

Classical Mechanics

Professor Hong Guo (hongguo@pku.edu.cn)

IQE@EE.EECS.PKU

CREAM@IQE.EE.EECS.PKU

1

Early Astronomical Observations and Laws

Modern illustrated solar system

Ptolemaic system

Kepler held to the heliocentric model of the solar system, and starting from that framework, he made twenty years of painstaking trial-and-error attempts at making some sense out of the data.

Nicolas Copernicus (1473 –1543), Polish mathematician and astronomer.

<u>The sun is the center of our</u> <u>solar system</u>!

Tycho Brahe (1546 -- 1601), Danish astronomer.

Galileo Galileii (1564 –1642), Italian physicist, astronomer, and philosopher who is closely associated with the scientific revolution.

Johannes Kepler (1571 -- 1630), German mathematician and astronomer.

Kepler's law of periods: The time required for a planet to orbit the sun, called its period, is proportional to the long axis of the ellipse raised to the 3/2 power. The constant of proportionality is the same for all the planets.

Kepler's first law (1609)

Kepler's elliptical orbit law: The planets orbit the sun in elliptical orbits with the sun at one focus.

Kepler's second law (1609)

Kepler's equal-area law: The line connecting a planet to the sun sweeps out equal areas in equal amounts of time.

Kepler's third law (1619)

Newton's Fundamental Laws and Newtonian Mechanics

Sir Isaac Newton, PRS, (1643 – 1727), English physicist, mathematician, astronomer, alchemist, inventor and natural philosopher who is generally regarded as one of the most influential scientists in history.

motion (1687)

Newton's third Law (1687)

Theory of light as corpuscle (1704)

Law of Universal Gravitation (1660s)

$$\vec{F} = -G \frac{m_1 m_2}{|\vec{x} - \vec{x}'|^3} (\vec{x} - \vec{x'})$$

$$G = 6.6726 \times 10^{-11} \mathrm{m}^3 \cdot \mathrm{s}^{-2} \cdot \mathrm{kg}^{-1}$$

$$g = 9.8067 \mathrm{m \cdot s^{-2}}$$

An object will remain <u>at rest</u> or in <u>uniform</u> <u>motion</u> in a straight line unless acted upon by an <u>external force</u>.

Newton's second Law of motion (1687)

Newton's third Law (1687)

Energy conservation law

Momentum conservation law

Kinetic energy theorem

Momentum theorem

Basic Mechanical Units

Length (L) Time (T) Mass (M) Velocity (L/T) Acceleration (L/T²) Force (ML/T²) Work (ML²/T²) Energy (ML²/T²) Power (ML²/T³)

SI Units (MKS)	(CGS)	U.S. Common
meter (m)	centimeter (cm)	foot (ft)
second (s)	second (s)	second (s)
kilogram (kg)	gram (gm)	slug
m/s	cm/s	ft/s
m/s ²	cm/s ²	ft/s ²
kg m/s ² =Newton(N)	gm cm/s ² = dyne	slug ft/s ² =pound(lb)
N m = joule (j)	dyne cm = erg	lb ft = ft lb
joule	erg	ft Ib
j/s = watt (W)	erg/s	ft Ib/s

Unit Conversions Euler's equation for rigid body

$$\left(\frac{d\mathbf{L}}{dt}\right)_{\text{relative}} + \boldsymbol{\omega} \times \mathbf{L} = \frac{d\mathbf{L}}{dt} = \mathbf{N}$$

$$Mb_{G/O} \times \frac{d^2 R_O}{dt^2} + \begin{pmatrix} \int y^2 + z^2 dm & -\int xy dm & -\int xz dm \\ -\int xy dm & \int x^2 + z^2 dm & -\int yz dm \\ -\int xz dm & -\int yz dm & \int x^2 + y^2 dm \end{pmatrix} \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix} = \sum_{j=1}^N \tau_{O,j}$$

Precession, nutation and spin.

CREAM@IQE.EE.EECS.PKU

17

Analytical Mechanics

Least action principle -- a "deep" principle of physics

his day and since.

Euler-Langrange equation

Euler formula
$$e^{i\theta} = \cos \theta + i \sin \theta$$
.Euler identity $e^{i\pi} + 1 = 0$.Basel problem - Riemann zeta function $\zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$ Euler-Mascheroni constant $\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} - \ln(n)\right).$ Euler angleEuler number $e = \lim_{n \to \infty} (1 + 1/n)^n$. $\frac{\partial L}{\partial q} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}}\right)$

20

Joseph Louis Lagrange (1736 -- 1813), Italian-French mathematician, astronomer and physicist.

Euler-Langrange equation

$$\frac{\partial L}{\partial q} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right)$$

$$L = L(q, \dot{q}; t)$$

Action

$$S = \int_{t_1}^{t_2} L(q, \dot{q}; t) dt$$

Least action principle

$$\delta S = 0$$

Siméon Denis Poisson (1781 -- 1840), French mathematician, geometer and physicist.

 $\left\{f,H\right\} = \sum_{i=1}^{N} \left[\frac{\partial f}{\partial q_{i}}\frac{\partial H}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}}\frac{\partial H}{\partial q_{i}}\right]$

Poisson bracket

Jacobian determinant

Jacobi identity

$$[\hat{A}, [\hat{B}, \hat{C}]] + [\hat{B}, [\hat{C}, \hat{A}]] + [\hat{C}, [\hat{A}, \hat{B}]] = 0$$

Carl Gustav Jakob Jacobi (1804 -- 1851), German mathematician.

Hamiltonon-Jacobi equation

$$\frac{\partial S}{\partial t} + H(q, p; t) = 0$$

Joseph Liouville (1809 -- 1882), French mathematician.

Liouville's theorem

$$\frac{d\rho}{dt} = \frac{\partial\rho}{\partial t} + \sum_{i=1}^{d} \left(\frac{\partial\rho}{\partial q_i} \dot{q}_i + \frac{\partial\rho}{\partial p_i} \dot{p}_i \right) = 0.$$

$$\frac{\partial \rho}{\partial t} = -\{ \rho, H \}$$

$$rac{\partial
ho}{\partial t} + \hat{L}
ho = \mathbf{0}. \ \ \hat{\mathbf{L}} = \sum_{i=1}^d \left[rac{\partial H}{\partial p_i} rac{\partial}{\partial q_i} - rac{\partial H}{\partial q_i} rac{\partial}{\partial p_i}
ight],$$

The distribution function is constant along any trajectory in phase space.

Density matrix equation

$$\frac{\partial}{\partial t}\rho = -\frac{i}{\hbar}[\rho, H]$$

