= Em

(
g(exp(−t)X +

√
1− exp(−2t)Y )f(X)

)
,
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where X and Y are two independent standard Gaussian variables. This
follows easily from the fact that the vector (Z,X), where

Z = exp(−t)X +
√

1− exp(−2t)Y,

has a Gaussian distribution and each component has law µm. �

The adjoint of the differential

We are looking for an operator δm which is the adjoint of the gradient ∇ in
L2(Rm, µm). Such an operator must act on functions ϕ : Rm → Rm, take
values in the space of real-valued functions defined on Rm, and satisfy the
duality relation

Em〈∇f, ϕ〉 = Em(fδmϕ), (3.5)

where 〈·, ·〉 denotes the inner product in Rm. Let ϕ = (ϕ1, . . . , ϕm). Assume
first that the functions f, ϕi : Rm → R, i = 1, . . . ,m, are continuously
differentiable. An usual integration by parts yields

Em〈∇f, ϕ〉 =
m∑
i=1

∫
Rm

∂if(x)ϕi(x)µm(dx)

=
m∑
i=1

∫
Rm

f(x)
(
xiϕ

i(x)− ∂iϕi(x)
)
µm(dx).

Hence

δmϕ =
m∑
i=1

(xiϕ
i − ∂iϕi). (3.6)

Notice that on C2(Rm), δm ◦ ∇ = −Lm.
The definition (3.6) yields the next useful formula

δm(f∇g) = −〈∇f,∇g〉 − fLmg, (3.7)

for any f, g smooth enough.

Example 3.1 Let n ≥ 1; consider the Hermite polynomial of degree n on
R, which is defined by

Hn(x) =
(−1)n

n!
exp

(
x2

2

)
dn

dxn
exp

(
−x

2

2

)
.
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The operator δ1 satisfies

δ1Hn(x) = xHn(x)−H ′n(x) = xHn(x)−Hn−1(x)

= (n+ 1)Hn+1(x).

Therefore it increases the order of a Hermite polynomial by one.

An integration by parts formula

Using the operators ∇, δm and Lm, and for random vectors F = (F 1, . . . , F n)
regular enough (meaning that all the differentiations performed throughout
this section make sense), we are going to establish an integration by parts
formula of the type (2.1).
We start by introducing the finite dimensional Malliavin matrix, also termed
covariance matrix, as follows:

A(x) =
(
〈∇F i(x),∇F j(x)〉

)
1≤i,j≤n

.

Notice that by its very definition, A(x) is a symmetric, non-negative definite
matrix, for any x ∈ Rm. Clearly A(x) = DF (x)DF (x)T , where DF (x) is the
Jacobian matrix at x and the superscript T means the transpose.
Let us consider a function ϕ ∈ C1(Rn), and perform some computations
showing that (∂iϕ)(F ), i = 1, . . . , n, satisfies a linear system of equations.
Indeed, by the chain rule,

〈
∇
(
ϕ(F (x)

)
,∇F l(x)

〉
=

m∑
j=1

n∑
k=1

(∂kϕ)(F (x))∂jF
k(x)∂jF

l(x)

=
n∑
k=1

〈∇F l(x),∇F k(x)〉(∂kϕ)(F (x))

=
(
A(x)(∇Tϕ)(F (x))

)
l
, (3.8)

l = 1, . . . , n. Assume that the matrix A(x) is inversible µm-almost every-
where. Then one gets

(∂iϕ)(F ) =
n∑
l=1

〈
∇
(
ϕ(F (x))

)
, A−1

i,l (x)∇F l(x)
〉
, (3.9)

for every i = 1, . . . , n, µm-almost everywhere.
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Taking expectations and using (3.7), (3.9) yields

Em
(
(∂iϕ)(F )

)
=

n∑
l=1

Em〈∇
(
ϕ(F )

)
, A−1

i,l ∇F l〉

=
n∑
l=1

Em
(
ϕ(F )δm(A−1

i,l ∇F l)
)

=
n∑
l=1

Em
(
ϕ(F )

(
− 〈∇A−1

i,l ,∇F l〉 − A−1
i,l LmF

l
)
. (3.10)

Hence we can write

Em
(
∂iϕ(F )

)
= Em

(
ϕ(F )Hi(F, 1)

)
, (3.11)

with

Hi(F, 1) =
n∑
l=1

δm(A−1
i.l ∇F l)

= −
n∑
l=1

(
〈∇A−1

i,l ,∇F l〉+ A−1
i,l LmF

l
)
. (3.12)

This is an integration by parts formula, as in Definition 2.1, for multi-indices
of length one.
For multi-indices of length greater than one, things are a little bit more
difficult; essentialy the same ideas would lead to the analogue of formula
(2.1) with α = (1, · · · , 1) and G = 1.
The preceding discussion and Proposition 2.2 yield the following result.

Proposition 3.1 Let F be continuous differentiable up to the second order
such that F and its partial derivatives up to order two belong to Lp(Rm;µm),
for any p ∈ [1,∞[. Assume that:

(1) The matrix A(x) is invertible for every x ∈ Rm, µm-almost everywhere.

(2) detA−1 ∈ Lp(Rm;µm), ∇(detA−1) ∈ Lr(Rm;µm), for some p, r ∈
(1,∞).

Then the law of F is absolutely continuous with respect to Lebesgue measure
on Rn.
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Proof: The assumptions on F and in (2) show that

Ci :=
n∑
l=1

Em
(∣∣∣〈∇A−1

i,l ,∇F l〉
∣∣∣+ ∣∣∣A−1

i,l LmF
l
∣∣∣)

is finite. Therefore, one can take expectations on both sides of (3.9). By
(3.10), it follows that

|Em(δiϕ)(F )| ≤ Ci||ϕ||∞.

This finishes the proof of the Proposition. �

Remark 3.1 The proof of smoothness properties for the density requires an
iteration of the procedure presented in the proof of Proposition 3.1.

3.2 Infinite dimensional framework

This section is devoted to describe an infinite dimensional analogue of the
probability space (Rm,B(Rm), µm). We start by introducing a family of Gaus-
sian random variables. Let H be a real separable Hilbert space. Denote by
||·||H and 〈·, ·〉H the norm and the inner product onH, respectively. There ex-

ist a probability space (Ω,G, µ) and a familyM =
(
W (h), h ∈ H

)
of random

variables defined on this space, such that the mapping h → W (h) is linear,

each W (h) is Gaussian, EW (h) = 0 and E
(
W (h1)W (h2)

)
= 〈h1, h2〉H (see

for instance, [63], Chapter 1, Proposition 1.3). Such family is constructed
as follows. Let (en, n ≥ 1) be a complete orthonormal system in H. Con-
sider the canonical probability space (Ω,G, P ) associated with a sequence
(gn, n ≥ 1) of standard independent Gaussian random variables. That is,
Ω = R⊗N, G = B⊗N, µ = µ⊗N

1 where, according to the notations of Chapter
1, µ1 denotes the standard Gaussian measure on R. For each h ∈ H, the
series

∑
n≥1〈h, en〉Hgn converges in L2(Ω,G, µ) to a random variable that we

denote by W (h). Notice that the set M is a closed Gaussian subspace of
L2(Ω) that is isometric to H. In the sequel, we will replace G by the σ-field
generated by M.
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Examples

White Noise

Let H = L2(A,A,m), where (A,A,m) is a separable σ-finite, atomless
measure space. For any F ∈ A with m(F ) < ∞, set W (F ) = W (11F ).

The stochastic Gaussian process
(
W (F ), F ∈ A,m(F ) < ∞

)
is such

that W (F ) and W (G) are independent if F and G are disjoint sets; in
this case, W (F ∪ G) = W (F ) + W (G). Following [78], we call such
a process a white noise based on m. Then the random variable W (h)
coincides with the first order Itô stochastic integral

∫
A h(t)W (dt) with

respect to W (see [22]).

If A = R+, A is the σ-field of Borel sets of R+ and m is the Lebesgue
measure on R+, then W (h) =

∫∞
0 h(t)dWt -the Itô integral of a deter-

ministic integrand- where
(
Wt, t ≥ 0

)
is a standard Brownian motion.

Correlated Noise

Fix d ≥ 1 and denote by D(Rd) the set of Schwartz test functions in
Rd, that is, functions of C∞(Rd) with compact support. Let Γ be a
non-negative measure, of non-negative type, and tempered (see [71] for
the definitions of these notions).

For ϕ, ψ in D(Rd), define

I(ϕ, ψ) =
∫

Rd
Γ(dx)

(
ϕ ∗ ψ̃

)
(x),

where ψ̃(x) = ψ(−x) and the symbol “∗” denotes the convolution
operator. According to [71], Chap. VII, Théorème XVII, the mea-
sure Γ is symmetric. Hence the functional I defines an inner product
on D(Rd) × D(Rd). Moreover, there exists a non-negative tempered
measure µ on Rd whose Fourier transform is Γ (see [71], Chap. VII,
Théorème XVIII). Therefore,

I(ϕ, ψ) =
∫

Rd
µ(dξ)Fϕ(ξ)Fψ(ξ). (3.13)

There is a natural Hilbert space associated with the covariance func-
tional I. Indeed, let E be the inner-product space consisting of functions
ϕ ∈ D(Rd), endowed with the inner-product

〈ϕ, ψ〉E := I(ϕ, ψ) =
∫

Rd
µ(dξ)Fϕ(ξ)Fψ(ξ). (3.14)
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Let H denote the completion of (E , 〈·, ·〉E). Elements of the Gaussian
family M = (W (h), h ∈ H) satisfy

E (W (h1)W (h2)) =
∫

Rd
Γ(dx)

(
h1 ∗ h̃2

)
(x),

h1, h2 ∈ H.

The family
(
W (11F ), F ∈ Bb(Rd)

)
can be rigourously defined by approx-

imating 11F by a sequence of elements in H. It is called a colored noise
with covariance Γ.

We notice that for Γ = δ0,

〈ϕ, ψ〉E = 〈ϕ, ψ〉L2(Rd).

White-Correlated Noise

In the theory of SPDEs, stochastic processes are usually indexed by
(t, x) ∈ R+ × Rd and the role of t and x is different -time and space,
respectively. Sometimes the driving noise of the equation is white in
time and in space (see the example termed white noise before). Another
important class of examples are based on noises white in time and
correlated in space. We give here the background for this type of noise.

With the same notations and hypotheses as in the preceding example,
we consider functions ϕ, ψ ∈ D(Rd+1) and define

J(ϕ, ψ) =
∫

R+

ds
∫

Rd
Γ(dx)

(
ϕ ∗ ψ̃

)
(x). (3.15)

By the above quoted result in [71], J defines an inner product. Set
HT = L2([0, T ];H). Elements of the Gaussian familyM = (W (h), h ∈
HT ) satisfy

E (W (h1)W (h2)) =
∫

R+

ds
∫

Rd
Γ(dx)

(
h1(s) ∗ h̃2(s)

)
(x), (3.16)

h1, h2 ∈ HT . We can then consider
(
W (t, A), t ∈ [0,∞[, A ∈ Bb(Rd)

)
,

where W (t, A) := W (11[0,t] × 11A) is defined by an approximation proce-
dure. This family is called a Gaussian noise, white in time and station-
ary correlated (or coloured) in space.
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3.3 The derivative and divergence operators

Throughout this section, we consider the probability space (Ω,G, µ), defined
in section 3.2 and a Gaussian family M = (W (h), h ∈ H), as has been
described before.
There are several possibilities to define the Malliavin derivative for random
vectors F : Ω→ Rn. Here we shall follow the analytic approach which roughly
speaking consists of an extension by a limiting procedure of differentiation
in Rm.
To start with, we consider finite-dimensional objects, termed smooth func-
tionals. They are random variables of the type

F = f(W (h1), . . . ,W (hn)), (3.17)

with h1, . . . , hn ∈ H and f : Rn → R regular enough.
Different choices of regularity of f lead to different classes of smooth function-
als. For example, if f ∈ C∞p (Rn), the set of infinitely differentiable functions
such that f and its partial derivatives of any order have polynomial growth,
we denote the corresponding class of smooth functionals by S; if f ∈ C∞b (Rn),
the set of infinitely differentiable functions such that f and its partial deriva-
tives of any order are bounded, we denote by Sb the corresponding class. If
f is a polynomial, then smooth functionals are denoted by P . Clearly P ⊂ S
and Sb ⊂ S.
We define the operator D on S (on P , on Sb) with values on the set of
H-valued random variables, by

DF =
n∑
i=1

∂if
(
W (h1), . . . ,W (hn)

)
hi. (3.18)

Fix h ∈ H and set

F εh = f
(
W (h1) + ε〈h, h1〉H , . . . ,W (hn) + ε〈h, hn〉H

)
,

ε > 0. Then it is immediate to check that 〈DF, h〉H = d
dε
F εh

∣∣∣
ε=0

. Therefore,

for smooth functionals, D is a directional derivative. It is also routine to
prove that if F,G are smooth functionals then, D(FG) = FDG+GDF .
Our next aim is to prove that D is closable as an operator from Lp(Ω) to
Lp(Ω;H), for any p ≥ 1. That is, if {Fn, n ≥ 1} ⊂ S is a sequence converging
to zero in Lp(Ω) and the sequence {DFn, n ≥ 1} converges to G in Lp(Ω;H),
then G = 0. The tool for arguing this is a simple version of an integration
by parts formula proved in the next lemma.
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Lemma 3.2 For any F ∈ S, h ∈ H, we have

E
(
〈DF, h〉H

)
= E

(
FW (h)

)
. (3.19)

Proof: Without loss of generality, we shall assume that

F = f
(
W (h1), . . . ,W (hn)

)
,

where h1, . . . , hn are orthonormal elements of H and h1 = h. Then

E
(
〈DF, h〉H

)
=
∫

Rn
∂1f(x)µn(dx)

=
∫

Rn
f(x)x1µn(dx) = E

(
FW (h1)

)
.

The proof is complete. �

Formula (3.19) is a statement about duality between the operator D and a
integral with respect to W .
Let F,G ∈ S. Applying formula (3.19) to the smooth functional FG yields

E
(
G〈DF, h〉H

)
= −E

(
F 〈DG, h〉H

)
+ E

(
FGW (h)

)
. (3.20)

With this result, we can now prove that D is closable. Indeed, consider a
sequence {Fn, n ≥ 1} ⊂ S satisfying the properties stated above. Let h ∈ H
and F ∈ Sb be such that FW (h) is bounded. Using (3.20), we obtain

E
(
F 〈G, h〉H

)
= lim

n→∞
E
(
F 〈DFn, h〉H

)
= lim

n→∞
E
(
− Fn〈DF, h〉H + FnFW (h)

)
= 0.

Indeed, the sequence (Fn, n ≥ 1) converges to zero in Lp and 〈DF, h〉H ,
FW (h) are bounded. This yields G = 0. �

Let D1,p be the closure of the set S with respect to the seminorm

||F ||1,p =
(
E(|F |p) + E(||DF ||pH)

) 1
p . (3.21)

The set D1,p is the domain of the operator D in Lp(Ω). Notice that D1,p is
dense in Lp(Ω). The above procedure can be iterated as follows. Clearly, one
can recursively define the operator Dk, k ∈ N, on the set S. This yields an
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H⊗k-valued random vector. As for D, one proves that Dk is closable. Then
we can introduce the seminorms

||F ||k,p =
(
E(|F |p) +

k∑
j=1

E(||DjF ||pH⊗j
) 1
p , (3.22)

p ∈ [1,∞), and define the sets Dk,p to be the closure of S with respect to the
seminorm (3.22). Notice that by definition, Dj,q ⊂ Dk,p for k ≤ j and p ≤ q.
By convention D0,p = Lp(Ω) and ‖ · ‖0,p = ‖ · ‖p, the usual norm in Lp(Ω).

We now introduce the divergence operator, which corresponds to the infinite
dimensional analogue of the operator δm defined in (3.6).

For this, we notice that the Malliavin derivative D is an unbounded operator
from L2(Ω) into L2(Ω;H). Moreover, the domain of D in L2(Ω), denoted by
D1,2, is dense in L2(Ω). Then, by an standard procedure (see for instance
[80]) one can define the adjoint of D, that we shall denote by δ.

Indeed, the domain of the adjoint, denoted by Dom δ, is the set of random
vectors u ∈ L2(Ω;H) such that for any F ∈ D1,2,

∣∣∣E(〈DF, u〉H)∣∣∣ ≤ c||F ||2,

where c is a constant depending on u. If u ∈ Dom δ, then δu is the element
of L2(Ω) characterized by the identity

E
(
Fδ(u)

)
= E

(
〈DF, u〉H

)
, (3.23)

for all F ∈ D1,2.

Equation (3.23) expresses the duality between D and δ. It is called the
integration by parts formula (compare with (3.19)). The analogy between δ
and δm defined in (3.6) can be easily established on finite dimensional random
vectors of L2(Ω;H), as follows.

Let SH be the set of random vectors of the type

u =
n∑
j=1

Fjhj,

where Fj ∈ S, hj ∈ H, j = 1, . . . , n. Let us prove that u ∈ Dom δ.
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Indeed, owing to formula (3.20), for any F ∈ S,∣∣∣E(〈DF, u〉H)∣∣∣ =
∣∣∣ n∑
j=1

E
(
Fj〈DF, hj〉H

)∣∣∣
≤

n∑
j=1

(∣∣∣E(F 〈DFj, hj〉H ∣∣∣+ ∣∣∣E(FFjW (hj)
)∣∣∣)

≤ C||F ||2.

Hence u ∈ Dom δ. Moreover, by the same computations,

δ(u) =
n∑
j=1

FjW (hj)−
n∑
j=1

〈DFj, hj〉H . (3.24)

Hence, the gradient operator in the finite dimensional case is replaced by
the Malliavin directional derivative, and the coordinate variables xj by the
random coordinates W (hj).

Remark 3.2 The divergence operator coincides with a stochastic integral in-
troduced by Skorohod in [72]. This integral allows for non adapted integrands.
It is actually an extension of Itô’s integral. Readers interested in this topic
are suggested to consult the monographs [46] and [47].

3.4 Some calculus

In this section we prove several basic rules of calculus for the two operators
defined so far. The first result is a chain rule.

Proposition 3.2 Let ϕ : Rm → R be a continuously differentiable function
with bounded partial derivatives. Let F = (F 1, . . . , Fm) be a random vector
whose components belong to D1,p for some p ≥ 1. Then ϕ(F ) ∈ D1,p and

D(ϕ(F )) =
m∑
i=1

∂iϕ(F )DF i. (3.25)

The proof of this result is straightforward. First, we assume that F ∈ S; in
this case, formula (3.25) follows by the classical rules of differential calculus.
The proof for F ∈ D1,p is done by an approximation procedure.
The preceding chain rule can be extended to Lipschitz functions ϕ. The tool
for this improvement is given in the next Proposition. For its proof, we use
the Wiener chaos decomposition of L2(Ω,G) (see [22]).
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Proposition 3.3 Let (Fn, n ≥ 1) be a sequence of random variables in D1,2

converging to F in L2(Ω) and such that

sup
n
E
(
||DFn||2H

)
<∞. (3.26)

Then F belongs to D1,2 and the sequence of derivatives (DFn, n ≥ 1) con-
verges to DF in the weak topology of L2(Ω;H).

Proof: The assumption (3.26) yields the existence of a subsequence (Fnk , k ≥
1) such that the corresponding sequence of derivatives (DFnk , k ≥ 1) con-
verges in the weak topology of L2(Ω;H) to some element η ∈ L2(Ω;H). In
particular, for any G ∈ L2(Ω;H), limk→∞E(〈DFnk , JlG〉H) = E(〈η, JlG〉H),
where Jl denotes the projection on the l-th Wiener chaos Hl ⊗H, l ≥ 0.
The integration by parts formula and the convergence of the sequence
(Fn, n ≥ 1) yield

lim
k→∞

E(〈DFnk , JlG〉H) = lim
k→∞

E(Fnkδ(JlG))

= E(Fδ(JlG)) = E(〈DF, JlG〉H).

Hence, every weakly convergent subsequence of DFn, n ≥ 1, must converge to
the same limit and the whole sequence converges. Moreover, the random vec-
tors η and DF have the same projection on each Wiener chaos; consequently,
η = DF as elements of L2(Ω;H). �

Proposition 3.4 Let ϕ : Rm → R be a globally Lipschitz function and F =
(F 1, . . . , Fm) be a random vector with components in D1,2. Then ϕ(F ) ∈ D1,2.
Moreover, there exists a bounded random vector G = (G1, · · · , Gm) such that

D(ϕ(F )) =
m∑
i=1

GiDF
i. (3.27)

Proof: The idea of the proof is as follows. First we regularize the function ϕ
by convolution with an approximation of the identity. We apply Proposition
3.2 to the sequence obtained in this way. Then we conclude by means of
Proposition 3.3.
More explicitely, let α ∈ C∞0 (Rm) be nonnegative, with compact support and∫
Rm α(x)dx = 1. Define αn(x) = nmα(nx) and ϕn = ϕ ∗ αn. It is well known
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that ϕn ∈ C∞ and that the sequence (ϕn, n ≥ 1) converges to ϕ uniformly.
In addition ∇ϕn is bounded by the Lipschitz constant of ϕ.

Proposition 3.2 yields,

D(ϕn(F )) =
m∑
i=1

∂iϕn(F )DF i. (3.28)

Now we apply Proposition 3.3 to the sequence Fn = ϕn(F ). It is clear that
limn→∞ ϕn(F ) = ϕ(F ) in L2(Ω). Moreover, by the boundedness property
on ∇ϕn, the sequence D(ϕn(F )), n ≥ 1, is bounded in L2(Ω;H). Hence
ϕ(F ) ∈ D1,2 and D(ϕn(F )), n ≥ 1 converges in the weak topology of L2(Ω;H)
to D(ϕ(F )). Since the sequence (∇ϕn(F ), n ≥ 1), is bounded, a.s., there
exists a subsequence that converges to some random bounded vector G in
the weak topology of L2(Ω;H). By passing to the limit as n → ∞ the
equality (3.28), we finish the proof of the Proposition.

�

Remark 3.3 Let ϕ ∈ C∞p (Rm) and F = (F 1, . . . , Fm) be a random vector
whose components belong to ∩p∈[1,∞)D1,p. Then the conclusion of Proposition
3.2 also holds. Moreover, ϕ(F ) ∈ ∩p∈[1,∞)D1,p.

The chain rule (3.25) can be iterated; we obtain Leibniz’s rule for Malliavin’s
derivatives. For example, if F is one-dimensional (m = 1) then

Dk(ϕ(F )) =
k∑
l=1

∑
Pl
clϕ

(l)(F )Πl
i=1D

|pi|F, (3.29)

where Pl denotes the set of partitions of {1, · · · , k} consisting of l disjoint
sets p1, · · · , pl, l = 1, · · · , k, |pi| denotes the cardinal of the set pi and cl are
positive coefficients.

For any F ∈ DomD, h ∈ H we set DhF = 〈DF, h〉H . The next propositions
provide important calculus rules.

Proposition 3.5 Let u ∈ SH . Then

Dh(δ(u)) = 〈u, h〉H + δ(Dhu). (3.30)
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Proof: Fix u =
∑n
j=1 Fjhj, Fj ∈ S, hj ∈ H, j = 1, . . . , n. By virtue of (3.24),

we have

Dh(δ(u)) =
n∑
j=1

(
(DhFj)W (hj) + Fj〈hj, h〉 − 〈D(DhFj), hj〉H

)
.

Notice that by (3.24),

δ(Dhu) =
n∑
j=1

(
(DhFj)W (hj)− 〈D(DhFj), hj〉H

)
. (3.31)

Hence (3.30) holds.

�

The next result is an isometry property for the integral defined by the operator
δ.

Proposition 3.6 Let u, v ∈ D1,2(H). Then

E
(
δ(u)δ(v)

)
= E(〈u, v〉H) + E(tr(Du ◦Dv)), (3.32)

where tr(Du◦Dv) =
∑∞
i,j=1Dej〈u, ei〉HDei〈v, ej〉H , with (ei, i ≥ 1) a complete

orthonormal system in H.

Consequently, if u ∈ D1,2(H) then u ∈ Dom δ and

E
(
δ(u)

)2
≤ E(||u||2H) + E(||Du||2H⊗H). (3.33)

Proof: Assume first that u, v ∈ SH . The duality relation between D and δ
yields

E(δ(u)δ(v)) = E
(
〈v,D(δ(u))〉H

)
= E

( ∞∑
i=1

〈v, ei〉HDei(δ(u))
)
.

By virtue of (3.30), this last expression is equal to

E
( ∞∑
i=1

〈v, ei〉H(〈u, ei〉H + δ(Deiu)
)
.
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The duality relation between D and δ implies

E
(
〈v, ei〉Hδ(Deiu)

)
= E

(
〈Deiu,D〈v, ei〉H〉H

)
=
∞∑
j=1

E
(
〈Dei〈u, ej〉Hej, D〈v, ei〉H

)

=
∞∑
j=1

E
(
Dei〈u, ej〉HDej〈v, ei〉H

)
.

This establishes (3.32). Taking u = v and applying Schwarz’ inequality yield
(3.33).
The extension to u, v ∈ D1,2(H) is done by a limit procedure.

�

Remark 3.4 Proposition 3.6 can be used to extend the validity of (3.30) to
u ∈ D2,2(H). Indeed, let un ∈ SH be a sequence of processes converging
to u in D2,2(H). Formula (3.30) holds true for un. We can take limits in
L2(Ω;H) as n tends to infinity and conclude, because the operators D and δ
are closed.

Proposition 3.7 Let F ∈ D1,2, u ∈ Dom δ, Fu ∈ L2(Ω;H). If Fδ(u) −
〈DF, u〉H ∈ L2(Ω), then

δ(Fu) = Fδ(u)− 〈DF, u〉H . (3.34)

Proof: Assume first that F ∈ S and u ∈ SH . Let G ∈ S. Then by the duality
relation between D and δ and the calculus rules on the derivatives, we have

E(Gδ(Fu)) = E(〈DG,Fu〉H)

= E(〈u, (D(FG)−GDF )〉H)

= E(G(Fδ(u)− 〈u,DF 〉H)).

By the definition of the operator δ, (3.34) holds under the assumptions of
the proposition.

�
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4 Criteria for Existence and Regularity of

Densities

In lecture 1, we have shown how an integration by parts formula (see Def-
inition 2.1) leads to results on densities of probability laws. The question
we tackle in this lecture is how to derive such a formula. In particular we
will give an expression for the random variable Hα(F,G). For this, we shall
apply the calculus developed in Section 3.
We consider here the probability space associated with a Gaussian family
(W (h), h ∈ H), as has been described in Section 3.2.

4.1 Existence of density

Let us start with a very simple example.

Proposition 4.1 Let F be a random variable belonging to D1,2. Assume that
the random variable DF

||DF ||2H
belongs to the domain of δ in L2(Ω;H). Then

the law of F is absolutely continuous. Moreover, its density is given by

p(x) = E
(

11(F>x)δ
( DF

||DF ||2H

))
(4.1)

and therefore it is continuous and bounded.

Proof: We will check that for any ϕ ∈ C∞b (R),

E(ϕ
′
(F )) = E

(
ϕ(F )δ

( DF

||DF ||2H

))
. (4.2)

Thus (2.1) holds for G = 1 with H1(F, 1) = δ
(

DF
||DF ||2H

)
. Then the results

follow from part 1 of Proposition 2.1.
The chain rule of Malliavin calculus yields D(ϕ(F )) = ϕ

′
(F )DF . Thus,

ϕ
′
(F ) =

〈
D(ϕ(F )),

DF

||DF ||2H

〉
H

.

Therefore, the integration by parts formula implies

E
(
ϕ
′
(F )

)
= E

(〈
D(ϕ(F )),

DF

||DF ||2H

〉
H

)

= E

(
ϕ(F )δ

(
DF

||DF ||2H

))
,
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proving (4.2).
�

Remark 4.1 Notice the analogy between (4.2) and the finite dimensional
formula (3.11).

Remark 4.2 Using the explicit formula (4.1) to particular examples and
Lp(Ω) estimates of the Skorohod integral leads to interesting estimates for
the density (see for instance [47]).

Remark 4.3 In Proposition 4.1 we have established the formula

H1(F, 1) = δ

(
DF

||DF ||2H

)
, (4.3)

where F : Ω→ R.

For random vectors F , (n > 1), we can obtain similar results by using matrix
calculus, as it is illustrated in the next statement. In the computations,
instead of ‖DF‖H , we have to deal with the Malliavin matrix, a notion given
in the next definition.

Definition 4.1 Let F : Ω → Rn be a random vector with components F j ∈
D1,2, j = 1, . . . , n. The Malliavin matrix of F is the n × n matrix, denoted
by γ, whose entries are the random variables γi,j = 〈DF i, DF j〉H , i, j =
1, . . . , n.

Proposition 4.2 Let F : Ω → Rn be a random vector with components
F j ∈ D1,2, j = 1, . . . , n. Assume that

(1) the Malliavin matrix γ is inversible, a.s.

(2) For every i, j = 1, . . . , n, the random variables (γ−1)i,jDF
j belong to

Dom δ.

Then for any function ϕ ∈ C∞b (Rn),

E(∂iϕ(F )) = E(ϕ(F )Hi(F, 1)), (4.4)

with

Hi(F, 1) =
n∑
l=1

δ((γ−1)i,lDF
l). (4.5)

Consequently the law of F is absolutely continuous.
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Proof: Fix ϕ ∈ C∞b (Rn). By virtue of the chain rule, we have ϕ(F ) ∈ D1,2

and

〈D(ϕ(F )), DF l〉H =
n∑
k=1

∂kϕ(F )〈DF k, DF l〉H

=
n∑
k=1

∂kϕ(F )γk,l,

l = 1, . . . , n. Since γ is inversible a.s., this system of linear equations in
∂kϕ(F ), k = 1, . . . , n, can be solved, and

∂iϕ(F ) =
n∑
l=1

〈D(ϕ(F )), (γ−1)i,lDF
l〉H , (4.6)

i = 1, . . . , n, a.s.
The assumption (2), the duality formula along with (4.6) yield

n∑
l=1

E
(
ϕ(F )δ

(
(γ−1)i,lDF

l
))

=
n∑
l=1

E
(
〈D(ϕ(F )), (γ−1)i,lDF

l〉H
)

= E
(
∂iϕ(F )

)
.

Hence (4.4), (4.5) is proved.
Notice that by assumption Hi(F, 1) ∈ L2(Ω). Thus Proposition 2.2 part 1)
yields the existence of the density.

�

Remark 4.4 The equalities (4.4), (4.5) give the integration by parts formula
(in the sense of Definition 2.1) for n–dimensional random vectors, for multi-
indices α of length one.

The assumption of part 2 of Proposition 4.2 may not be easy to check. In the
next Proposition we give a statement which is more suitable for applications.

Theorem 4.1 Let F : Ω −→ Rn be a random vector satisfying the following
conditions:

(a) F j ∈ D2,4, for any j = 1, . . . , n,
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(b) the Malliavin matrix is inversible, a.s.

Then the law of F has a density with respect to Lebesgue measure on Rn.

Proof: As in the proof of Proposition 4.2, we obtain the system of equations
(4.6) for any function ϕ ∈ C∞b . That is,

∂iϕ(F ) =
n∑
l=1

〈D(ϕ(F )), (γ−1)i,lDF
l〉H ,

i = 1, . . . , n, a.s.
We would like to take expectations on both sides of this expression. However,
assumption (a) does not ensure the integrability of γ−1. We overcome this
problem by localising (4.6), as follows.
For any natural number N ≥ 1, we define the set

CN =
{
σ ∈ L(Rn,Rn) : ||σ|| ≤ N, | detσ| ≥ 1

N

}
.

Then we consider a nonnegative function ψN ∈ C∞0 (L(Rn,Rn)) satisfying

(i) ψN(σ) = 1, if σ ∈ CN ,

(ii) ψN(σ) = 0, if σ 6∈ CN+1.

From (4.6), it follows that

E
(
ψN(γ)∂iϕ(F )

)
=

n∑
l=1

E
(
〈D(ϕ(F )), ψN(γ)DF l(γ−1)i,l〉H

)
(4.7)

The random variable ψN(γ)DF l(γ−1)i,l belongs to D1,2(H), by assumption
(a). Consequently ψN(γ)DF l(γ−1)i,l ∈ Dom δ (see Proposition 3.6). Hence,
by the duality identity,

∣∣∣E(ψN(γ)∂iϕ(F )
)∣∣∣ =

∣∣∣ n∑
l=1

E
(
〈D(ϕ(F )), ψN(γ)DF l(γ−1)i,l〉H

)∣∣∣
≤ E

(∣∣∣∣ n∑
l=1

δ
(
ψN(γ)DF l(γ−1)i,l

)∣∣∣∣)||ϕ||∞.
Let PN be the finite measure on (Ω,G) absolutely continuous with respect
to P with density given by ψN(γ). Then, by Proposition 2.2, PN ◦ F−1 is
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absolutely continuous with respect to Lebesgue measure. Therefore, for any
B ∈ B(Rn) with Lebesgue measure equal to zero, we have∫

F−1(B)
ψN(γ)dP = 0.

Let N → ∞. Assumption (b) implies that limN→∞ ψN(γ) = 1. Hence, by
bounded convergence, we obtain P (F−1(B)) = 0. This finishes the proof of
the Proposition.

�

Remark 4.5 The existence of density for the probability law of a random
vector F can be obtained under weaker assumptions than in Theorem 4.1 (or
Proposition 4.2). Indeed, Bouleau and Hirsch proved a better result using
other techniques in the more general setting of Dirichlet forms. For the sake
of completenes we give one of their statements, the most similar to Theorem
4.1, and refer the reader to [8] for complete information.

Proposition 4.3 Let F : Ω −→ Rn be a random vector satisfying the fol-
lowing conditions:

(a) F j ∈ D1,2, for any j = 1, . . . , n,

(b) the Malliavin matrix is inversible, a.s.

Then the law of F has a density with respect to the Lebesgue measure on Rn.

4.2 Smoothness of the density

As we have seen in the first lecture, in order to obtain regularity properties
of the density, we need an integration by parts formula for multi-indices of
order greater than one. In practice, this can be obtained recursively. In the
next proposition we give the details of such a procedure.

An integration by parts formula

Proposition 4.4 Let F : Ω −→ Rn be a random vector such that F j ∈ D∞
for any j = 1, . . . , n. Assume that

det γ−1 ∈ ∩p∈[1,∞)L
p(Ω). (4.8)

Then:
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(1) det γ−1 ∈ D∞ and γ−1 ∈ D∞(Rm × Rm).

(2) Let G ∈ D∞. For any multi-index α ∈ {1, . . . , n}r, r ≥ 1, there exists
a random variable Hα(F,G) ∈ D∞ such that for any function ϕ ∈
C∞b (Rn),

E
(
(δαϕ)(F )G

)
= E

(
ϕ(F )Hα(F,G)

)
. (4.9)

The random variables Hα(F,G) can be defined recursively as follows:

If |α| = 1, α = i, then

Hi(F,G) =
n∑
l=1

δ(G(γ−1)i,lDF
l), (4.10)

and in general, for α = (α1, . . . , αr−1, αr),

Hα(F,G) = Hαr(F,H(α1,...,αr−1)(F,G)). (4.11)

Proof: Consider the sequence of random variables
(
YN = (det γ+ 1

N
)−1, N ≥

1
)
. Fix an arbitrary p ∈ [1,∞[. Assumption (4.8) clearly yields

lim
N→∞

YN = det γ−1

in Lp(Ω).
We now prove the following facts:

(a) YN ∈ D∞, for any N ≥ 1,

(b) (DkYN , N ≥ 1) is a Cauchy sequence in Lp(Ω;H⊗k), for any natural
number k.

Since the operator Dk is closed, the claim (1) will follow.
Consider the function ϕN(x) = (x + 1

N
)−1, x ≥ 0. Notice that ϕN ∈ C∞b .

Then Remark 3.3 yields recursively (a). Indeed, det γ ∈ D∞.

Let us now prove (b). The sequence of derivatives
(
ϕ

(n)
N (det γ), N ≥ 1

)
is

Cauchy in Lp(Ω), for any p ∈ [1,∞). This can be proved using (4.8) and
bounded convergence. The result now follows by expressing the difference
DkYN −DkYM , N,M ≥ 1, by means of Leibniz’s rule (see (3.29)) and using
that det γ ∈ D∞.
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Once we have proved that det γ−1 ∈ D∞, we trivially obtain γ−1 ∈ D∞(Rm×
Rm), by a direct computation of the inverse of a matrix and using that
F j ∈ D∞.
The proof of (4.9)–(4.11) is done by induction on the order r of the multi-
index α. Let r = 1. Consider the identity (4.6), multiply both sides by G
and take expectations. We obtain (4.9) and (4.10).
Assume that (4.9) holds for multi-indices of order r − 1. Fix α =
(α1, . . . , αr−1, αr). Then,

E
(
(∂αϕ)(F )G

)
= E

(
∂(α1,...,αr−1)((∂αrϕ)(F ))G

)
= E

(
(∂αrϕ)(F )H(α1,...,αr−1)(F,G)

)
= E

(
ϕ(F )Hαr(F,H(α1,...,αr−1)(F,G)

)
.

The proof is complete.
�

A criterion for smooth densities

As a consequence of the preceding proposition and part 2 of Proposition 2.1
we have a criterion on smoothness of density, as follows.

Theorem 4.2 Let F : Ω −→ Rn be a random vector satisfying the assump-
tions

(a) F j ∈ D∞, for any j = 1, . . . , n,

(b) the Malliavin matrix γ is invertible a.s. and

det γ−1 ∈ ∩p∈[1,∞)L
p(Ω).

Then the law of F has an infinitely differentiable density with respect to
Lebesgue measure on Rn.
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5 Watanabe-Sobolev Differentiability of

SPDEs

5.1 A class of linear homogeneous SPDEs

Let L be a second order differential operator acting on real functions defined
on [0,∞[×Rd. Examples of L where the results of this lecture can be applied
gather the heat operator and the wave operator. With some minor modi-
fications, the damped wave operator and some class of parabolic operators
with time and space dependent coefficients could also be covered. We are
interested in SPDEs of the following type

Lu(t, x) = σ (u(t, x)) Ẇ (t, x) + b (u(t, x)) , (5.1)

t ∈]0, T ], x ∈ Rd, with suitable initial conditions. This is a Cauchy problem,
with finite time horizon T > 0, driven by the differential operator L, and
with a stochastic input given by W (t, x). For the sake of simplicity we shall
assume that the initial conditions vanish.

Hypotheses on W

We assume that (W (ϕ), ϕ ∈ D(Rd+1)) is a Gaussian process, zero mean, and
non-degenerate covariance function given by E (W (ϕ1)W (ϕ2)) = J(ϕ1, ϕ2),
where the functional J is defined in (3.15). By setting µ = F−1Γ, the
covariance can be written as

E (W (ϕ1)W (ϕ2)) =
∫

R+

ds
∫

Rd
µ(dξ)Fϕ1(s)(ξ)Fϕ2(s)(ξ),

(see (3.16)).
From this process, we obtain the Gaussian family (W (h), h ∈ HT ) (see Sec-
tion 3.2).

A cylindrical Wiener process derived from (W (h), h ∈ HT )

The process (Wt, t ∈ [0, T ]) defined by

Wt =
∞∑
j=1

ejβj(t),

where (ej, j ≥ 1) is a CONS of H and βj, j ≥ 1, a sequence of independent
standard Wiener processes, defines a cylindrical Wiener process on H (see
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[18], Proposition 4.11, page 96, for a definition of this object). In particular,
Wt(g) := 〈Wt, g〉H satisfies

E (Wt(g1)Ws(g2)) = (s ∧ t)〈g1, g2〉H.

The relationship between (Wt, t ∈ [0, T ]) and (W (h), h ∈ HT ) can be estab-
lished as follows. Consider h ∈ HT of the particular type h = 11[0,t]g, g ∈ H.
Then, the respective laws of the stochastic processes W (11[0,t]g), t ∈ [0, T ] and
〈Wt, g〉H, t ∈ [0, T ] are the same.
Indeed, by linearity,

W (11[0,t]g) =
∞∑
j=1

〈g, ej〉HW (11[0,t]ej),

By the definition of (W (h), h ∈ HT ), the family (W (11[0,t]ej), t ∈ [0, T ], j ≥ 1)
is a sequence of independent standard Brownian motions.
On the other hand,

〈Wt, g〉H =
∞∑
j=1

〈g, ej〉Hβj(t).

This finishes the proof of the statement.
In connection with the process (Wt, t ∈ [0, T ]), we consider the filtration
(Ft, t ∈ [0, T ]), where Ft is the σ-field generated by the random variables
Ws(g), 0 ≤ s ≤ t, g ∈ H. It will be termed the natural filtration associated
with W .

Hypotheses on L

We shall denote by Λ the fundamental solution of Lu = 0, and we shall
assume
(HL) Λ is a deterministic function of t taking values in the space of non-
negative measures with rapid decrease (as a distribution), satisfying∫ T

0
dt
∫

Rd
µ(dξ) |FΛ(t)(ξ)|2 <∞, (5.2)

and
sup
t∈[0,T ]

Λ(t)(Rd) <∞. (5.3)
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Examples

1 Heat operator: L = ∂t −∆d, d ≥ 1.

The fundamental solution of this operator possesses the following property:
for any t ≥ 0, ξ ∈ Rd,

C1
t

1 + |ξ|2
≤
∫ t

0
ds|FΛ(s)(ξ)|2 ≤ C2

t+ 1

1 + |ξ|2
, (5.4)

for some positive constants Ci, i = 1, 2.
Consequently (5.2) holds if and only if∫

Rd

µ(dξ)

1 + |ξ|2
<∞. (5.5)

Let us give the proof of (5.4). Λ(t) is a function given by

Λ(t, x) = (2πt)−
d
2 exp

(
− |x|

2

2t

)
.

Its Fourier transform is

FΛ(t)(ξ) = exp(−2π2t|ξ|2).

Hence, ∫ t

0
dt|FΛ(t)(ξ)|2 =

1− exp(−4π2t|ξ|2

4π2|ξ|2
.

On the set (|ξ| > 1), we have

1− exp(−4π2t|ξ|2)

4π2|ξ|2
≤ 1

2π2|ξ|2
≤ C

1 + |ξ|2
.

On the other hand, on (|ξ| ≤ 1), we use the property 1 − e−x ≤ x, x ≥ 0,
and we obtain

1− exp(−4π2t|ξ|2)

4π2|ξ|2
≤ Ct

1 + |ξ|2
.

This yields the upper bound in (5.4).
Moreover, the inequality 1− e−x ≥ x

1+x
, valid for any x ≥ 0, implies

∫ t

0
ds|FΛ(t)(ξ)|2 ≥ C

t

1 + 4π2t|ξ|2
.
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Assume that 4π2t|ξ|2 ≥ 1. Then 1 + 4π2t|ξ|2 ≤ 8π2t|ξ|2; if 4π2t|ξ|2 ≤ 1
then 1 + 4π2t|ξ|2 < 2 and therefore, 1

1+4π2t|ξ|2 ≥
1

2(1+|ξ|2)
. Hence, we obtain

the lower bound in (5.4) and now the equivalence between (5.2) and (5.5) is
obvious.
Condition (5.3) is clearly satisfied.

2 Wave operator: L = ∂2
tt −∆d, d ≥ 1.

For any t ≥ 0, ξ ∈ Rd, it holds that

c1(t ∧ t3)
1

1 + |ξ|2
≤
∫ t

0
ds|FΛ(s)(ξ)|2 ≤ c2(t+ t3)

1

1 + |ξ|2
, (5.6)

for some positive constants ci, i = 1, 2. Thus, (5.2) is equivalent to (5.5).
Let us prove (5.6). It is well known (see for instance [75]) that

FΛ(t)(ξ) =
sin(2πt|ξ|)

2π|ξ|
.

Therefore

|FΛ(t)(ξ)|2 ≤ 1

2π2(1 + |ξ|2)
11(|ξ|≥1) + t211(|ξ|≤1)

≤ C
1 + t2

1 + |ξ|2
.

This yields the upper bound in (5.6).

Assume that 2πt|ξ| ≥ 1. Then sin(4πt|ξ|)
2t|ξ| ≤ π and consequently,∫ t

0
ds

sin2(2πs|ξ|)
(2π|ξ|)2

≥ C
t

1 + |ξ|2
∫ 2πt

0
sin2(u|ξ|)du

= C
t

1 + |ξ|2
(2π − sin(4πt|ξ|)

2t|ξ|
)

≥ C
t

1 + |ξ|2
.

Next we assume that 2πt|ξ| ≤ 1 and we notice that for r ∈ [0, 1], sin2 r
r2 ≥

sin2 1. Thus, ∫ t

0
ds

sin2(2πs|ξ|)
(2π|ξ|)2

≥ C sin2 1
∫ 2πt

0
s2ds

≥ C
t3

1 + |ξ|2
.
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This finishes the proof of the lower bound in (5.6).
For d ≤ 3, condition (5.3) holds true. In fact,

Λ(t, dx) =


1
2
11{|x|<t}dx, d = 1,

1
2π

(t2 − |x|2)−
1
2 11{|x|<t}dx, d = 2,

σt(dx)
4πt

, d = 3,

where σt stands for the uniform surface measure on the sphere centered at
zero and with radius t. Easy computations show that Λ(t)(Rd) = 1 in each
case.
Dimension d = 3 is a threshold value. Indeed, for higher dimensions Λ is not
in the class of non-negative measures and therefore the results of this lecture
do not apply.

Mild formulation of the SPDE

By a solution of (5.1) we mean a real-valued stochastic process
{u(t, x), (t, x) ∈ [0, T ] × Rd}, predictable with respect to the filtration
(Ft, t ∈ [0, T ]), such that

sup
(t,x)∈[0,T ]×Rd

E
(
|u(t, x)|2

)
<∞

and

u(t, x) =
∫ t

0

∫
Rd

Λ(t− s, x− y)σ(u(s, y))W (ds, dy)

+
∫ t

0

∫
Rd
b(u(t− s, x− y))Λ(s, dy). (5.7)

Notice that the pathwise integral is the integral of a convolution with the
measure Λ(s):∫ t

0

∫
Rd
b(u(t− s, x− y))Λ(s, dy) =

∫ t

0
[b(u(s, ·)) ∗ Λ(t− s)] ds.

As for the stochastic integral, it is a stochastic convolution. For the con-
struction of this object, we refer the reader to [18]. From this refer-
ence, we see that in order to give a meaning to the stochastic convolution∫ t

0

∫
Rd Λ(t− s, x− y)σ(u(s, y))W (ds, dy), the process

z(s, y) := Λ(t− s, x− y)σ(u(s, y)), s ∈ [0, t], y ∈ Rd,
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t ∈]0, T ], x ∈ Rd, is required to be predictable and to belong to the space
L2(Ω× [0, T ];H).
We address this question following the approach of [53] with a few changes,
in particular we allow more general covariances Γ (see Lemma 3.2 and Propo-
sition 3.3 in [53]).

Lemma 5.1 Assume that Λ satisfies (HL), then Λ ∈ HT and

‖Λ‖2
HT =

∫ T

0
dt
∫

Rd
µ(dξ)|FΛ(t)(ξ)|2.

Proof: Let ψ be a non-negative function in C∞(Rd) with support contained
in the unit ball and such that

∫
Rd ψ(x)dx = 1. Set ψn(x) = ndψ(nx), n ≥ 1.

Define Λn(t) = ψn ∗ Λ(t). It is well known that ψn → δ0 in S ′(Rd) and
Λn(t) ∈ S(Rd). Moreover, for any ξ ∈ Rd, |FΛn(t)(ξ)| ≤ |FΛ(t)(ξ)|.
By virtue of (5.2), (Λn, n ≥ 1) ⊂ HT , and it is Cauchy sequence. Indeed,

‖Λn − Λm‖HT =
∫ T

0
dt
∫

Rd
µ(dξ)|FΛ(t)(ξ)|2|F(ψn(ξ)− ψm(t))|2

and since F(ψn(ξ) − ψm(ξ)) converges pointwise to zero as n,m → ∞, we
have

lim
n,m→∞

‖Λn − Λm‖HT = 0,

by bounded convergence. Consequently, (Λn, n ≥ 1) converges in HT and the
limit is Λ. Finally, by using again bounded convergence,

‖Λ‖2
HT = lim

n→∞
‖Λn‖2

HT =
∫ T

0
dt
∫

Rd
µ(dξ)|FΛ(t)(ξ)|2.

�

The next Proposition gives a large class of examples for which the stochastic
convolution against W can be defined.

Proposition 5.1 Assume that Λ satisfies (HL). Let Z = {Z(t, x), (t, x) ∈
[0, T ]× Rd} be a predictable process, bounded in L2. Set

CZ := sup
(t,x)∈[0,T ]×Rd

E
(
|Z(t, x)|2

)
.
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Then, z(t, dx) := Z(t, x)Λ(t, dx) is a predictable process belonging to L2(Ω×
[0, T ];H) and

E
(
‖z‖2

HT

)
≤ CZ

∫ T

0
dt
∫

Rd
µ(dξ) |FΛ(t)(ξ)|2.

Hence, the stochastic integral
∫ T

0

∫
Rd zdW is well-defined as an L2(Ω)-valued

random variable and∥∥∥∥∥
∫ T

0

∫
Rd
zdW

∥∥∥∥∥
2

L2(Ω)

= E
(
‖z‖2

HT

)
≤ CZ

∫ T

0
dt
∫

Rd
µ(dξ) |FΛ(t)(ξ)|2. (5.8)

Proof: By decomposing the process Z into its positive and negative part,
it suffices to consider non-negative processes Z. Since Λ(t) is a tempered
measure, so is z(t). Hence we can consider the sequence of S(Rd)-valued
functions zn(t) = ψn ∗ z(t), n ≥ 1, where ψn is the approximation of the
identity defined in the proof of the preceding lemma.
Using Fubini’s theorem and the boundedness property of Z we obtain

E(‖zn‖2
HT ) = E

(∫ T

0
dt
∫

Rd
Γ(dx) [zn(t) ∗ z̃n(t)] (x)

)

≤ CZ

∫ T

0
dt
∫

Rd
Γ(dx)

∫
Rd
dzΛn(t, d(−z))Λn(t, d(x− z))

= CZ

∫ T

0
dt
∫

Rd
Γ(dx)

[
Λn(t) ∗ Λ̃n(t)

]
(x)

= CZ

∫ T

0
dt
∫

Rd
µ(dξ)|FΛn(t)(ξ)|2

≤ CZ

∫ T

0
dt
∫

Rd
µ(dξ)|FΛ(t)(ξ)|2 <∞.

Hence supn≥1E(‖zn‖2
HT ) <∞.

Moreover, assume that for any n,m ≥ 1 we can prove the following identity:

E(‖zn−zm‖2
HT ) = E

(∫ T

0
dt
∫

Rd
µ(dξ)|F(Z(t)Λ(t))(ξ)|2|F(ψn(ξ)− ψm(ξ))|2

)
.

(5.9)
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then, using similar arguments as in the preceding lemma, we can prove that
(zn, n ≥ 1) converges in L2(Ω × [0, T ];H) to z, finishing the proof of the
proposition.

For the proof of (5.9), we proceed as follows. Firstly, to simplify the expre-
sions, we write z̃n,m instead of zn − zm, and ψ̃n,m for ψn − ψm.

E(‖z̃n,m‖2
HT ) = E

(∫ T

0
dt
∫

Rd
Γ(dx)

∫
Rd
dyz̃n,m(t, x− y)z̃n,m(t,−y)

)

= E
( ∫ T

0
dt
∫

Rd
Γ(dx)

∫
Rd
dy
(∫

Rd
dz′ψ̃n,m(x− y − z′)z(t, z′)

)
×
(∫

Rd
dz′′ψ̃n,m(−y − z′′)z(t, z′′)

))
= E

( ∫ T

0
dt
∫

Rd

∫
Rd
Z(t, z′)Z(t, z′′)Λ(t, dz′)Λ(t, dz′′)

×
∫

Rd
Γ(dx)[ψ̃n,m(.− z′) ∗ ψ̃n,m(.+ z′′]

)
= E

( ∫ T

0
dt
∫

Rd

∫
Rd
Z(t, z′)Z(t, z′′)Λ(t, dz′)Λ(t, dz′′)

×
∫

Rd
µ(dξ)e−2πiξ·(z′−z′′)|F ψ̃n,m(ξ)|2

)
. (5.10)

Then, since the Fourier transform of a convolution is the product of the
Fourier transform of the corresponding factors, using Fubini’s theorem this
last expression is equal to

E

(∫ T

0
dt
∫

Rd
µ(dξ)|F(Z(t)Λ(t))(ξ)|2|F ψ̃n,m(ξ)|2

)
.

Hence (5.9) is established.

Finally, (5.8) is obtained by the isometry property of the stochastic convolu-
tion, combined with the estimate of the integrand proved before.

�

Remark 5.1 Assume that the process Z is bounded away from zero, that it
inf(t,x)∈[0,T ]×Rd |Z(t, x)| ≥ c0 > 0. Then

E(‖zn‖2
HT ) ≥ c2

0

∫ T

0
dt
∫

Rd
µ(dξ)|FΛ(t)(ξ)|2|Fψn(ξ)|2. (5.11)
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Indeed, arguing as in (5.10), we see that

E(‖zn‖2
HT ) = E

( ∫ T

0
dt
∫

Rd

∫
Rd
Z(t, z′)Z(t, z′′)Λ(t, dz′)Λ(t, dz′′)

×
∫

Rd
Γ(dx)[ψn(.− z′) ∗ ψn(.+ z′′]

)
≥ c2

0

∫ T

0
dt
∫

Rd

∫
Rd

Λ(t, dz′)Λ(t, dz′′)

×
∫

Rd
Γ(dx)[ψn(.− z′) ∗ ψn(.+ z′′]

= c2
0

∫ T

0
dt
∫

Rd

∫
Rd

Λ(t, dz′)Λ(t, dz′′)

×
∫

Rd
µ(dξ)e−2πiξ·(z′−z′′)|Fψn(ξ)|2

= c2
0

∫ T

0
dt
∫

Rd
µ(dξ)|FΛ(t)(ξ)|2|Fψn(ξ)|2.

Remark 5.2 Assume that the coefficient σ in (5.7) has linear growth and
that the process u satisfies the conditions given at the beginning of the section.
Then Z(s, y) := σ(u(s, y)) satisfies the assumption of Proposition 5.1 and the
stochastic integral (stochastic convolution) in (5.7) is well-defined.

A result on existence and uniqueness of solution

Theorem 5.1 Assume that σ, b : R→ R are Lipschitz functions and that Λ
satisfies (HL). Then there exists a unique mild solution to Equation (5.1).
Such a solution is a random field indexed by (t, x) ∈ [0, T ]× Rd, continuous
in L2(Ω), and for any p ∈ [1,∞[,

sup
(t,x)∈[0,T ]×Rd

E (|u(t, x)|p) <∞. (5.12)

The proof of this theorem can be done using Picard’s iteration scheme defined
as follows:

u0(t, x) = 0,

un(t, x) =
∫ t

0

∫
Rd

Λ(t− s, x− y)σ(un−1(s, y))W (ds, dy)

+
∫ t

0

∫
Rd
b(un−1(t− s, x− y))Λ(s, dy), (5.13)
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for n ≥ 1. We refer the reader to Theorem 13 of [16] for the details of
the proof of the convergence of the Picard sequence and the extensions of
Gronwall’s lemma suitable thereof (see also Theorem 6.2 and Lemma 6.2 in
[69]).

5.2 The Malliavin derivative of a SPDE

Consider a SPDE in its mild formulation (see 5.7). We would like to study
its differentiability in the Watanabe-Sobolev sense. There are two aspects of
the problem:

(A) to prove differentiability,

(B) to give an equation satisfied by the Malliavin derivative.

A useful tool to prove differentiability of Wiener functionals is provided by
the next result, which is an immediate consequence from the fact that the
N–th order Malliavin derivative is a closed operator defined on Lp(Ω) with
values in Lp(Ω;H⊗N), for any p ∈ [1,∞[. In our context H := HT . A result
of the same vein has been presented in Proposition 3.3.

Lemma 5.2 Let (Fn, n ≥ 1) be a sequence of random variables belonging to
DN,p. Assume that:

(a) there exists a random variable F such that Fn converges to F in Lp(Ω),
as n tends to ∞,

(b) the sequence (DNFn, n ≥ 1) converges in Lp(Ω;H⊗NT ), as n tends to ∞,

Then F belongs to DN,p and DNF = Lp(Ω;H⊗NT )− limn→∞D
NFn.

We shall apply this lemma to F := u(t, x), the solution of Equation (5.7).
Therefore, we have to find out an approximating sequence of the SPDE sat-
isfying the assumptions (a) and (b) above. A possible candidate is provided
in the proof of the existence and uniqueness of solution: the Picard approx-
imations defined in (5.13). The verification of condition (a) for the sequence
(un(t, x), n ≥ 0), for fixed (t, x) ∈ [0, T ]×Rd is part of the proof of Theorem
5.1
As regards condition (b), we will avoid too many technicalities by focussing
on the first order derivative and taking p = 2. For this we need the functions
σ and b to be of class C1.
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A possible strategy might consists in proving recursively that un(t, x) belongs
to D1,2, then applying rules of Malliavin calculus (for instance, an extension
of (3.30)) we will obtain

Du0(t, x) = 0

Dun(t, x) = Λ(t− ·, x− ∗)σ(un−1(·, ∗))

+
∫ t

0

∫
Rd

Λ(t− s, x− y)σ′(un−1(s, y))Dun−1(s, y)W (ds, dy)

+
∫ t

0
ds
∫

Rd
Λ(s, dy)b′(un−1(t− s, x− y))Dun−1(t− s, x− y),

(5.14)

n ≥ 1.
A natural candidate for the limit of this sequence is the process satisfying
(5.16).
At this point some comments are pertinent:

1. The Malliavin derivative is a random vector with values in HT . There-
fore, Equations (5.14) and (5.16) correspond to the mild formulation
of a Hilbert-valued SPDE.

2. The notation Λ(t−·, x−∗)σ(un−1(·, ∗)) aims to show up the dependence
on the time variable (written with a dot) and on the space variable
(written with a star). By Proposition 5.1 and Remark 5.2 such a term
is in L2(Ω× [0, T ];H).

3. The stochastic convolution term in (5.14) is not covered by the previous
discussion, since the process σ′(un−1(s, y))Dun−1(s, y) takes values on
HT . A sketch of the required extension is given in the next paragraphs.

Stochastic convolution with Hilbert-valued integrands

Let K be a separable real Hilbert space with inner-product and norm denoted
by 〈·, ·〉K and ‖ · ‖K, respectively. Let K = {K(s, z), (s, z) ∈ [0, T ]× Rd} be
a K-valued predictable process satisfying

CK := sup
(s,z)∈[0,T ]×Rd

E
(
||K(s, z)||2K

)
<∞.

Consider a complete orthonormal system of K, that we denote by {ej, j ≥
0}. Set Kj(s, z) = 〈K(s, z), ej〉K, (s, z) ∈ [0, T ] × Rd. By Proposition
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5.1, zj(t, dx) = Kj(t, x)Λ(t, dx) is a predictable process and belongs to
L2(Ω × [0, T ];H), and then K(t, x)Λ(t, dx) is also a predictable process
and belongs to L2(Ω × [0, T ];H ⊗ K). The K-valued stochastic convolution∫ T

0

∫
Rd Λ(t, x)K(t, x)W (dt, dx) is defined as(∫ T

0

∫
Rd

Λ(t, x)Kj(t, x)W (dt, dx), j ≥ 0

)

and satisfies

E

∥∥∥∥∥
∫ T

0

∫
Rd

Λ(t, x)K(t, x)W (dt, dx)

∥∥∥∥∥
2

K

 = E
(
‖ΛK‖2

H⊗K

)

≤ CK

∫ T

0
dt
∫

Rd
µ(dξ)|FΛ(t)(ξ)|2. (5.15)

Going back to the application of Lemma 5.2, we might guess as limit of the
sequence (5.14) a HT -valued process (Du(t, x), (t, x) ∈ [0, T ]×Rd) satisfying
the equation

Du(t, x) = Λ(t− ·, x− ∗)σ(u(·, ∗))

+
∫ t

0

∫
Rd

Λ(t− s, x− y)σ′(u(s, y))Du(s, y)W (ds, dy)

+
∫ t

0
ds
∫

Rd
Λ(s, dy)b′(u(t− s, x− y))Du(t− s, x− y). (5.16)

Yet another result on existence and uniqueness of solution

Theorem 5.1 is not general enough to cover SPDEs like (5.16). In this section
we set up a suitable framework for this (actually to deal with Malliavin
derivatives of any order). For more details we refer the reader to [69], Chapter
6.
Let K1, K be two separable Hilbert spaces. If there is no reason for mis-
understanding we will use the same notation, || · ||, 〈·, ·〉, for the norms and
inner products in these two spaces, respectively.
Consider two mappings

σ, b : K1 ×K −→ K
satisfying the next two conditions for some positive constant C:

(c1)

sup
x∈K1

(
||σ(x, y)− σ(x, y′)||+ ||b(x, y)− b(x, y′)||

)
≤ C||y − y′||,
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(c2) there exists q ∈ [1,∞) such that

||σ(x, 0)||+ ||b(x, 0)|| ≤ C(1 + ||x||q),

x ∈ K1, y, y′ ∈ K.

Notice that (c1) and (c2) clearly imply

(c3) ||σ(x, y)||+ ||b(x, y)|| ≤ C(1 + ||x||q + ||y||).

Let V =
(
V (t, x), (t, x) ∈ [0, T ] × Rd

)
be a predictable K1-valued process

such that

sup
(t,x)∈[0,T ]×Rd

E
(
||V (t, x)||p

)
<∞, (5.17)

for any p ∈ [1,∞).

Consider also a predictable K-valued process U0 =
(
U0(t, x), (t, x) ∈ [0, T ]×

Rd
)

satisfying the analogue of (5.17).
Set

U(t, x) = U0(t, x) +
∫ t

0

∫
Rd

Λ(t− s, x− y)σ
(
V (s, y), U(s, y)

)
W (ds, dy)

+
∫ t

0
ds
∫

Rd
b
(
V (t− s, x− y), U(t− s, x− y)

)
Λ(s, dy). (5.18)

A solution to Equation (5.18) is a K-valued predictable stochastic process(
U(t, x), (t, x) ∈ [0, T ]× Rd

)
such that

sup
(t,x)∈[0,T ]×Rd

E
(
||U(t, x)||2

)
<∞

and satisfies the relation (5.18).

Theorem 5.2 We assume that the coefficients σ and b satisfy the conditions
(c1) and (c2) above. Then, Equation (5.18) has a unique solution.
In addition the solution satisfies

sup
(t,x)∈[0,T ]×Rd

E
(
||U(t, x)||p

)
<∞, (5.19)

for any p ∈ [1,∞).
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Main result

We will now apply Lemma 5.2 to prove that for any fixed (t, x) ∈ [0, T ]×Rd,
u(t, x) ∈ D1,2. The next results provide a verification of conditions (a) and (b)
of the Lemma. We shall assume that the functions σ and b are differentiable
with bounded derivatives.

Lemma 5.3 The sequence of random variables
(
un(t, x), n ≥ 0

)
defined re-

cursively in (5.13) is a subset of D1,2.
In addition,

sup
n≥0

sup
(t,x)∈[0,T ]Rd

E
(
‖Dun(t, x)‖2

HT

)
<∞. (5.20)

Proof: It is done by a recursive argument on n. Clearly the property is true
for n = 0. Assume it holds up to the (n − 1)-th iteration. By the rules
of Malliavin calculus (in particular, Proposition 3.5 and Remark 3.4), the
right hand-side of (5.13) belongs to D1,2. Hence un(t, x) ∈ D1,2 and moreover
(5.14) holds.
We now prove (5.20). Denote by Bi,n, i = 1, 2, 3, each one of the terms on
the right hand-side of (5.14), respectively. By applying Proposition 5.1 to
Z(t, x) := σ(u(t, x)) along with the linear growth of the function σ, we obtain

E
(
||B1,n||2HT

)
≤ C

(
1 + sup

(t,x)∈[0,T ]×Rd
E(|un−1(t, x)|2)

) ∫ T

0
ds
∫

Rd
µ(dξ)|FΛ(s)(ξ)|2,

which is uniformly bounded with respect to n (see (ii) in the proof of Theorem
6.2 in [69]).
Set

J(t) =
∫

Rd
µ(dξ) |FΛ(t)(ξ)|2 , t ≥ 0.

Consider now the second term B2,n(t, x). By the construction of the stochas-
tic convolution and the properties of σ, we have

E(‖B2,n(t, x)‖2
HT ) ≤ C

∫ t

0
ds sup

z∈Rd
E
(
||σ′(un−1(s, z))Dun−1(s, z)||2HT

)
J(t− s)

≤ C
∫ t

0
ds sup

(τ,z)∈[0,s]×Rd
E
(
||Dun−1(τ, z)||2HT

)
J(t− s).
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Finally, for the third term B3,n(t, x) we use Schwarz’s inequality with respect
to the finite measure Λ(s, dz)ds. Then, the assumptions on b and Λ yield

E(‖B3,n(t, x)‖2
HT ≤ C

∫ t

0
ds sup

(τ,z)∈[0,s]×Rd
E
(
||Dun−1(τ, z)||2HT

)
.

Therefore,

sup
(s,z)∈[0,t]×Rd

E
(
||Dun(s, z)||2HT

)
≤ C

(
1 +

∫ t

0
ds sup

(τ,z)∈[0,s]×Rd
E
(
||Dun−1(τ, z)||2HT

)
(J(t− s) + 1)

)
.

Then, by Gronwall’s Lemma (see Lemma 6.2 in [69]), we finish the proof.

�

Lemma 5.4 Under the standing hypotheses, the sequence Dun(t, x), n ≥ 0,
converges in L2(Ω;HT ), uniformly in (t, x) ∈ [0, T ] × Rd, to the HT -valued

stochastic processes
(
U(t, x), (t, x) ∈ [0, T ]× Rd

)
solution of the equation

U(t, x) = H(t, x)

+
∫ t

0

∫
Rd

Λ(t− s, x− z)U(s, z)σ′(u(s, z))W (ds, dz)

+
∫ t

0
ds
∫

Rd
Λ(s, dz)U(t− s, x− z)b′(u(t− s, x− z)), (5.21)

with H(t, x) = σ(u(·, ∗))Λ(t− ·, x− ∗).

Proof : We must prove

sup
(t,x)∈[0,T ]×Rd

E
(∥∥∥Dun(t, x)− U(t, x)

∥∥∥2

HT

)
→ 0, (5.22)

as n tends to infinity.

51



Set

In,NZ (t, x) = Λ(t− ·, x− ∗)
(
σ(un−1(·, ∗))− σ(u(·, ∗))

)
,

Inσ (t, x) =
∫ t

0

∫
Rd

Λ(t− s, x− z)σ′(un−1(s, z))Dun−1(s, z)W (ds, dz)

−
∫ t

0

∫
Rd

Λ(t− s, x− z)σ′(u(s, z))U(s, z)W (ds, dz),

Inb (t, x) =
∫ t

0
ds
∫

Rd
Λ(s, dz)

(
b′(un−1(t− s, x− z))Dun−1(t− s, x− z)

− b′(u(t− s, x− z))U(t− s, x− z)
)
.

The Lipschitz property of σ yields

E(||In,NZ (t, x)||2HT ) ≤ C sup
(t,x)∈[0,T ]×Rd

E(|un−1(t, x)− u(t, x)|2)
∫ t

0
ds

×
∫

Rd
µ(dξ)|FΛ(s)(ξ)|2

≤ C sup
(t,x)∈[0,T ]×Rd

E(|un−1(t, x)− u(t, x)|2).

Hence,
lim
n→∞

sup
(t,x)∈[0,T ]×Rd

E(||In,NZ (t, x)||2HT ) = 0. (5.23)

Consider the decomposition

E(‖Inσ (t, x)‖2
HT ) ≤ C(D1,n(t, x) +D2,n(t, x),

where

D1,n(t, x) = E
(
‖
∫ t

0

∫
Rd

Λ(t− s, x− z)[σ′(un−1(s, z))

− σ′(u(s, z))]Dun−1(s, z)W (ds, dz)‖2
HT

)
,

D2,n(t, x) = E
(
‖
∫ t

0

∫
Rd

Λ(t− s, x− z)σ′(u(s, z))[Dun−1(s, z)

− U(s, z)]W (ds, dz)‖2
HT

)
.

The isometry property of the stochastic integral, Cauchy-Schwarz’s inequality
and the properties of σ yield

D1,n(t, x) ≤ C sup
(s,y)∈[0,T ]×Rd

(
E(|un−1(s, y)− u(s, y)|4)E(‖Dun−1(s, y)‖4

HT )
) 1

2

×
∫ t

0
ds
∫

Rd
µ(dξ)|FΛ(s)(ξ)|2.
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Owing to and Lemma 5.3 we conclude that

lim
n→∞

sup
(t,x)∈[0,T ]×Rd

D1,n(t, x) = 0.

Similarly,

D2,n(t, x) ≤ C
∫ t

0
ds sup

(τ,y)∈[0,s]×Rd
E(‖Dun−1(τ, y)− U(τ, y)‖2

HT )J(t− s).

(5.24)
For the pathwise integral term, we have

E(‖Inb (t, x)‖2
HT ) ≤ C(b1,n(t, x) + b2,n(t, x)),

with

b1,n(t, x) = E
(
||
∫ t

0
ds
∫

Rd
Λ(s, dz)[b′(un−1(t− s, x− z))− b′(u(t− s, x− z))]

×Dun−1(t− s, x− z)||2HT
)
,

b2,n(t, x) = E
(
‖
∫ t

0
ds
∫

Rd
Λ(s, dz)b′(u(t− s, x− z))

× [Dun−1(t− s, x− z)− U(t− s, x− z)]‖2
HT

)
.

By the properties of the deterministic integral of Hilbert-valued processes,
the assumptions on b and Cauchy-Schwarz’s inequality we obtain

b1,n(t, x) ≤
∫ t

0
ds
∫

Rd
Λ(s, dz)E

(
|b′(un−1(t− s, x− z))− b′(u(t− s, x− z))|2

× ‖Dun−1(t− s, x− z)‖2
HT

)
≤ sup

(s,y)∈[0,T ]×Rd

(
E|un−1(s, y)− u(s, y)|4E‖Dun−1(s, y)‖4

HT

)1/2
∫ t

0
dsΛ(s, dz).

Thus,
lim
n→∞

sup
(t,x)∈[0,T ]×Rd

b1,n(t, x) = 0.

Similar arguments yield

b2,n(t, x) ≤ C
∫ t

0
ds sup

(τ,y)∈[0,s]×Rd
E(‖Dun−1(τ, y)− U(τ, y)‖2

HT ).
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Therefore we have obtained that

sup
(s,x)∈[0,t]×Rd

E(||Dun(s, x)− U(s, x)||2HT )

≤ Cn + C
∫ t

0
ds sup

(τ,x)∈[0,s]×Rd
E(||Dun−1(τ, x)− U(τ, x)||2HT )(J(t− s) + 1),

with limn→∞Cn = 0. Thus applying a version of Gronwall’s lemma (see
Lemma 6.2 in [69]) we complete the proof of (5.22).

�
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6 Analysis of Non-Degeneracy

In comparison with SDEs, the application of the criteria for existence and
smoothness of density for Gaussian functionals (see for instance Proposition
4.3) and Theorem 4.2) to SPDEs is not a well developed topic. Most of the
results for SPDEs are proved under ellipticity conditions. In this lecture,
we shall discuss the non-degeneracy of the Malliavin matrix for the class
of SPDEs studied in the preceding lecture, in a very simple situation: in
dimension one and assuming ellipticity.

6.1 Existence of moments of the Malliavin covariance

Throughout this section, we fix (t, x) ∈]0, T ]× Rd and consider the random
variable u(t, x) obtained as a solution of (5.7). Hence we are in the framework
of Section 5 and therefore, we are assuming in particular that Λ satisfies
hypotheses (HL).
Following Definition 4.1, the Malliavin matrix is the random variable
‖Du(t, x)‖HT . In this section, we want to study the property

E
(
‖Du(t, x)‖−pHT

)
<∞, (6.1)

for some p ∈]0,∞[.
A reason for this is to apply Proposition 4.3 and to deduce the existence of
density for the law of u(t, x). We have already proved in the preceding lecture
that u(t, x) ∈ D1,2. Hence, it remains to check that ‖Du(t, x)‖HT > 0, a.s.
Clearly, having (6.1) for some p > 0 is a sufficient condition for this property
to hold.

The classical connection between moments and distribution func-
tions

Lemma 6.1 Fix p ∈]0,∞]. The property (6.1) holds if and only if there
exists ε0 > 0, depending on p, such that∫ ε0

0
ε−(1+p)P (||Du(t, x)||2HT < ε)dε <∞. (6.2)

Proof: It is well known that for any positive random variable Y ,

E(Y ) =
∫ ∞

0
P (Y > η)dη.
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In fact, this follows easily from Fubini’s theorem.
Apply this formula to Y := ||Du(t, x)||−2p

HT . We obtain

E(||Du(t, x)||−2p
HT ) = m1 +m2,

with

m1 =
∫ η0

0
P (||Du(t, x)||−2p

HT > η)dη,

m2 =
∫ ∞
η0

P (||Du(t, x)||−2p
HT > η)dη.

Clearly, m1 ≤ η0. The change of variable η = ε−p implies

m2 =
∫ ∞
η0

P (||Du(t, x)||−2p
HT > η)dη

=
∫ ∞
η0

P (||Du(t, x)||2HT < η−
1
p )dη

= p
∫ η
− 1
p

0

0
ε−(1+p)P (||Du(t, x)||2HT < ε)dε.

This finishes the proof.
�

Moments of low order

Knowing the size in ε of the term P (||Du(t, x)||2HT < ε) will help us to verify

the integrability of ε−(1+p)P (||Du(t, x)||2HT < ε) at zero, and a posteriori to
establish the validity of (6.1). The next proposition gives a result in this
direction.

Proposition 6.1 We assume that

(1) there exists σ0 > 0 such that inf{|σ(z)|, z ∈ R} ≥ σ0,

(2) there exist θ such that for any t ∈ (0, 1),

C1t
θ ≤

∫ t

0
ds
∫

Rd
µ(dξ)|FΛ(s)(ξ)|2, (6.3)
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Then for any ε ∈]0, 1[,

P
(
‖Du(t, x)‖2

HT < ε
)
≤ Cε1∧

1
θ . (6.4)

Consequently, (6.1) holds for any p < 1 ∧ 1
θ
.

Proof: Fix δ > 0 such that t− δ ≥ 0. From (5.16), the definition of HT , and
the triangular inequality, we clearly have

‖Du(t, x)‖2
HT ≥

∫ t

t−δ
ds‖Ds,∗u(t, x)‖2

H

≥ 1

2

∫ t

t−δ
ds‖Λ(t− s, x− ∗)σ(u(s, ∗))‖2

H − I(t, x; δ),

where

I(t, x; δ) =
∫ t

t−δ
ds‖

∫ t

s

∫
Rd

Λ(t− r, x− z)σ′(u(r, z))Ds,∗u(r, z)W (dr, dz)

+
∫ t

s
dr
∫

Rd
Λ(t− r, dz)b′(u(r, x− z))Ds,∗u(r, x− z)‖2

H.

Set

M1(δ) =
∫ δ

0
ds
∫

Rd
µ(dξ)|FΛ(s)(ξ)|2,

M2(δ) =
∫ δ

0
ds
∫

Rd
Λ(s, y)dy.

Notice that by (5.3), M2(δ) ≤ Cδ.

Our aim is to prove

∫ t

t−δ
ds‖Λ(t− s, x− ∗)σ(u(s, ∗))‖2

H ≥ σ2
0M1(δ), (6.5)

E (I(t, x; δ)) ≤ CM1(δ) (M1(δ) +M2(δ)) . (6.6)

For any ε ∈]0, 1[, we can choose δ := δ(ε) > 0 such that M1(δ) = 4ε
σ2

0
. Notice

that by (6.3) this is possible. Then, δ <
(

4
σ2

0

) 1
θ ε

1
θ , and assuming that (6.5),
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(6.6) hold true, we have

P
(
‖Du(t, x)‖2

HT < ε
)
≤ P

(∫ t

t−δ
ds‖Ds,∗u(t, x)‖2

H < ε
)

≤ P

(
I(t, x; δ) ≥ σ2

0

2
M1(δ)− ε

)
≤ Cε−1E (I(t, x; δ(ε)))

≤ Cε−1
(
ε2 + ε1+ 1

θ

)
≤ Cε1∧

1
θ .

This is (6.4).

Proof of (6.5):

By a change of variables∫ t

t−δ
ds‖Λ(t− s, x− ∗)σ(u(s, ∗))‖2

H =
∫ δ

0
ds‖Λ(s, x− ∗)σ(u(t− s, ∗))‖2

H.

Then, the inequality (5.11) applied to Z(s, y) = |σ(u(t − s, y))| and T := δ
yields (6.5). Indeed, for this choice of Z and T ,∫ δ

0
ds‖Λ(s, x− ∗)σ(u(t− s, ∗))‖2

H = lim
n→∞

E(‖zn‖2
Hδ) ≥ σ0M1(δ).

Proof of (6.6):

We shall give a bound for the mathematical expectation of each one of the
terms

I1(t, x; δ) =
∫ δ

0
ds

∥∥∥∥∫ t

t−s

∫
Rd

Λ(t− r, x− z)σ′(u(r, z))Dt−s,∗u(r, z)W (dr, dz)
∥∥∥∥2

H
,

I2(t, x; δ) =
∫ δ

0
ds

∥∥∥∥∫ t

t−s
dr
∫

Rd
Λ(t− r, dz)b′(u(r, x− z))Dt−s,∗u(r, x− z)

∥∥∥∥2

H
.

Since σ′ is bounded, the inequality (5.15) yields

E (I1(t, x; δ)) ≤ C sup
(s,y)∈[0,δ]×Rd

E
(
‖Dt−·,∗u(t− s, y)‖2

Hδ

)
M1(δ).

For the pathwise integral, it is easy to prove that

E (I2(t, x; δ)) ≤ C sup
(s,y)∈[0,δ]×Rd

E
(
‖Dt−·,∗u(t− s, y)‖2

Hδ

)
M2(δ).
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Since
sup

(s,y)∈[0,δ]×Rd
E
(
‖Dt−·,∗u(t− s, y)‖2

Hδ

)
≤ CM1(δ),

(see for instance [61] or Lemma 8.2 in [69]), we get

E (I1(t, x; δ)) ≤ CM1(δ)2,

E (I2(t, x; δ)) ≤ CM1(δ)M2(δ).

This finishes the proof of (6.7) and therefore of (6.4).
The statement about the validity of (6.1) for the given range of p is a conse-
quence of Lemma 6.1.

�

An example: the stochastic wave equation in dimension d ≤ 3

Proposition 6.1 can be applied for instance to the stochastic wave equation.
Indeed, let Λ be the fundamental solution of L = 0 with L = ∂2

tt − ∆d,
d = 1, 2, 3. Assume that the measure µ satisfies

0 <
∫

Rd

µ(dξ)

1 + |ξ|2
<∞.

Then from (5.6) it follows that

C1(t ∧ t3) ≤
∫ t

0
ds
∫

Rd
µ(dξ)|FΛ(s)(ξ)|2 ≤ C2(t+ t3),

where Ci, i = 1, 2 are positive constants independent of t.
In particular, for t ∈ [0, 1),

C1t
3 ≤

∫ t

0
ds
∫

Rd
µ(dξ)|FΛ(s)(ξ)|2 ≤ C2t.

Thus, condition (6.3) of Proposition 6.1 is satisfied with θ = 3, and conse-
quently E (‖Du(t, x)‖−p) <∞, for any p < 1

3
.

Remark 6.1 Assume that for some δ0 ∈]0, t[,∫ δ0

0
dt
∫

Rd
µ(dξ)|FΓ(t)(ξ)|2µ(dξ) > 0 (6.7)

and consider the same assumptions on the coefficients as in Proposition 6.1.
Then ‖Du(t, x)‖HT > 0, a.s. (see Theorem 5.2 in [53]). This conclusion is
weaker that (6.1), but it suffices to give the existence of density for u(t, x).
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Remark 6.2 Proposition 8.1 [69] is a weaker version of Proposition 6.1.
The proof of of Proposition 6.1 follows [53], Theorem 5.2.

Existence of density

To end this section, and as a summary, we give a result on existence of density
for the solution of a class of SPDEs, as follows.

Theorem 6.1 Consider the stochastic process {u(t, x), (t, x) ∈ [0, T ] × Rd}
solution of (5.7). We assume:

(1) the functions σ, b belong to C1 and have bounded derivatives,

(2) there exists σ0 > 0 such that inf{|σ(z)|, z ∈ R} ≥ σ0,

(3) Λ satisfies the assumptions (HL),

(4) there exist θ > 0, such that for any t ∈ (0, 1),

C1t
θ ≤

∫ t

0
ds
∫

Rd
µ(dξ)|FΛ(s)(ξ)|2

Then, for any fixed (t, x) ∈]0, T ] × Rd, the random variable u(t, x) belongs
to D1,2, and for any p < 1 ∧ 1

θ
, E(‖Du(t, x)‖−pHT ) < ∞. Consequently, the

probability law of u(t, x) is absolutely continuous with respect to the Lebesgue
measure on R.

Proof: The results of Section 5.2 imply u(t, x) ∈ D1,2. While the property
about existence of moments has been established in Proposition 6.1. Even-
tually, the conclusion about the law of u(t, x) follows from Proposition 4.3.

�

Moments of any order

It is easy to improve the conclusions of Proposition 6.1 so that we can obtain
(6.1) for any p ≥ 0.
Indeed, moving back to the proof of this Proposition, we recall that we have
obtained

P
(
‖Du(t, x)‖2

HT < ε
)
≤ P

(
I(t, x; δ) ≥ σ2

0

2
M1(δ)− ε

)
.
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At this point, we can apply Chebychev’s inequality to obtain

P

(
I(t, x; δ) ≥ σ2

0

2
M1(δ)− ε

)
≤ Cε−qE (I(t, x; δ(ε)))q ,

for any q > 1.
Using Lq(Ω)- estimates for the Hilbert-valued stochastic convolutions (see
for instance [69], Theorem 6.1), and for pathwise integrals as well, yield

E (I(t, x; δ(ε)))q ≤ Cδ(ε)q−1
(
M1(δ(ε))2q +M1(δ(ε))q(δ(ε))q

)
.

By the choice of δ(ε), this implies

P
(
‖Du(t, x)‖2

HT < ε
)
≤ Cε

q−1
θ

+[q∧ q
θ

].

Since q can be chosen arbitrarily large, we obtain (6.1) for any p ≥ 0.

Regularity of the density

Proceeding recursively, it is possible to extend the results in Section 5.2
and prove that under suitable assumptions, the solution of (5.7) is infinitely
differentiable in the Watanabe-Sobolev sense (see [69], Chapter 7). Then,
owing to the results discussed in the preceding paragraphs, applying Theorem
4.2 yields the following:

Theorem 6.2 Consider the stochastic process {u(t, x), (t, x) ∈ [0, T ] × Rd}
solution of (5.7). We assume:

(1) the functions σ, b belong to C∞ and have bounded derivatives of any
order,

(2) there exists σ0 > 0 such that inf{|σ(z)|, z ∈ R} ≥ σ0,

(3) Λ satisfies the assumptions (HL),

(4) there exist θ > 0, such that for any t ∈ (0, 1),

C1t
θ ≤

∫ t

0
ds
∫

Rd
µ(dξ)|FΛ(s)(ξ)|2

Then, for any fixed (t, x) ∈]0, T ]×Rd, the random variable u(t, x) belongs to
D∞, and for any p > 0, E(‖Du(t, x)‖−pHT ) <∞. Consequently, the probability
law of u(t, x) is absolutely continuous with respect to the Lebesgue measure
on R and has a C∞ density.

Notice that this result applies to the stochastic wave equation in dimension
d = 1, 2, 3.
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6.2 Some references

To end this lecture, we mention some references on existence and smoothness
of density of probability laws, as a guide for the reader to have a further
insight into the subject.
The first application of Malliavin calculus to SPDEs may be found in [51]; it
concerns the hyperbolic equation on Rn

∂2

∂s∂t
X(s, t) = A(X(s, t))Ẇs,t + A0(X(s, t)), (6.8)

with s, t ∈]0, 1] and initial condition X(s, t) = 0 if s× t = 0. Here

A : Rn → Rd ⊗ Rn, A0 : Rn → Rn,

are smooth functions, and W a d-dimensional Brownian sheet on [0, 1]2, that
is, W = (Ws,t = (W 1

s,t, . . .W
d
s,t), (s, t) ∈ [0, 1]2), with independent Gaussian

components, zero mean and covariance function given by

E(W i
s1,t1

W i
s2,t2

) = (s1 ∧ s2)(t1 ∧ t2),

i = 1, . . . , d.
In dimension n = 1, this equation is transformed into the standard wave
equation after a rotation of forty-five degrees. Otherwise, (6.8) is an extension
to a two-parameter space of the Itô equation. The existence and smoothness
of density for the probability law of the solution to (6.8) at a fixed time
parameter (s, t), with s × t = 0 has been proved under a specific type of
Hörmander’s condition on the vector fields Ai, i = 1, . . . , d, which does not
coincide with Hörmander’s condition for diffusions. An extension to a non
restricted Hörmander’s condition, that is, including the vector field A0, has
been done in [52].
The one-dimensional wave equation perturbed by space-time white noise, as
an initial value problem but also as a boundary value problem, has been
studied in [13]. The degeneracy conditions on the free terms of the equation
are different from those in Theorem 6.2.
Existence for the density of equation (4.1) in dimension one, with L = ∆ and
space-time white noise, has been first studied in [58]. The authors consider
a Dirichlet boundary value problem on [0, 1], with initial condition u(0, x) =
u0(x). The required non-degeneracy condition reads as follows:

σ(u0(y)) 6= 0, for some y ∈]0, 1[. (6.9)
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The same equation has been analyzed in [3]. In this reference, the authors
consider the random vector (u(t, x1), . . . , u(t, xm)) obtained by looking at the
solution of the equation at time t 6= 0 and different points x1, . . . , xm ∈]0, 1[.
Under assumption (2) of Theorem 6.2, they obtain the smoothness of the
density.
Recently in [45], this result has been improved. The authors prove that for
m = 1, the assumption 6.9 yields the smoothness of the density as well.
The first application of Malliavin calculus to SPDEs with correlated noise
appears in [43], and a first attempt for an unified approach of stochastic heat
and wave equations is done in [37]. Hörmander’s type conditions in a general
context of Volterra equations have been given in [64].
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7 Small perturbations of the density

Consider the SPDE (5.1) that we write in its mild form, as in (5.7). We
replace Ẇ (t, x) by εẆ (t, x), with ε ∈]0, 1[ and we are interested in the be-
haviour, as ε → 0 of the solution of the modified equation, that we will
denote by uε. At the moment, this is a very vague plan; roughly speaking,
one would like to know the effect of small noise on a deterministic evolution
equation. Several questions may be addressed. For instance, denoting by µε

the probability law of the solution uε, we may want to prove a large deviation
principle on spaces where the solution lives.
We recall that a family (µε, ε ∈]0, 1[) of probability measures on a Polish
space E is said to satisfy a large deviation principle with rate functional I
if I : E → [0,∞] is a lower semicontinous function such that the level sets
{I(x) ≤ a} are compact, and for any Borel set B ⊂ E,

− inf
x∈B̊

I(x) ≤ lim inf
ε→0

ε2 log (µε(B)) ≤ lim sup
ε→0

ε2 log (µε(B)) ≤ − inf
x∈B̄

I(x).

In many of the applications that have motivated the theory of large devi-
ations, as ε → 0, µε degenerates to a delta Dirac measure at zero. Hence,
typically a large deviation principle provides the rate of convergence and an
accurate description of the degeneracy.
Suppose that the measures µε live in Rd and have a density with respect to
the Lebesgue measure. A natural question is whether from a large deviation
principle one could obtain a precise lower and upper bound for the density.
This question has been addressed by several authors in the context of dif-
fusion processes (Azencott, Ben Arous and Léandre, Varadhan, to mention
some of them), and the result is known as the logarithmic estimates and also
as the Varadhan estimates. We recall this result since it is the inspiration for
extensions to SPDEs.
Consider the family of stochastic differential equations on Rn (in the
Stratonovich formulation)

Xε
t = x+ ε

∫ t

0
A(Xε

s) ◦ dBs +
∫ t

0
A0(Xε

s)ds,

t ∈ [0, 1], ε > 0, where A : Rn → Rd ⊗ Rn, A0 : Rn → Rn and B is a
d-dimensional Brownian motion. For each h in the Cameron-Martin space
H associated with B, we consider the ordinary (deterministic) equation

Sht = x+
∫ t

0
A(Shs )ḣsds+

∫ t

0
A0(Shs )ds,
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t ∈ [0, 1], termed the skeleton of X. For y ∈ Rn, set

d2(y) = inf{‖h‖2
H ;Sh1 = y}

d2
R(y) = inf{‖h‖2

H ;Sh1 = y, det γSh1 > 0},

where γSh1 denotes the n-dimensional matrix whose en-

tries are 〈D(Sh1 )i, D(Sh1 )j〉, i, j = 1, . . . , n. Here D stands for the Fréchet
differential operator on Banach spaces and we assume that the random fields
A1, . . . , Ad (the components of A) and A0 are smooth enough. Notice that
we use the same notation for the deterministic matrix (〈D(Sh1 )i, D(Sh1 )j〉)i,j
than for the Malliavin matrix. In this context, the former is often termed
the deterministic Malliavin matrix. The quantities d2(y), d2

R(y) are related
with the energy needed by a system described by the skeleton to leave the
initial condition x ∈ Rn and reach y ∈ Rn at time t = 1.

This is the result for SDEs.

Theorem 7.1 Let A : Rn → Rd⊗Rn, A0 : Rn → Rn be infinite differentiable
functions with bounded derivatives of any order. Assume:

(HM) There exists k0 ≥ 1 such that the vector space spanned by the vector
fields

[Aj1 , [Ajk2
, [. . . [Ajk , Aj0 ]] · · · ], 0 ≤ k ≤ k0,

where j0 ∈ {1, 2, . . . , d} and ji ∈ {0, 1, 2, . . . , d} if 1 ≤ i ≤ k at the point
x ∈ Rn has dimension n.

Then, the random variable Xε
1 has a smooth density pε, and

−d2
R(y) ≤ lim inf

ε→0
2ε2 log pε(y) ≤ lim sup

ε→0
2ε2 log pε(y) ≤ −d2(y). (7.1)

In addition, if inf{det γSh1 ; for h such that Sh1 = y} > 0, then d2(y) = d2
R(y)

and consequently,
lim
ε→0

2ε2 log pε(y) = d2(y). (7.2)

The assumption (HM) in this theorem is termed Hörmander’s unrestricted
assumption; the notation [·, ·] refers to the Lie brackets.
The proof of this theorem given in [11] admits an extension to the general
framework of an abstract Wiener space. This fact has been noticed and
applied in [33], and then written in [47]; since then, it has been applied to
several examples of SPDEs. In this lecture we shall give this general result
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and then some hints on its application to an example of stochastic heat
equation.
Throughout this section, {W (h), h ∈ H} is a Gaussian family, as has been
defined in Section 3.2. We will consider non-degenerate random vectors F ,
which in this context means that F ∈ D∞ and

det γ−1
F ∈ ∩p∈[1,∞[L

p(Ω),

where γF denotes the Malliavin matrix of F . Notice that by Theorem 4.2,
non-degenerate random vectors F have an infinitely differentiable density.

7.1 General results

Lower bound

Proposition 7.1 Let {F ε, ε ∈]0, 1]} be a family of non-degenerate n-
dimensional random vectors and let Φ ∈ C∞p (H; Rn) (the space of C∞ func-
tions with polynomial growth) be such that for each h ∈ H, the limit

lim
ε→0

1

ε

(
F ε

(
ω +

h

ε

)
− Φ(h)

)
= Z(h) (7.3)

exists in the topology of D∞ and defines a n-dimensional random vector with
absolute continuous distribution.
Then, setting

d2
R(y) = inf{‖h‖2

H : Φ(h) = y, det γγΦ(h) > 0},

y ∈ Rn, we have
−d2

R(y) ≤ lim inf
ε→0

ε2 log pε(y). (7.4)

Proof: Let y ∈ Rn be such that d2
R(y) <∞. For any η > 0 there exists h ∈ H

such that Φ(h) = y, det γγΦ(h) > 0 and ‖h‖2
H ≤ d2

R(y) + η. For any function
f ∈ C∞0 (Rn), we can write

E (f(F ε)) = exp

(
−‖h‖

2
H

2ε2

)
E

(
f

(
F ε

(
ω +

h

ε

))
exp

(
−W (h)

ε

))
, (7.5)

by Girsanov’s theorem.
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Consider a smooth approximation of 11[−η,η] given by a function ρ ∈ C∞,
0 ≤ ρ ≤ 1, such that ρ(t) = 0, if t /∈ [−2η, 2η], ρ(t) = 1 if t ∈ [−η, η]. Then
using (7.5), and assuming that f is a positive function, we have

E (f(F ε)) ≥ exp

(
−‖h‖

2
H + 4η

2ε2

)
E

(
f

(
F ε

(
ω +

h

ε

))
ρ(εW (h))

)
.

We now apply this inequality to a sequence fn, n ≥ 1, of smooth approxi-
mations of the delta Dirac function at y. Passing to the limit and taking
logarithms, we obtain

2ε2 log pε(y) ≥ −(‖h‖2
H + 4η) + 2ε2 logE

(
δy

(
F ε

(
ω +

h

ε

))
ρ(εW (h))

)
.

Hence, to complete the proof we need checking that

lim
ε→0

ε2 logE

(
δy

(
F ε

(
ω +

h

ε

))
ρ(εW (h))

)
= 0. (7.6)

Since y = Φ(h), we clearly have

E

(
δy

(
F ε

(
ω +

h

ε

))
ρ(εW (h))

)
= ε−mE

δ0

F ε
(
ω + h

ε

)
− Φ(h)

ε

 ρ(εW (h))

 .
The expression

E

δ0

F ε
(
ω + h

ε

)
− Φ(h)

ε

 ρ(εW (h))


tends to the density of Z(h) at zero, as ε → 0, as can be proved using the
integration by parts formula (4.9)–(4.11). Hence (7.6) holds true and this
ends the proof of the Proposition.

�

Upper bound

Stating the upper bound for the logarithm of the density needs more de-
manding assumptions. Among others, the family {F ε, ε ∈]0, 1]} must satisfy
a large deviation principle, and there should be a control of the norm of the
inverse of the Malliavin matrix in terms of powers of ε.
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Proposition 7.2 Let {F ε, ε ∈]0, 1]} be a family of non-degenerate n-
dimensional random vectors and let Φ ∈ C∞p (H; Rn) be such that:

1. supε∈]0,1] ‖F ε‖k,p < ∞, for each integer k ≥ 1 and any real number
p ∈]1,∞[,

2. For any p ∈]1,∞[, there exist εp > 0 and N(p) ∈]1,∞[ such that
‖(γF ε)−1‖p ≤ ε−N(p), for each integer ε ≤ εp,

3. {F ε, ε ∈]0, 1]} satisfies a large deviation principle on Rn with rate func-
tion I(y), y ∈ Rn.

Then,
lim sup
ε→0

2ε2 log pε(y) ≤ −I(y). (7.7)

Proof: It is an application of the integration by parts formula (4.9)–(4.11).
Indeed, fix y ∈ Rn and a smooth function ρ ∈ C∞0 (Rn), 0 ≤ ρ ≤ 1 such that
ρ is equal to one in a nighbourhood of y. Then we can write

pε(y) = E (ρ(F ε)δy(F
ε)) .

Applying Hölder’s inequality with p, q ∈]1,∞[ with 1
p

+ 1
q

= 1, we obtain

E (ρ(F ε)δy(F
ε)) = E

(
11{F ε≥y}H1,...,1(F ε, ρ(F ε))

)
≤ E (|H1,...,1(F ε, ρ(F ε))|)
= E

(
|H1,...,1(F ε, ρ(F ε))|11{F ε∈supp ρ}

)
)

≤ (P{F ε ∈ supp ρ})
1
q ‖H1,...,1(F ε, ρ(F ε))‖p.

By the Lp estimates of the Skorohod integral (see for instance [79], or Propo-
sition 3.2.2 in [47]), there exist real numbers greater than one, p̃, a, b, ã, b̃
and

‖H1,...,1(F ε, ρ(F ε))‖p ≤ C‖(γF ε)−1‖p̃‖F ε‖a,b‖ρ(F ε)‖ã,b̃.
The assumptions (1) (2) below ensure

lim sup
ε→0

2ε2 log ‖H1,...,1(F ε, ρ(F ε))‖p = 0,

while (3) implies

lim sup
ε→0

2ε2 logP{F ε ∈ suppρ} ≤ − inf(I(y), y ∈ suppρ)
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and consequently,

lim sup
ε→0

2ε2 log pε(y) ≤ −1

q
inf(I(y), y ∈ suppρ).

Set I(suppρ) = inf(I(y), y ∈ suppρ). For any δ > 0, there exists q > 1
such that 1

q
I(suppρ) ≥ I(suppρ)− δ. Then, by taking a sequence of smooth

functions ρn (with the same properties as ρ) such that suppρn decreases to
{y}, we see that

lim sup
ε→0

2ε2 log pε(y) ≤ −I(y) + δ,

and since δ is arbitrary, we obtain (7.7).
This ends the proof.

�

7.2 An example: the stochastic heat equation

In this section, we consider the SPDE

u(t, x) =
∫ t

0

∫
R
G(t− s, x− y)σ(u(s, y))W (ds, dy)

+
∫ t

0

∫
R
G(t− s, x− y)b(u(s, y))dsdy, (7.8)

t ∈ [0, T ], where G(t, x) = (2πt)−
1
2 exp

(
− |x|

2

2t

)
and W is space-time white

noise. In the framework of Section 5 this corresponds to a stochastic heat
equation in dimension d = 1 and to a spatial covariation measure given by
Γ(dy) = δ0(y).
The companion perturbed family we would like to study is

uε(t, x) = ε
∫ t

0

∫
R
G(t− s, x− y)σ(uε(s, y))W (ds, dy)

+
∫ t

0

∫
R
G(t− s, x− y)b(uε(s, y))dsdy, (7.9)

ε ∈]0, 1[.
Our purpose is to apply Propositions 7.1 and 7.2 and therefore to obtain
logarithm estimates for the density.
Throughout this section we will assume the following condition, although
some of the results hold under weaker assumptions.
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(C) The functions σ, b are C∞ with bounded derivatives.

The Hilbert space H we should take into account here is the Cameron-Martin
space associated with W . It consists of the set of functions h : [0, T ]×R→ R
absolutely continuous with respect to the product Lebesgue measure dtdx

and such that ‖h‖2
H :=

(∫ T
0

∫
R |ḣt,x|2dtdx

) 1
2 < ∞, where ḣt,x stands for the

second order derivative ∂2h(t,x)
∂t∂x

, which exist almost everywhere.
For each h ∈ H we consider the deterministic evolution equation

Ψh(t, x) =
∫ t

0

∫
R
G(t− s, x− y)σ(Ψh(s, y))ḣ(s, y)dsdy

+
∫ t

0

∫
R
G(t− s, x− y)b(Ψh(s, y))dsdy, (7.10)

Existence and uniqueness of solution for (7.10) is proved in an analogue way
than for (7.8), using a Picard iteration scheme.

Some known results

We quote some known results on (7.8) that shall allow to follow the procedure
explained in the previous section.

1 Non degeneracy and existence of density

Fix (t, x) ∈]0, T ]× R. Assume (C) and also

(ND) inf{|σ(y)|, y ∈ R} ≥ c > 0.

Then the family (uε, ε ∈]0, 1[) is non-degenerate and therefore the random
variable uε(t, x) possesses a C∞ density pε.
This result has been proved in [3] (see also sections 5 and 6).

2 Large deviation principle

Large deviation principles for the family (uε, ε ∈]0, 1[) in the topology of
Hölder continuous functions have been established under different type of
assumptions by Sowers ([66]) and Chenal and Millet. Here, for the sake of
simplicity we shall consider the topology of uniform convergence on compact
sets and denote by C([0, T ] × R) the set of continuous functions defined on
[0, T ]×R with respect to this topology. It is known that (uε, ε ∈]0, 1[) satisfies
a large deviation principle on C([0, T ]× R) with rate function

I(f) = inf

{
‖h‖2

H

2
;h ∈ H,Ψh = f

}
.
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This is a functional large deviation principle; the contraction principle (a
transfer principle of large deviations through continuous functionals) gives
rise to the following statement:
Fix (t, x) ∈]0, T ] × R. Assuming (C), uε(t, x) satisfies a large deviation
principle on R with rate function

I(y) = inf

{
‖h‖2

H

2
;h ∈ H,Ψh(t, x) = y

}
, y ∈ R. (7.11)

A result for the stochastic heat equation

For the family defined in (7.9), we have the following theorem ([40], Theorem
2.1)

Theorem 7.2 Assume that the functions σ, b satisfy (C) and also (ND).
Fix (t, x) ∈]0, T ] × R and let I : R → R be defined in (7.11). Then the
densities (pεt,x, ε ∈]0, 1[) of (uε(t, x, ε ∈]0, 1[), satisfy

lim
ε→0

ε2 log pεt,x(y) = −I(y). (7.12)

.

Proof: We shall consider the abstract Wiener space associated with the space-
time white noise W and check that F ε := uε(t, x), ε ∈]0, 1[, satisfy the
assumptions of Propositions 7.1, 7.2. We give some hints for this in the
sequel.

Proposition 7.2, Assumption 1.

Following the results of Section 5, we already know that u(t, x) ∈ D∞, that
is, ‖u(t, x)‖k,p < ∞, for any p ∈ [1,∞[, k ∈ N. With the same proof, it is
easy to check that

sup
ε∈]0,1[

‖uε(t, x)‖k,p <∞.

Actually, in the different estimates to be checked, ε appears as a factor that
can be bounded by one.

Proposition 7.2, Assumption 2.

Set γε = γuε(t,x) and Qε = ε−2γε. Since uε(t, x) is a random variable, γε and
Qε are random variables as well. Assume we can prove

sup
ε∈]0,1[

E
(
|Qε|−p

)
<∞, (7.13)
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for any p ∈ [1,∞[. Then we will have

E
(
|γε|−p

)
≤ ε−2p sup

ε∈]0,1[
E
(
|Qε|−p

)
≤ Cε−2p,

and we will obtain the desired conclusion with N(p) = 2.
Let us give some hints for the proof of (7.13). Remember that γε =
‖Duε(t, x)‖2

H . The H–valued stochastic process Duε(t, x) satisfies an equa-
tion similar to (5.16), where σ is replaced by εσ (and consequently σ′

replaced by εσ′). By uniqueness of solution, it holds that Duε(t, x) =
εσ(uε(., ∗))Y ε(t, x), where Y ε(t, x) is a H–valued stochastic process solution
to the equation

Y ε(t, x) = G(t− ·, x− ∗) + ε
∫ t

0

∫
Rd
G(t− s, x− y)σ′(uε(s, y))Y ε(s, y)W (ds, dy)

+
∫ t

0

∫
Rd
G(t− s, x− y)b′(uε(s, y))Y ε(s, y)dsdy.

Then Qε corresponds to ‖σ(uε(., ∗))Y ε(t, x)‖2
H , which essentially behaves like

‖Du(t, x)‖2
H .

Proposition 7.2, Assumption 3.

See the result under the heading large deviation principle.

Assumptions of Proposition 7.1.

The non-degeneracy of the family uε(t, x), ε ∈]0, 1[ has already been dis-
cussed. Now we will discuss the existence of limit (7.3), which is a hypoth-
esis on existence of directional derivative with respect to ω. Let us proceed
formally.
For any h ∈ H, set Zε,h(t, x)(ω) = uε(t, x)(ω+ h

ε
). By uniqueness of solution

Zε,h(t, x) is given by

Zε,h(t, x) =
∫ t

0

∫
Rd
G(t− s, x− y)

[
εσ(Zε,h(s, y)W (ds, dy)

+
{
σ(Zε,h(s, y)ḣs,y + b(Zε,h(s, y))

}
dsdy

]
.

It is now clear that the candidate for Φ(h) in Proposition 7.1 should be
Z0,h(t, x), and by uniqueness of solution Z0,h(t, x) = Ψh(t, x). Hence, we
have to check that the mapping ε ∈]0, 1[7→ Zε,h(t, x) is differentiable at ε = 0
in the topology of D∞. We refer the reader to [33] for a proof of a similar
result.
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Going on with formal arguments, we see that Zh(t, x) := ∂
∂ε
Zε,h(t, x)|ε=0 must

be the solution of

Zh(t, x) =
∫ t

0

∫
Rd
G(t− s, x− y)

[
σ(Ψh(s, y)W (ds, dy)

+
{
σ′(Ψh(s, y))ḣs,y + b′(Ψh(s, y))

}
Zh(s, y)dsdy

]
.

This equation does not differ very much from (5.7). As for the latter equation,
one can prove that Z ∈ D∞. Notice that the stochastic process Zh(t, x) does
not appear in the integrand of the stochastic integral.
The Malliavin derivative of Zh(t, x) is a deterministic random variable ob-
tained by solving the equation

Dr,zZ
h(t, x) = 11{r<t}

{
G(t− r, x− z)σ(Ψh(r, z))

+
∫ t

r

∫
R

[
G(t− s, x− y))σ′(Ψh(s, y))ḣs,y + b′(Ψh(s, y))

]
Dr,zZ

h(s, y)dsdy
}
.

Thus Zh(t, x) is a Gaussian random variable. We notice that, by uniqueness
of solution DZh(t, x) = DΨh(t, x).
With this, we finish the checking of the assumptions.
In this example d2

R(y) = I(y). In fact, for any h ∈ H, det γΨh > 0. This
property can be proved following the same ideas as for the analysis of the
Malliavin variance ‖Du(t, x)‖2

H (see Lemma 2.5 in [40]).
�
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