Composition and Microstructure Dependent Spin Reorientation in Nanocrystalline (Nd-Pr)-(Fe-Co)-B Alloys

Zhongwu Liu, Student Member, IEEE, and Hywel A. Davies

Abstract—The effects of composition, grain size and exchange coupling on the spin-reorientation temperature (T_{SR}) for nanocrystalline (Nd-Pr)-(Fe-Co)-B alloys have been systematically studied. Although T_{SR} is usually considered to be an intrinsic magnetic property, it is nevertheless influenced by the microstructure when the grain size decreases to the nanometer level. The T_{SR} for all single phase nanocrystalline $Nd_{12}Fe_{82}B_6$ alloys were lower than the published value for a single crystal or for an aligned sintered NdFeB magnet. The results consistently demonstrate that the increasing degree of exchange coupling between the RE₂Fe₁₄B nano-grains with decreasing grain size leads to a progressive decrease in T_{SR} . As is the case for conventional NdFeB alloys, Pr substitution for Nd decreases T_{SR} linearly and rapidly with increasing Pr concentration but a spin reorientation still occurs at 75% Pr substitution (T $_{
m SR} pprox 25$ K). Co substitution for Fe also decreases T_{SR} , but to a lower degree than Pr for Nd. Introduction of an increasing volume fraction of soft magnetic α -(Fe–Co) phase into the nanocrystalline Nd₂Fe₁₄B alloy has no significant influence on the value of T_{SR} in spite of the influence of α -(Fe–Co) on the exchange coupling.

Index Terms—Exchange coupling, nanocrystalline, Nd–Fe–B, spin reorientation.

I. INTRODUCTION

T HE INTERPLAY between the magnetocrystalline anisotropies of the different magnetically ordered sublattices leads to spin reorientation phenomena in which the easy axis of the magnetization changes at the spin reorientation temperature (T_{SR}). For Nd₂Fe₁₄B, at 4.2 K, the easy magnetization lies in the plane {110} at an angle $\theta \approx 30^{\circ}$ with respect to the *c* axis. The angle θ decreases continuously with increasing temperature and a transition occurs at T_{SR} , reported to be in the vicinity of 135 K, to a collinear magnetic structure [1].

Apart from scientific interest, the spin reorientation is also important because it determines the lower temperature limit for uniaxial anisotropy which is critical for technical applications of $RE_2Fe_{14}B$ in permanent magnets. The effects of substitutions of rare-earth elements or three-dimensional (3-D) transi-

Z. Liu is with the Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD, U.K. (e-mail: mtp00zl@Sheffield.ac.uk).

H. A. Davies is with the Department of Engineering Materials and Centre for Advanced Magnetic Materials and Device, University of Sheffield, Sheffield S1 3JD, U.K. (e-mail: h.a.davies@Sheffield.ac.uk, http://www.shef.ac.uk).

Digital Object Identifier 10.1109/TMAG.2004.829206

tion metals on the spin reorientation of Nd₂Fe₁₄B-type compounds in single crystal or sintered magnetic forms have been examined extensively [2]-[4]. The substitution of Pr for Nd suppresses the spin reorientation because Pr₂Fe₁₄B shows only uniaxial magnetocrystalline anisotropy below the Curie temperature [3]. The substitution of Co for Fe is found to decrease T_{SR} for Nd₂(Fe–Co)₁₄B alloys [2]. However, the nanocrystalline REFeB alloys have received relatively little attention, notably, the effect of mean crystallite size d_q on the spin reorientation, possibly because, normally, a spin reorientation is considered to be an intrinsic property, independent of the microstructure. Actually, Dahlgren et al. [5] measured the temperature dependence of the ac susceptibility and obtained a $T_{SR} = 118$ K for a single phase $Nd_{11.76}Fe_{82.36}B_{5.88}$ alloy with a d_q of 19 nm, produced by melt spinning. Lewis *et al.* [6] also obtained a T_{SR} = 116.5 K for nanocrystalline melt spun Nd₂Fe₁₄B alloy of unspecific d_q . Their results suggest a different behavior of the spin reorientation in nanocrystalline alloys, though no further work has been reported until now. In the present work we performed a systematic study of the effect of nanocrystallite size on the spin reorientation of (Nd-Pr)-(Fe-Co)-B alloys. These alloys have previously been comprehensively studied at Sheffield, with Pr employed to successfully increase the coercivity and Co to enhance the Curie temperature [7].

II. EXPERIMENTAL PROCEDURES

 $(Nd_{1-y}Pr_y)_z(Fe_{1-x}Co_x)_{94-z}B_6$ alloy ingots were produced from the constituent elements (purity $\geq 99.9\%$) by argon arc melting. Each ingot was remelted at least six times to ensure homogeneity. Nanocrystalline ribbons with single phase, nanocomposite and RE-rich compositions and various grain sizes, were produced by melt spinning, using roll speeds (V_r) within the range 16–25 m/s. The mean grain sizes d_g for the RE₂(Fe–Co)₁₄B (2/14/1) phase were determined by X-ray line broadening analysis [8] and transmission electron microscopy.

The T_{SR} for all alloys were determined as the inflection point in the magnetization M versus temperature T curves, evaluated from the derivative $\partial M/\partial T$ [6], as shown in Fig. 1 for curve a). The $M \sim T$ curves were measured in each case for selected single ribbon samples by VSM under a small constant field H of 0.1 T with a temperature ramp rate of 3 K/min. The M -H curves for single ribbons were measured in the temperature range 4.2–250 K with a high field VSM, coupled to a magnet having a maximum applied field of 9 T.

Manuscript received October 14, 2003. This work was supported in part by The Engineering and Physical Sciences Research Council (EPSRC), U.K.

Fig. 1. $M \sim T$ curves measured at 0.1 T for Nd₁₂Fe₈₂B₆ alloys with various d_g . The dM/dT plot is the derivation of curve (a). T_{SR} is determined as the inflection point from M versus T curve.

TABLE I Spin-Reorientation Temperature for Pt and Co Substituted Alloys With Coarse and Fine Crystallites

	Coarse grains		Fine grains	
Anoy	d _g , nm	T _{SR} , K	d _g , nm	T _{SR} , K
Nd ₁₂ Fe ₈₂ B ₆	110	128	26	115
$Nd_{12}(Fe_{0.95}Co_{0.05})_{82}B_6$	>80	122	27	115
$(Nd_{0.75}Pr_{0.25})_{12}(Fe_{0.95}Co_{0.05})_{82}B_6$	>100	97	28	93
$(Nd_{0.50}Pr_{0.50})_{12}(Fe_{0.95}Co_{0.05})_{82}B_6$	>80	63	27	58
$(Nd_{0.25}Pr_{0.75})_{12}(Fe_{0.95}Co_{0.05})_{82}B_6$	>100	26	33	25

III. RESULTS AND DISCUSSION

A. The Effect of Crystallite Size on T_{SR}

Our data show clearly that the $T_{\rm SR}$ is influenced by the scale of the microstructure when the grain size decreases to the nanometer level. Fig. 1 shows the $M \sim T$ curves for the Nd₁₂Fe₈₂B₆ alloy, which can be assumed to have a single phase (2/14/1) structure, produced at various V_r , and it is evident that decreasing d_g leads to a lower T_{SR} . The T_{SR} for all single phase nanocrystalline Nd₁₂Fe₈₂B₆ alloys were lower than 135 K. The T_{SR} for various Pr- and Co-substituted single phase alloys with coarse and fine crystallites are listed in Table I. The results consistently demonstrate that decreasing d_q diminishes T_{SR} , e.g., for Nd₁₂Fe₈₂B₆, T_{SR} is 115 K for a d_q of 26 nm, compared with 128 K for a d_g of 110 nm. As is well established, decreasing d_q enhances the exchange interaction between the hard phase grains [9], and thus we conclude that the increasing degree of exchange coupling between the 2/14/1nanograins with decreasing d_g leads to a progressive decrease in T_{SR}.

B. The Effect of Pr Substitution for Nd on $T_{\rm SR}$

Fig. 2 shows the $M \sim T$ curves for single phase $(Nd_{1-y} Pr_y)_{12}(Fe_{0.95}Co_{0.05})_{82}B_6$ alloys with $d_g < 35$ nm. Pr substitution for Nd decreases T_{SR} linearly with increasing Pr concentration (Fig. 3); clearly a spin reorientation still occurs up to at least 75% Pr substitution. This result agrees with that obtained by Kim *et al.* [10] for sintered alloys but is significantly different from that reported by Yang *et al.* [3] for arc melted

Fig. 2. M \sim T curves for $(Nd_{1-y}P_y)_{12}(Fe_{0.95}Co_{0.05})_{82}B_6$ alloys with various Pr substitutions.

Fig. 3. Dependence of T_{SR} on Pr (y) and Co (x) contents for $d_q < 35$ nm.

Fig. 4. Hysteresis loops at 10 K–200 K for 75% Pr and 5% Co substituted alloy with $d_g = 33$ nm.

and annealed samples of RE-rich $(Nd_{1-y}Pr_y)_2Fe_{14}B$. The latter data indicated that T_{SR} decreases to 0 K at y = 0.57. The hysteresis loops measured in the temperature range 10 K–200 K for the alloy $(Nd_{0.25}Pr_{0.75})_{12}$ (Fe $_{0.95}Co_{0.05})_{82}B_6$ indicate a kink in the 2nd quadrant of demagnetization curve at 10 K (Fig. 4), which further demonstrates that a spin reorientation still occurs for the 75% Pr substituted alloy [11]. Fig. 3 indicates that T_{SR} decreases approximately linearly with increasing Pr substitution for the 5% and 30% Co series alloys also.

C. The Effect of Co Substitution for Fe on $T_{\rm SR}$

Fig. 5 shows the $M \sim T$ curves for fi $(Nd_{0.25}Pr_{0.75})_{12}$ (Fe_{1-x}Co_x)₈₂B₆ alloys with $d_g < 35$ nm. Increasing the Co content decreases T_{SR} slightly. The same trends were observed for various Pr substituted alloys also (Fig. 4). The result is consistent with the published magnetic phase diagram for (Nd-Pr)₂(Fe-Co)₁₄B alloys, in which increasing Co content is shown to result in a slow and monotonic decrease of T_{SR} [12].

Fig. 5. $M \sim T$ curves for single phase alloys with various Co substitutions for Fe and $d_q < 35$ nm.

TABLE II T_{SR} FOR NANOCRYSTALLINE (Nd $_{0.75}$ Pr $_{0.25}$) $_x$ (Fe $_{0.95}$ Co $_{0.05}$) $_{94-x}$ B $_6$ ALLOYS HAVING $d_q < 35$ nm and With Various Phase Constituents

Alloy	x, RE content	Phase constituent	T _{SR} , K
RE-rich	14	2/14/1+RE-rich phases	92
Single phase	12	2/14/1	93
Nanocomposite	10	2/14/1+~13 vol.% α-(Fe,Co)	93
	8	2/14/1+~22 vol.% α-(Fe,Co)	92

The gradual drop in T_{SR} with Co can be explained by the fact that the exchange field, H_{exch} , experienced by the Nd³⁺ ion becomes smaller when the 3-D sublattices become "diluted" by cobalt, which has a lower magnetic moment than iron. It is known that H_{exch} is directly proportional to the magnitude of the 3-D magnetization. Changes in T_{SR} can be related to the changes in H_{exch} : the lower the H_{exch} , the lower the T_{SR} [2].

D. The Effect of Introducing α -(Fe–Co) or RE-Rich Phase on T_{SR}

Since enhanced exchange coupling between the RE₂Fe₁₄B hard phases decreases the T_{SR} for single phase alloys for d_g below ~ 100 nm, it is of interest to investigate the exchange coupled nanocomposite (Fe–Co)-rich alloys and a partly decoupled RE-rich alloy.

Thus, we examined the $(Nd_{0.75}Pr_{0.25})_z(Fe_{0.95}Co_{0.05})_{94-z}$ B₆ alloys with various rare earth contents, including a RE-rich alloy with z = 14 and nanocomposite alloys with z = 8 and 10, in order to compare with the z = 12 alloy. All of these alloys had similar d_g (< 35 nm). The phase constituents and the T_{SR} are shown in Table II. The results indicate that, introduction of an increasing volume fraction of soft magnetic α -(Fe–Co) phase into the nanocrystalline RE₂Fe₁₄B alloy, which gives additional enhancement of remanence, has no significant influence on the value of T_{SR} for the 2/14/1 phase which suggests that the soft phase grains are completely coupled to the hard grain neighbors. However, more surprisingly, introducing a small fraction of RE-rich phase, which partly decouples the hard phase grains, also apparently has no significant effect on T_{SR} ; the reason for this is currently being investigated.

IV. CONCLUSION

For nanocrystalline NdFeB-based alloys, the spin reorientation is influenced by the crystallite size of the 2/14/1 phase d_g . The T_{SR} for all nanocrystalline alloys are lower than that for a single crystal or for an aligned sintered NdFeB magnet. The increasing degree of exchange coupling between the RE₂Fe₁₄B nano-grains with decreasing d_g leads to a progressive decrease in T_{SR} . Co substitution for Fe slightly decreases T_{SR} . Pr substitution for Nd decreases T_{SR} linearly with increasing Pr but a spin reorientation still occurred up to at least 75% Pr substitution. The additional exchange coupling between hard and soft phases in a nanocomposite structure has no significant effect on the value of T_{SR} for a given value of d_g .

REFERENCES

- D. Givord, H. S. Li, and R. P. de la Bathie, "Magnetic properties of Y₂Fe₁₄B and Nd₂Fe₁₄B single crystals," *Solid State Commun.*, vol. 51, pp. 857–860, 1984.
- [2] A. T. Pedziwiatr and W. E. Wallace, "Spin reorientations in R₂Fe_{14-x}Co_xB systems (R = Pr, Nd and Er)," J. Magn. Magn. Mater., vol. 65, pp. 139–144, 1987.
- [3] Y. C. Yang, W. J. James, H. Y. Chen, and H. Sun, "Magnetocrystalline anisotropy of (Nd_{1-x}Sm_x)₂Fe₁₄B and (Nd_{1-x}Pr_x)₂Fe₁₄B," *J. Magn. Magn. Mater.*, vol. 54–57, p. 895, 1986.
- [4] G. Marusi, N. V. Mushnikov, L. Pareti, M. Solzi, and A. E. Ermakov, "Magnetocrystalline anisotropy and first-order magnetization processes in (Nd_{1-x}Pr_x)₂Fe₁₄B compounds," *J. Phy.: Condens. Matter*, vol. 2, pp. 7317–7328, 1990.
- [5] M. Dahlgren, X. C. Kou, R. Grossinger, J. F. Liu, I. Ahmad, H. A. Davies, and K. Yamada, "Coercivity and spin reorientation transitions in Nd-Fe-B nanocomposites prepared by melt spinning," *IEEE Trans. Magn.*, vol. 33, pp. 2366–2368, May 1997.
- [6] L. H. Lewis, V. Panchanathan, and J.-Y. Wang, "Technical magnetic properties of melt-spun (Nd_{1-x}Pr_x)₂Fe₁₄B at low temperature," *J. Magn. Magn. Mater.*, vol. 176, pp. 288–296, 1997.
- [7] J. I. Betancourt R. and H. A. Davies, "Magnetic properties of nanocrystalline didymium (Nd-Pr)-Fe-B alloys," *J. Appl. Phys.*, vol. 85, pp. 5911–5913, 1999.
- [8] G. E. Carr, H. A. Davies, and R. A. Buckley, "Crystallite size determinations for melt-spun Fe—Nd—B permanent magnet alloys," *Mater. Sci. Eng.*, vol. 99, pp. 147–151, 1988.
- [9] A. Manaf, R. A. Buckley, H. A. Davies, and M. Leonowicz, "Enhanced magnetic properties in rapidly solidified Nd-Fe-B based alloys," J. Magn. Magn. Mater., vol. 101, pp. 360–362, 1991.
- [10] Y. B. Kim, M. J. Kim, J. Han-min, and T. K. Kim, "Spin reorientation and magnetocrystalline anisotropy of (Nd_{1-x}Pr_x)₂Fe₁₄B," *J. Magn. Magn. Mater.*, vol. 191, pp. 133–136, 1999.
- [11] Y. Wang, B. Yu, M. Feng, J. Xiang, L. Song, Y. Huang, and Z. Wang, "Magnetic properties of Nd-Fe-Co-B permanent magnetic alloys," J. Appl. Phys., vol. 61, pp. 3448–3450, 1987.
- [12] W. E. Wallace and A. T. Pedziwiatr, "Anisotropies and spin phase diagrams of some R₂Fe_{14-x}Co_xB alloys," in *Proc. 5th Int. Symp. Magnetic Anisotropy and Coercivity in Rare Earth-Transition Metal Alloys*, 1987, pp. 31–38.