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ART 2: self-organization of stable category recognition
codes for analog input patterns

Gail A. Carpenter and Stephen Grossberg

Adaptive resonance architectures are neural networks that self-organize stable pattern recognition codes in
real-time in response to arbitrary sequences of input patterns. This article introduces ART 2, a class of
adaptive resonance architectures which rapidly self-organize pattern recognition categories in response to
arbitrary sequences of either analog or binary input patterns. In order to cope with arbitrary sequences of
analog input patterns, ART 2 architectures embody solutions to a number of design principles, such as the
stability-plasticity tradeoff, the search-direct access tradeoff, and the match-reset tradeoff. In these archi-
tectures. top-down learned expectation and matching mechanisms are critical in self-stabilizing the code
learning process. A parallel search scheme updates itself adaptively as the learning process unfolds, and
realizes a form of real-time hypothesis discovery, testing, learning, and recognition. After learning self-
stabilizes, the search process is automatically disengaged. Thereafter input patterns directly access their
recognition codes without any search. Thus recognition time for familiar inputs does not increase with the
complexity of the learned code. A novel input pattern can directly access a category if it shares invariant
properties with the set of familiar exemplars of that category. A parameter called the attentional..-igilance
parameter determines how fine the categories will be. If vigilance increases (decreases) due to en..-ironmental
feedback, then the system automatically searches for and learns finer (coarser) recognition categories. Gain
control parameters enable the architecture to suppress noise up to a prescribed level. The architecture's
global design enables it to learn effectively despite the high degree of nonlinearity of such mechanisms.

I. Adaptive Resonance Architectures

Adaptive resonance architectures are neural net-
works that self-organize stable recognition codes in
real time in response to arbitrary sequences of input
patterns. The basic principles of adaptive resonance
theory (ART) were introduced by Grossberg.l A class
of adaptive resonance architectures, called ART 1, has
since been characterized as a system of ordinary differ-
ential equations by Carpenter and Grossberg.2.3
Theorems have been proved that trace the real-time
dynamics of ART 1 networks in response to arbitrary
sequences of binary input patterns. These theorems
predict both the order of search, as a function of the
learning history of the network, and the asymptotic
category structure self-organized by arbitrary se-
quences of binary input patterns. They also prove the
self-stabilization property and show that the system's
adaptive weights oscillate at most once, yet do not get
trapped in spurious memory states or local minima.

This paper describes a new class of adaptive reso-
nance architectures, called ART 2. ART 2 networks
self-organize stable recognition categories in response
to arbitrary sequences of analog (gray-scale, continu-
ous-valued) input patterns, as well as binary input
patterns. Computer simulations are used to illustrate
system dynamics. One such simulation is summarized
in Fig. 1, which shows how a typical ART 2 architecture
has quickly learned to group fifty inputs into thirty-
four stable recognition categories after a single presen-
tation of each input. The plots below each number
show all those input patterns ART 2 has. grouped into
the corresponding category. Equations for the system
used in the simulation are given in Secs. V-VIII.

ART networks encode new input patterns, in part,
by changing the weights, or long-term memory (L TM)
traces, of a bottom-up adaptive filter (Fig. 2). This
filter is contained in pathways leading from a feature
representation field (F J to a category representation
field (Fv whose nodes undergo cooperative and com-
petitive interactions. Such a combination of adaptive
filtering and competition, sometimes called competi-
tive learning, is shared by many other models of adap-
tive pattern recognition and associative learning. See
Grossberg4 for a review of the development of competi-
tive learning models. In an ART network, however, it
is a second, top-down adaptive filter that leads to the
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Fig, 1. Category ~rouping "I' fifty analog input patterns into thirty-
ti'ur rec,'gnition ,'ate~orie,;. Each input pattern I is depicted as a
I'uncti'ln of i Ii = 1,.. .\f), with ,;uccessive Ii values connected by
~trai~ht line.i. Th~ (.ate~()ry structur~ estahlished on one complete
pr~5~ntation of th~ fifty inputs r~mains stable thereafter if the same

inputs are presented again.

input

Fig. 2. Typical ART 1 architecture. Rect:angles represent fields
where STM patterns are stored. Semicirl'!es represent adaptive
filter pathways and arrows represent paths which are not adaptive.
Filled circles represent gain control nuclei, which sum input signal".
Their output paths are nonspecific in the sense that at any given
time a uniform signal is sent to all nodes in a receptor field. Gain
control at F13nd F~ coordinates STM processing with input presen-

tation rate.

crucial property of code self-stabilization. Such top-
down adaptive signals play the role of learned expecta-
tions in an ART system. They enable the network to
carry out attentional priming, pattern matching, and
self-adjusting parallel search. One of the key insights
of the ART design is that top-down attentional and
intentional, or expectation, mechanisms are necessary
to self-stabilize learning in response to an arbitrary
input environment.

The fields F I and F~, as well as the bottom-up and
top-down adaptive filters, are contained within ART's
attentional subsystem (Fig. 2). An auxiliary orienting
subsystem becomes active when a bottom-up input to
F I fails to match the learned top-down expectation
read-out by the active category representation at Fz.
In this case, the orienting subsystem is activated and
causes rapid reset of the active category representation
at F 2. This reset event automatically induces the at-
tentional subsystem to proceed with a parallel search.
Alternative categories are tested until either an ade-
quate match is found or a new category is established.
The search remains efficient because the search strate-
gy is updated adaptively throughout the learning pro-
cess. The search proceeds rapidly, relative to the
learning rate. Thus significant changes in the bottom-
up and top-down adaptive filters occur only when a
search ends and a matched F 1 pattern resonates within
the system. For the simulation illustrated in Fig. 1,
the ART 2 system carried out a search during many of
the initial fifty input presentations.

The processing cycle of bottom-up adaptive filter-
ing, code (or hypothesis) selection, read-out of a top-
down learned expectation, matching, and code reset
shows that, within an ART system, adaptive pattern
recognition is a special case of the more general cogni-
tive process of discovering, testing, searching, learning,
and recognizing hypotheses. Applications of ART
systems to problems concerning the adaptive process-

ing of large abstract knowledge bases are thus a key
goal for future research.

The fact that learning within an ART system occurs
only within a resonant state enables such a system to
solve the design trade-off between plasticity and sta-
bility. Plasticity, or the potential for rapid change in
the L TM traces, remains intact indefinitely, thereby
enabling an ART architecture to learn about future
unexpected events until it exhausts its full memory
capacity.

Learning within a resonant state either refines the
code of a previously established recognition code,
based on any new information that the input pattern
may contain, or initiates code learning within a previ-
ously uncommitted set of nodes. If, for example, a
new input were added at any time to the set of fifty
inputs in Fig. 1, the system would search the estab-
lished categories. If an adequate match were found,
possibly on the initial search cycle, the L TM category
representation would be refined, if necessary, to incor-
porate the new pattern. If no match were found, and
the full coding capacity were not yet exhausted, a new
category would be formed, with previously uncommit-
ted L TM traces encoding the STM pattern established
by the input.

The architecture's adaptive search enables it to dis-
cover and learn appropriate recognition codes without
getting trapped in spurious memory states or local
minima. In other search models, such as search trees,
the search time can become increasingly prolonged as
the learned code becomes increasingly complex. In an
ART architecture, by contrast, search takes place only
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as a recognition code is being learned, and the search
maintains its efficiency as learning goes on.

Self-stabilization of prior learning is achieved via
the dynamic buffering provided by read-out of a
learned top-down expectation, not by switching off
plasticity or restricting the class of admissible inputs.
For example, after the initial presentation of fifty in-
put patterns in the simulation illustrated by Fig. 1,
learning self-stabilized. In general, within an ART
architecture, once learning self-stabilizes within a par-
ticular recognition category, the search mechanism is
automatically disengaged. Thereafter, that category
can be directly activated, or accessed, with great rapid-
ity and without search by any of its input exemplars.

The criterion for an adequate match between an
input pattern and a chosen category template is ad-
justable in an ART architecture. The matching crite-
rion is determined by a vigilance parameter that con-
trols activation of the orienting subsystem. All other
things being equal, higher vigilance imposes a stricter
matching criterion, which in turn partitions the input
set into finer categories. Lower vigilance tolerates
greater top-down/bottom-up mismatches at Fl, lead-
ing in turn to coarser categories (Fig. 3). In addition,
at every vigilance level, the matching criterion is self-
scaling: a small mismatch may be tolerated if the
input pattern is complex, while the same featural mis-
match would trigger reset if the input represented only
a few features.

Even without any search, as when vigilance is low or
the orienting subsystem is removed, ART 2 can often
establish a reasonable category structure (Fig. 4). In
this case, however, the top-down learned expectations
assume the full burden of code self-stabilization by
generating the attentional focus to dynamically buffer
the emergent code. Although mismatch of bottom-up
and top-down patterns at F 1 can attenuate unmatched

features at F 1, such a mismatch does not elicit a search
for a more appropriate F z code before learning can
occur. Such learning will incorporate the unattenuat-
ed F1 features into the initially selected category's
recognition code. In this situation, more input trials
may be needed before the code self-stabilizes; false
groupings may occur during the early trials, as in cate-
gory 1 of Fig. 4(a); and the flexible matching criterion
achieved by variable vigilance is lost. Nonetheless,
the top-down expectations can actively regulate the
course of learning to generate a stable asymptotic code
with desirable properties. For example, despite the
initial anomalous coding in the example of Fig. 4(a),
Fig. 4(b) shows that a stable category structure is es-
tablished by the third round of inputs in which the
false groupings within category 1 in Fig. 4(a) have been
corrected by splitting grossly dissimilar inputs into the
separate categories 1 and 7.

The top-down learned expectations and the orient-
ing subsystem are not the only means by which an ART
network carries out active regulation of the learning
process. Attentional gain control at F1 and Fz also
contributes to this active regulation (Sec. II). Gain
control acts to adjust overall sensitivity to patterned
inputs and to coordinate the separate, asynchronous
functions of the ART subsystems. Gain control nu-
t::lei are represented as large filled circles in the figures.

II. ART 1: Binary Input Patterns

Figure 2 illustrates the main features of a typical
ART 1 network. Two successive stages, F1 and Fz, of
the attentional subsystem encode patterns of activ~-
tion in short-term memory (STM). Each bottom-up
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Fig. 4. Category learning by an ART 2 model without an orienting
subsystem. (a) The same ART 2 system as used in Figs. 1 and 3, but
with vigilance level set equal to zero, has here grouped the same fifty
inputs into six recognition categories after one presentation of each
pattern. Without the full ART 2 system's ability to reset on mis-
match, transitory groupings occur, as in category 1. (b) By the third
presentation of each input, a coarse but stable category structure has

been established.

~
Fig. 3. Lower vigilance implies coarser grouping. The same ART 2
system as used in Fig. 1 has here grouped the same fifty inputs into
twenty recognition categories. Note, for example, that categories 1
and 2 of Fig. 1 are here joined in category 1; categories 14, 15, and 32
are here joined in category 10; and categories 19-22 are here joined in

category 13.
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L TM equations of ART 2 are simpler.
How the signal functions and parameters of the vari-

ous ART 2 architectures can best be chosen to catego-
rize particular classes of analog input patterns for spe-
cialized applications is the subject of ongoing research.
In particular, since ART 2 architectures are designed
to categorize arbitrary sequences of analog or digital
input patterns, an arbitrary preprocessor can be at-
tached to the front end of an ART 2 architecture. This
property is being exploited to design a self-organizing
architecture for invariant recognition and recall using
laser radar, boundary segmentation, and invariant fIl-
ter methods to generate preprocessed inputs to ART
2.5-8

or top-down pathway between F 1 and F 2 contains an
adaptive L TM trace that multiplies the signal in its
pathway. The rest of the circuit modulates these
STM and L TM processes. Modulation by gain 1 en-
ables F1 to distinguish between a bottom-up input
pattern and a top-down priming or template pattern,
as well as to match these bottom-up and top-down
patterns. In particular, bottom-up inputs can supra-
liminally activate F 2; top-down expectations in the
absence of bottom-up inputs can subliminally sensi-
tize, or prime, F 1; and a combination of bottom-up and
top-down inputs is matched according to a 2/3 Rule
which activates the nodes within the intersection of the
bottom-up and top-down patterns (Fig. 5). Thus,
within the context of a self-organizing ART architec-
ture, intentionality (or the action of learned top-down
expectations) implies a spatial logic matching rule.
Carpenter and Grossberg3 prove that 2/3 Rule match-
ing is necessary for self-stabilization of learning within
ART 1 in response to arbitrary sequences of binary
input patterns.

The orienting subsystem generates a reset wave to F 2
when the bottom-up input pattern and top-down tem-
plate pattern mismatch at F1' according to the vigi-
lance criterion. The reset wave selectively and endur-
ingly inhibits active F 2 cells until the current input is
shut off. Offset of the input pattern terminates its
processing at F 1 and triggers offset of gain 2. Gain 2
offset causes rapid decay of STM at F2' and thereby
prepares F 2 to encode the next input pattern without
bias.

An ART 1 system is fully defined by a system of
differential equations that determines STM and L TM
dynamics in response to an arbitrary temporal se-
quence of binary input patterns. Theorems charac-
terizing these dynamics have been proved in the case
where fast learning occurs; that is, where each trial is
long enough for the L TM traces to approach equilibri-
um values.3 Variations of the ART 1 architecture
exhibit similar dynamics. Hence the term ART 1
designates a family, or class, of functionally equivalent
architectures rather than a single model.

III. ART 2: Ana~llnptd Patt8n8

ART 2 architectures are designed for the processing
of analog, as well as binary, input patterns. A category
representation system for analog inputs needs tc. be
able to pick out and enhance similar signals embedded
in various noisy backgrounds. as in category 16 of :Fig.
1 IV .,~T 2 Design Principles

ART 2 architectures satisfy a set of design principles
derived from an analysis of neural networks that form
recognition categories for arbitrary sequences of ana-
log input patterns. ART 2 systems have been devel-
oped to satisfy the multiple design principles or pro-
cessing constraints that give rise to the architecture's
emergent properties. At least three variations on the
ART 2 architecture have been identified that are capa-
ble of satisfying these constraints. Indeed, the heart
of the ART 2 analysis consists of discovering how dif-
ferent combinations of network mechanisms work to-

--
Figure 6 illustrates a typical ART 2 architecture. A

comparison of Figs. 2 and 6 illustrates some of the
principal differences between ART 1 and ART 2 net-
works. For ART 2 to match and learn sequences of
analog input patterns in a stable fashion, its feature
representation field F 1 includes several processing lev-
els and gain control systems. Bottom-up input pat-
terns and top-down signals are received at different
locations in Fp Positive feedback loops within Fl
enhance salient features and suppress noise. Al-
though F 1 is more complex in ART 2 than in ART 1, the
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pectation pattern in order for the exemplar to be ac-
cepted as a member of an established category. On the
other hand, when an uncommitted F2 node becomes
active for the first time, it should be able to remain
active, without being reset, so that it can encode its
first input exemplar, even though in this case there is
no top-down/bottom-up pattern match whatsoever.
Section IX shows how a combination of an appropri-
ately chosen ART 2 reset rule and L TM initial values
work together to satisfy both of these processing re-
quirements. In fact, ART 2 parameters can be chosen
to satisfy the more general property that learning in-
creases the system's sensitivity to mismatches between
bottom-up and top-down patterns.

D. STM Invariance Under Read-Out of Matched L TM

Further discussion of match-reset trade-off clarifies
why Ft is composed of several internal processing lev-
els. Suppose that before an uncommitted F 2 node is
first activated, its top-down F 2 -F t L TM traces are
chosen equal to zero. On the node's first learning trial,
its L TM traces will progressively learn the STM pat-
tern that is generated by the top level of Ft. As noted
above, such learning must not be allowed to cause a
mismatch capable of resetting F 2, because the L TM
traces have not previously learned any other pattern.
This property is achieved by designing the bottom and
middle levels of F 1 so that their STM activity patterns
are not changed at all by the read-out of these L TM
traces as they learn their first positive values.

More generally, Fl is designed so that read-out by F2
of a previously learned L TM pattern that matches
perfectly the STM pattern at the top level of F t does
not change the STM patterns circulating at the bottom
and middle levels of F 10 Thus, in a perfect match
situation, or in a situation where a zero-vector of L TM
values learns a perfect match, the STM activity pat-
terns at the bottom and middle F 1 levels are left invari-
ant; hence, no reset occurs.

This invariance property enables the bottom and
middle Fl levels to nonlinearly transform the input
pattern in a manner that remains stable during learn-
ing. In particular, the input pattern may be contrast
enhanced while noise in the input is suppressed. If
read-out of a top-down LTM pattern could change
even the base line of activation at the Fllevels which
execute this transformation, the degree of contrast
enhancement and noise suppression could be altered,
thereby generating a new STM pattern for learning by
the top-down L TM traces. The STM invariance
property prevents read-out of a perfectly matched
L TM pattern from causing reset by preventing any
change whatsoever from occurring in the STM pat-
terning at the lower F 1 levels.

gether to generate particular combinations of desir-
able emergent properties. That is why theoretical
ablation experiments on ART 2 architectures have
proved to be so useful, since they reveal which emer-
gent properties are spared and which are lost in re-
duced architectures.

In each ART 2 architecture, combinations of nor-
malization, gain control, matching and learning mech-
anisms are interwoven in generally similar ways. Al-
though how this is done may be modified to some
extent, in all the ART 2 variations that we have discov-
ered, F 1 needs to include different levels to receive and
transform bottom-up input patterns and top-down ex-
pectation patterns, as well as an interfacing level of
interneurons that matches the transformed bottom-up
and top-down information and feeds the results back
to the bottom and top F 1 levels. How the particular F 1
levels shown in Fig. 6 work will be described in Secs.
IX-XII. Alternative ART 2 models are illustrated in
Sec. XIII and in Ref. 5.

We now describe the main ART 2 design principles.

A. Stability-Plasticity Trade-Off
An ART 2 system needs to be able to learn a stable

recognition code in response to an arbitrary sequence
of analog input patterns. Since the plasticity of an
ART system is maintained for all time, and since input
presentation times can be of arbitrary duration, STM
processing must be defined in such a way that a sus-
tained new input pattern does not wash away previous-
ly learned information. Section XII shows how re-
moval, or ablation, of one part of the F 1 internal
feedback loop in Fig. 6 can lead to a type of instability
in which a single input, embedded in a particular input
sequence, can jump between categories indefinitely.

B. Search-Direct Access Trade-Off
An ART 2 system carries out a parallel search in

order to regulate the selection of appropriate recogni-
tion codes during the learning process, yet automati-
cally disengages the search process as an input pattern
becomes familiar. Thereafter the familiar input pat-
tern directly accesses its recognition code no matter
how complex the total learned recognition structure
may have become, much as we can rapidly recognize
our parents at different stages of our life 'even though
we may learn much more as we grow older.

C. Match-Reset Trade-Off

An ART 2 system needs to be able to resolve several
potentially conflicting properties which can be formu-
lated as variants of a design trade-off between the
requirements of sensitive matching and formation of
new codes.

The system should, on the one hand, be able to
recognize and react to arbitrarily small differences
between an active F 1 STM pattern and the L TM pat-
tern being read -out from an established category. In
particular, if vigilance is high, the F 1 STM pattern
established by a bottom-up input exemplar should be
nearly identical to the learned top-down F2 -Fl ex-

e:. Coexistence of L TM Read-Out and 8TM Normalization

The STM invariance property leads to the use of
multiple F 1 levels because the F 1 nodes at which top-
down L TM read -out occurs receive an additional input
when top-down signals are active than when they are
not. The extra Fl levels provide enough degrees of
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Fig. 6. Typical ART 2 architecture. Open arrqws indicate specific
patterned inputs to target nodes. Filled arrows indicate nonspecific
gain control inputs. The gain control nuclei (large filled circles)
nonspecifically inhibit target nodes in proportion to the L;! norm of
STM activity in their source fields [Eqs. (.5). (6). (9). (20). and \21)].
When F;! makes a choice, gu',;) = d if the Jth F;! node is active and
g(YJ) = 0 otherwise. As in ART 1. gain control (not shown) coordi-

nates STM processing with an input presentation rate.

computational freedom to both read-out top-down
L TM and normalize the total STM pattern at the top
F 1 level before this normalized STM pattern can inter-
act with the middle F 1 level at which top-down and
bottom-up information are matched.

In a similar fashion, the bottom F 1 level enables an
input pattern to be normalized before this normalized
STM pattern can interact with the middle F1 level.
Thus separate bottom and top F 1 levels provide
enough degrees of computational freedom to compen-
sate for fluctuations in base line activity levels. In the
absence of such normalization, confusion between use-
ful pattern differences and spurious base line fluctua-
tions could easily upset the matching process and
cause spurious reset events to occur, thereby destabi-
lizing the network's search and learning processes.

F. No L TM Recoding by Superset Inputs
Although read-out of a top-down L TM pattern that

perfectly matches the STM pattern at the F 1 top level
never causes F 2 reset, even a very small mismatch in
these patterns is sufficient to reset F 2 if the vigilance
parameter is chosen sufficiently high. The middle F I
level plays a key role in causing the attenuation of
STM activity that causes such a reset event to occur.

An important example of such a reset-inducing mis-
match occurs when one or more, but not all, of the top-
down L TM traces equal zero or very small values and
the corresponding F 1 nodes have positive STM activi-
ties. When this occurs, the STM activities oftheseF1
nodes are suppressed. If the total STM suppression is
large enough to reset F 2, the network searches for a
better match. If the total STM suppression is not
large enough to reset F 2, the top-down L TM traces of
these nodes remain small during the ensuing learning
trial, because they sample the small STM values that
their own small L TM values have caused.

This property is a version of the 2/3 Rule that has
been used to prove stability of learning by an ART 1
architecture in response to an arbitrary sequence of
binary input patterns.3 It also is necessary for ART 2
to achieve stable learning in response to an arbitrary
sequence of analog input patterns (Sec. XII). In the
jargon of ART 1, a superset bottom-up input pattern
cannot recode a subset top-down expectation. In
ART 1, this property was achieved by an intentional
gain control channel (Fig. 2). In the versions of ART 2
developed so far, it is realized as part of the F I internal
levels. These design variations are still a subject of
ongoing research.

G. Stable Choice Until Reset
Match-reset trade-off also requires that only a reset

event that is triggered by the orienting subsystem can
cause a change in the chosen F 2 code. This property is
imposed at any degree of mismatch between a top-
down F2 -FI LTM pattern and the circulating FI
STM pattern. Thus all the network's real-time pat-
tern processing operations, including top-down F2 -

F I feedback, the fast nonlinear feedback dynamics
within F 1, and the slow L TM changes during learning

must be organized to maintain the original Fl -F2
category choice, unless F2 is actively reset by the ori.
enting subsystem.

H. O)ntrast Enhancement, Noise Suppression. and
Mismatch Attenuation by Nonlinear Signal Functions

A given class of analog signals may be embedded in
variable levels of background noise (Fig. 1). A combi-
nation of normalization and nonlinear feedback pro-
cesses within Fl determines a noise criterion and en-
ables the system to separate signal from noise. In
particular, these processes contrast enhance the Fl
STM pattern, and hence also the learned L TM pat-
terns. The degree of contrast enhancement and noise
suppression is determined by the degree of nonlinear-
ity in the feedback signal functions at Fl.

A nonlinear signal function operating on the sum of
normalized bottom-up and top-down signals also cor-
relates these signals, just as squaring a sum A + B of
two Lz-normalized vectors generates 2(1 + A .B).
Nonlinear feedback signaling hereby helps to attenu-
ate the total activation of F I in response to mismatched
bottom-up input and top-down expectation patterns,
as well as to contrast enhance and noise suppress bot-
tom-up input patterns. Figure 8(e) shows that the
absence of nonlinearity in the FI feedback loop can
lead to all subpatterns of a pattern being coded in the
same category in conditions of low vigilance.

I. Rapid Self-Stabilization
A learning system that is unstable in general can be

made more stable by making the learning rate so slow
that L TM traces change little on a single input trial.
In this case, many learning trials are needed to encode
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where [IVII denotes the £2 norm of a vector V and where
Y j is the STM activity of the jth F 2 node. The nonlin-
ear signal function f in Eq. (7) is typically of the form

, 9
11 ')

-X- '" n

x =
I

a fixed set 'of inputs. Learning in an ART system
needs to be slow relative to the STM processing rate
(Sec. V), but no restrictions are placed on absolute
rates. Thus ART 2 is capable of stable learning in the
fast learning case, in which L TM traces change so
quickly that they can approach new equilibrium values
on every trial. The ART 2 simulations in this article
were all carried out in fast learning conditions, and
rapid code self-stabilization occurs in each case. Self-
stabilization is also sped up by the action of the orient-
ing subsystem, but can also occur rapidly even without
it (Figs. 4 and 8).
J. Normalization 1

Several different schemes may be used to normalize
activation patterns across Fl. In this paper we used
nonspecific inhibitory interneurons (schematized by
large black disks in Fig. 6). Each such normalizer uses
O(M) connections where M is the number of nodes to
be normalized. Alternatively, a shunting on-center
off-surround network could be used as a normalizer,9
but such a network uses O(W) connections.

t If(x) = ~X2+82)

K. Local Computations
ART 2 system STM and L TM computations use

only information available locally and in real time.
There are no assumptions of weight transport, as in
backpropagation, nor of an a priori input probability
distribution, as in simulated annealing. Moreover, all
ART 2 local equations have a simple form (Secs. V-
VIII). It is the architecture as a whole that endows the
model with its desirable emergent computational
properties.

which is continuously differentiable, or
f(X)= {O ~fO~X<6, (11)

x If x -6,

which is piecewise linear. The graph of function f(x)
in Eq. (10) may also be shifted to the right, making f(x)
= 0 for small x, as in Eq. (11). Since the variables Xi
and qi are always between 0 and 1 [Eqs. (5) and (9)], the
functionvaluesf(xi) andf(qi) also stay between 0 and 1.
Alternatively, the signal function f(x) could also be
chosen to saturate at high x values. This would have
the effect of flattening pattern details like those in
category 17 of Fig. 1, sitting on the top of an activity
peak.

VI. ART 2 STM Equations: F2

The category representation field F 2 is the same in
ART 2 as in ART 1 (Ref. 3). The key properties of F2
are contrast enhancement of the filtered F t -F 2 input
pattern, and reset, or enduring inhibition, of active F2
nodes whenever a pattern mismatch at Ft is large
enough to activate the orienting subsystem.

Contrast enhancement is carried out by competition
within F2. Choice is the extreme case of contrast
enhancement. F2 makes a choice when the node re-
ceiving the largest total input quenches activity in all
other nodes. In other words, let Tj be the summed
filtered Ft -F2 input to the jth F2 node:

V. ART 2 STM Equations: F1
The potential, or STM activity, Vi of the ith node at

anyone of the F 1 processing stages obeys a membrane
equationlO of the form

E!!- v = -Av.l. (1- BV )J+ - (c + DV )J: (1)dt' .r ' ., ,

(i = 1. ..M). Term Jtis the total excitatory input to
the ith node and Ji is the total inhibitory input. In
the absence of all inputs, Vi decays to O. The dimen-
sionless parameter E represents the ratio between the
STM relaxation time and the L TM relaxation time.
With the L TM rate 0(1), then

0 < E « 1. (2)

Also, B = 0 and C = 0 in the F 1 equations of the ART 2
example in Fig. 6. Thus the STM equations, in the
singular form as E -0, reduce to

J:t-v; = ' (3)
A+DJ;-

Tj = I PiZij (12)
i

(j = M + 1. ..N). Then F2 is said to make a choice if
1;he Jth F 2 node becomes maximally active, while all
other nodes are inhibited, when

TJ=max{Tj:j=M+l...NI. (13)

F 2 reset may be carried out in several ways, one being
use of a gated dipole field network in F2. When a
nonspecific arousal input reaches an F2 gated dipole

In this form, the dimensionless Eqs. (4)-(9) character-
ize the STM activities, Pi, qi, Ui, Vi, Wi, and Xi, comput-
ed at F1:
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Uj+CPirj = e + !Iull + Ilcpil .(20)

The orienting subsystem is assumed to reset F2 when-
ever an input pattern is active and

p
e+llrll>l, (21)

where the vigilance parameter p is set between 0 and 1.
For simplicity, we will henceforth consider an ART 2

system in which F 2 makes a choice and in which e is set
equal to O. Thus fix II = Ilull = Ilqfl = 1. Simulations
use the piecewise linear signal function f in Eq. (11).

field, nodes are inhibited or reset (Sec. VIII) in propor-
tion to their former STM activity levels. Moreover
this inhibition endures until the bottom-up input to F 1
shuts off. Such a nonspecific arousal wave reaches F2'
via the orienting subsystem, when a sufficiently large
mismatch occurs at Fl,

When F2 makes a choice, the main elements of the
gated dipole field dynamics may be characterized as

jd if TJ = maxlTj: thejth F:! node has not
g(_YJ) = been reset on the current trial I, (14)

0 otherwise.

Equation (14) implies that Eq. (4) reduces to
{Ui if F 2 is inactive,

Pi = u, + dZJi if the Jth F2 node is active. (15) IX. Match-Reset Trade-Off: Choice of Top-Down Initial
LTM Values

Vector r gives rise to all the properties required to
satisfy the match-reset trade-off described in Sec. IV.
Note first that, when the Jth F2 node is active, Eq. (20)
implies that

VII. ART 2 L 1M Equations

The top-down and bottom-up L TM trace equations
for ART 2 are given by

( ? II 'I ( ) il '12] 1/2II 'I = 1 + -CPI COSU,p +.CPI, (22)
rl 1 + ilcpll

where cos (u,p) denotes the cosine of the angle between
the vector u and the vector p. Also, by Eq. (15), the
vector p equals the sum u + dZJ, where ZJ = (ZJ1. ..zJ,\f)
denotes the top-down vector of L TM traces projecting
from the Jth F2 node. Since Ilull = 1, the geometry of
the vector sum p = u + dZJ implies that

Ilpl! COS(U,p) = 1 + Ildz)1 cos(u,z.j). (23)

Also,

(24)
,

Ilpll = [1 + 211dzJII cos(u,zJ) + !ldzJlI2] 12.

Equations (22)-(24) imply that
IiIlrll = [(1 + C)2 + 2(1 + c)llcdzJII COS(U,ZJ) + IIcdzJI12] 2

d
top-down(F:!---FJ dtZjj=g(Yj)[Pi-ZjJ. (16)

d
bottom-up (F 1 ---F.,) -Z = g'v) [P -Z ).(17)-dt II \.; I I II

If F 2 makes a choice, Eqs. (14)-(17) imply that, if the
Jth F 2 node is active, then

d [ u ]-Z J = d IP -Z J' ) = d(l -d) -.!.- -Z J ' (18)
dt -I I -I 1 -d '

d [ u. ]-Z J = d IP .-Z J] = d(l -d) -.!.- -Z
J .(19)dt I- I' 1 -d I

with 0 < d < 1. For allj ~ J, dZji/dt = 0 and dZij/dt =
O. Sections IX and XI give admissible bounds on the
initial values of the L TM traces.

VIII. ART 2 Reset Equations: the Orienting Subsystem

Since a binary pattern match may be computed by
counting matched bits, ART 1 architectures do not
require patterned information in the orienting subsys-
tem (Fig. 2). In contrast, computation of an analog
pattern match does require patterned information.
The degree of match between an STM pattern at F 1
and an active L TM pattern is determined by the vector
r.= (rl.. .rM),wherefortheART2architectureofFig.
6,

. (?5)1 -
1 + [C2 + 2cllcdzJII COS(U,ZJ) + IlcdzJl12) 12

Both numerator and denominator equal 1 + c + fl cdZJfl
when cos(U,zJ) = 1. Thus I]rfl = 1 when the STM
pattern u exactly matches the L TM pattern ZJ, up to a
constant multiple.

Figure 7 graphs ~rl] as a function of l]cdZJl1 for vari-
ous values of cos(u,ZJ). The Jth F2 node remains
active only if p :s: Ilr~. Since p < 1, Fig. 7 shows that
this will occur either if cos(u,ZJ) is close to 1 or if I]ZJ~ is
close to O. That is, no reset occurs if the STM vector u
is nearly parallel to the L TM vector ZJ or if the top-
down L TM traces ZJj are all small. By Eq. (18), ZJ
becomes parallel to u during learning, thus inhibiting
reset. Reset must also be inhibited, however, while a
new category is being established. Figure 7 shows that
this can be accomplished by making all I]zj~ small
before any learning occurs; in particular, we let the top-
down initial L TM values satisfy

Zjj(O) = 0, (26)

for i = 1. ..M and j = M + 1. ..N.
Condition (26) ensures that no reset occurs when an

uncommitted F 2 node rlrSt becomes active. Hence

1 Ilcdz JI

Fig. 7. Graph of Ilr\las a fun~ion of \lcdZJ\I for values of COB (u. ZJ)
between 0 and 1 and forc = 0.1 andd ~ 0.9. F2resetoccurswhenever

\lr\l falls below the vigilance parameter p.
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learning can begin. Moreover, the learning rule (18)
and the L TM initial value rule (26) together imply that
ZJ remains parallel to u as learning proceeds, so Ilr(t)l]
= 1. Thus no reset ever occurs during a trial in which
an uncommitted F2 node is first activated.

X. Learning Increases MIsmatch Sensitivity and
Confirms Category Choice

Figure 7 suggests how to implement the property
that learning increases sensitivity to mismatches be-
tween bottom-up and top-down patterns. Figure 7
indicates that, for fixed cos(u,ZJ), IJrl1 is a decreasing
function of 11cdzJfl for IlcdzJl1 .:5 1. In fact, in the limit
as c -0, the minimum of each curve approaches the
line 11cdzJII = 1. By Eqs. (18) and (26), 11ZJI1 < 1/(1- d)
and IlzJ11 -1/(1 -d) during learning. Therefore
implementation of the property that learning in-
creases mismatch sensitivity translates into the pa-
rameter constraint

~ ~ 1. (27)

The closer the ratio cd/(1 -d) is chosen to 1 the more
sensitive the system is to mismatches, all other things
being equal.

Parameter constraint (27) helps to ensure that
learning on a given trial confirms the initial category
choice on that trial. To see this note that, if an estab-
lished category is chosen, rlZJl1 is close to 1/(1 -d) at
the be~inning and end of a fast learning trial. Howev-
er IIZJII typically decreases and then increases during a
learning trial. Therefore if cd/(1 -d) were> 1, the
reset inequality (21) could be satisfied while 11ZJrl was
decreasing. Thus, without (27), it would be difficult to
rule out the possibility of unexpected F2 reset in the
middle of a learning trial.

XI. Choosing II New Category: Bottom-Up L 1M Initial
Values

Section IX dicusses the fact that the top-down ini-
tial L TM values Zij(O) need to be chosen small, or else
top-down LTM read-out by an uncommitted node
could lead to immediate F 2 reset rather than learning
of a new category. The bottom-up L TM initial values
Zij (0) also need to be chosen small, but for different
reasons.

Let z" = (ZlJ. ..ZMJ) denote the bottom-up vector of
L TM traces that erotect to the Jth F 2 node. Equation
(19) implies that 1Iz"1I -1/(1 -d) during learning. If
11z"(0) II were chosen greater than 1/(1 -d), an input
that flrst chose an uncommitted node could switch to
other uncommitted nodes in the middle of a learning
trial. It is thus necessary to require that

11z"(O)1I ~ ~ .(28)

Inequality (28) implies that if each z.I (0) is uniform,
each L TM trace must satisfy the constraint

---1

fori = I...Mandl = M+ I...N. Alternatively,
random numbers or trained patterns could be taken as
initial L TM values. If bottom-up input is the sole
source of F 2 activation, at least some ZiJ (0) values need
to be chosen positive if the Jth F2 node is ever to
become active.

Choosing equality in (29) biases the ART 2 system as
much as possible toward choosing uncommitted nodes.
A typical input would search only those nodes with
which it is fairly well matched, and then go directly to
an uncommitted node. If no learned category
representation forms a good match, an uncommitted
node will be directly accessed. Setting the initial bot-
tom-up L TM trace values as large as possible, there-
fore, helps to stabilize the ART 2 network by ensuring
that the system will form a new category, rather than
recode an established but badly mismatched one, when
vigilance is too low to prevent recoding by active reset
via the orienting subsystem. Thus construction of the
instability example in Fig. 8(c) requires, in addition to
the removal of the orienting subsystem and the inter-
nal feedback at FI, that the initial bottom-up LTM
trace values be significantly less than the maximum
allowed by condition (29).

XII. Stability-Plasticity Trade-Off
ART 2 design principles permit arbitrary sequences

of patterns to be encoded during arbitrarily long input
trials, and the ability of the L TM traces to learn does
not decrease with time. Some internal mechanism
must therefore buffer established ART category struc-
tures against ceaseless recoding by new input patterns.
ART 1 architectures buffer category structures by
means of the 2/3 Rule for pattern matching (Fig. 5).
During matching, an F I node in ART 1 can remain
active only if it receives significant inputs both bot-
tom-up and top-down. ART 1 implements the 2/3
Rule using an inhibitory attentional gain control signal
that is read out with the top-down L TM vector (Fig. 2).

ART 2 architectures implement a weak version of
the 2/3 Rule in which, during matching, an F I node can
remain active only if it receives significant top-down
input. It is possible, however, for a node receiving
large top-down input to remain stored in memory even
if bottom-up input to that node is absent on a given
trial. The corresponding feature, which had been en-
coded as significant by prior exemplars, would hence
remain part of the category representation although
unmatched in the active exemplar. It would, more-
over, be partially restored in STM. During learning,
the relative importance of that feature would decline,
but it would not necessarily be eliminated. However,
a feature consistently absent from most category ex-
emplars would eventually be removed from the cate-
gory's expectation pattern Z,j. The ART 2 matching
rule implies that the feature would then not be re-
learned; if present in a given exemplar, it would be
t:reated as noise.

All parts of the F I feedback loop in Fig. 6 work
together to implement this ART 2 matching rule. The
five simulations in Fig. 8 illustrate the roles of different
4~omponents of the ART 2 system. Each column shows
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Fig. 8. ART 2 matching processes. The ART 2 system of Fig. 6 was
used to generate the five simulations shown in columns (a)-(e).
Each column shows the first ten simulation trials, in which four
input patterns (A, B, C, D) are presented in order ABCAD on trials
1-5, and again on trials 6-10. Details are given in the text (Sec. XlI).
(a) The full ART 2 system, with p = 0.95, separates the four inputs
into four categories. Search occurs on trials 1-5; thereafter each
input directly accesses its category representation. Parameters a =
10,b = 10,c = O.I,d = 0.9, 8 = 0.2, and M = 25. Theinitialzjj (0) val-
ues, I, are half of the maximum, 2, allowed by constraint (27). The
piecewise linear signal function (11) is used throughout. (b) Vigi-
lance is here set so low (p = 0) that no search can ever occur. The
coarse category structure established on trials 6-10 is, however,
stable and consistent. All system parameters except p are as in (a).
(c) With b = 0, the ART 2 system here generates an unstable, or

inconsistent, category structure. Namely, input A goes alternative-
ly to categories 1 and 2, and will continue to do so for as long as the
sequence ABCAD repeats. All parameters except b are as in (b).
Similar instability can occur when d is close to O. (d) With a = 0, the
ART 2 matching process differs from that which occurs when a is
large; namely, the input pattern [ is stronger, relative to the top-
down pattern ZJ, than in (b). All parameters except a are as in (b).
Similar processing occurs when d is small (-G.l) but not close to O.
(e) With 8 = 0, theF\ signalfunctionfbecomes linear. Without the
noise suppression/contrast enhancement provided by a nonlinear f,
the completely different inputs Band D are here placed in a single

category. All parameters except 9 are as in (b).

the ART 2 response to a sequence of four input pat-
terns (A, B, C, and D) presented in the order ABCAD
on trials 1-5 and again on trials 6-10. The ART 2
system dynamics established on the second round are
stable, and thus would be repeated indefinitely if the
same input sequence was repeated. Parameters c and
d are held fixed throughout. The simulations explore
the role of the remaining parameters, a, b, 8, and p.

Figure 8(a) shows a simulation with parameters a, b,
and () in a normal range, but with the vigilance parame-
ter, p, set so high that the four inputs establish four
categories. Two graphs are depicted for each trial:
the top graph shows the input pattern (1 = A, B, C, or
D) and the bottom graph shows the L TM expectation
pattern (ZJ) at the end of the trial. The category
number is shown beside the graph of ZJ. On trial 1,
input A establishes category 1. Note that pattern A is
contrast enhanced in L TM, due to the fact that the
pattern troughs are below the noise level defined by
the signal threshold 8 [Eqs. (7) and (11)]. In fact, () is
set equal to 1/\iM. This is the level at which uniform
patterns are treated as pure noise but any nonuniform
pattern can be contrast enhanced and stored in STM.

On trial 2, pattern B, which shares all its features
with A, first searches category 1. The high vigilance
level leads to F 2 reset, and B establishes the new cate-
gory 2. On trial 3, pattern C also searches category 1;
having nothing in common with pattern B, it then goes
directly to an uncommitted node and establishes cate-
gory 3. When A is again presented on trial 4, it directly
accesses its original category 1. On trial 5, pattern D
searches category 3, then category 1, then establishes
the new category 4. Learning is stabilized on the first
trial. Thus, on the second set of trials, A, B, C, and D
choose the same categories as before, but without any
search. Hereafter, each input directly accesses its cat-
egory node. The bottom portion of the column sum-
marizes the category structure established on trials 6-
10. Pattern A is shown twice because it is presented
twice every 5 trials. The categorization is stable, or
consistent, in the sense that each pattern recognizes its
unique category every time it appears.

For the four remaining simulations in Figs. 8(b)-(e),
the vigilance parameter p is chosen so small that no
search can ever occur. Whatever category is chosen
first by the bottom-up input must accept and learn the
matched F 1 STM pattern for as long as the input
remains active. By eliminating reset by choosing vigi-
lance low, one can directly test how much top-down
matching can accomplish on its own. For example, in
Fig. 8(b), low vigilance enables pattern B to be accept-
ed on trial 2 into the category 1 that was established by
pattern A on trial 1. By the weak 2/3 Rule, the critical
feature pattern learned in response to B causes the
collapse of L TM traces that do not correspond to B.
When pattern A is presented again on trial 4, it is
recoded into the category 2 that was established by
pattern C on trial 3, since A is more similar to the
critical feature pattern established by pattern C than
to the critical feature pattern established jointly by
pattern B and itself. Thereafter, the code is stable

under periodic presentation of the sequence ABCAD.
Note, however, that patterns A and D are classified

together, whereas B is not, even though B is more
similar to A than is D. This is a consequence of elimi-
nating reset and of fast learning during periodic pre-
sentation. In particular, the critical feature pattern
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learned on trial 10 illustrates the tenden~y for D t
attenuate L TM traces outside its range. Were thiO
tendency strengthened by increasing contrast o~
changing presentation order, D would have also been
classified separately from A. This simulation thus
shows how the ART 2 system can self-stabilize its
learning in the absence of reset. In combination with
Fig. 8(a), it also illustrates how active reset and search
can generate stable categories which better reflect the
similarity relationships among the input patterns.

Figure 8(b) also illustrates some finer details of ART
2 matching properties. Here, the F 1 feedback parame-
ters a and b [see Eqs. (7) and (8) and Fig. 6] are large
enough so that a feature once removed from the cate-
gory representation (ZJ) is not reinstated even if
present in a category exemplar (1). Thus on trial 4,
features present in the right-hand portion of pattern A
are not encoded in the L TM pattern of category 2, due
to the weak 2/3 Rule. However on trial 5, features
absent from pattern D but initially coded in ZJ are
nevertheless able to remain coded, although they are
weakened. Since these features are again present in
the exemplars of category 2 on trials 6, 8, and 9, they
are periodically restored in L TM.

Finally, compare trial 7 in Fig. 8(b) with trial 7 in Fig.
8(a). In each case pattern B has been established as
the sole exemplar of a category. However in Fig. 8(b)
category 1 had contained pattern A on one previous
trial. Memory of pattern A persists in the contrast-
enhanced L TM pattern in Fig. 8(b). If the input set
were more complex, this difference in learning history
could possibly lead to subsequent differences in cate-
gory structure.

Figure 8(c) illustrates that unstable coding can occur
when the feedback parameter b is set equal to zero.
Pattern A is placed in category 1 on trials 1, 6, etc.; and
in category 2 on trials 4, 9, etc. It jumps to a new
category every time it appears. With fast learning,
previous L TM patterns are washed away by subse-
quent input patterns. Failure of the weak 2/3 Rule on
trials 4, 6, 9, etc., combined with the absence of the
orienting subsystem and with the small initial bottom-
up L TM values, leads to the instability. A large class
of similar input sequences that share the subset-su-
perset relationships of patterns A, B, C, and D also
leads to unstable coding. However, if the class of
input patterns were suitably restricted or if slow learn-
ing is imposed on each trial, satisfactory results could
still be obtained. Similar unstable dynamics occur if
the top-down F2 -Fl feedback parameter (d), instead
of the internal Fl feedback parameter (b), is chosen
small (see Fig. 6).

Figure 8(d) illustrates how the lower feedback loop
of the F 1 circuit in Fig. 6 also buffers learned category
representations against unstable recording by bottom-
up inputs. In this simulation, parameter a is set equal
to O. Similar dynamics occur if the top-down F 2 -F 1
feedback parameter (d) is small, but not so small that
instability occurs. Setting a equal to 0 (or making d
small) has the effect of weakening the importance of
the F2 -Fl expectation feedback relative to the bot-

tom-~p inp~t. In Fig. 8(d), therefore, the weak 2/3
Rl;lle IS partIally vio~ated. Note in particular the slight
~el~s~atement on trIals 4, 6, 8, and 9 of features present
In ut !lot z.j at the start of the trial. An ART 2
sys~em w\th a l.arge and d close to 1 is better protected
~fd)~st potentIal instability than is the system of Fig.

.F~n~IY, Fig. 8(e) illustrates the role of nonlinearity
In t e [fee~back loop of ART 2. Here, the threshold
par~eter ~ IS set equal toO [Eq. (11)1 so that the signal
function f In Eq. (7) and Fig. 6 is linear. Level F[
therefo~e loses the p~operties of contrast enhancement
and nOIse suppressIon. Even though the feedback
p~rameters a, b, and dare all large, trial 2 shows that
m~s~atched features in!, while attenuated, are never
eliminated. The result IS that, given the zero vigilance
value, completely mismatched patterns, such as B and
D, can be placed in the same category because they are
parts of the superset pattern A that established the
category.
XIII. Alternative ART 2 Architectures

Two alternative ART 2 models are shown in Figs. 9
and 10. In Fig. 9, the orienting subsystem pattern (r)
is also part of Fl, In this model, q = p -u so that q =
dzJ if the Jth F2 node is active. Thus r directly com-
putes the cosine of the angle between u and z./. In
contrast, vector r in the F 2 model of Fig. 6 indirectly
computes this angle by computing the angle between u
and p, which is a linear combination of u and zJ. In
addition the nonlinear signal function f appears twice
in the lower F [loop in Fig. 9; in Fig. 6, f appears once in
each F 1 loop, so that all matched input pathways pro-
jecting to any given node have the same signal func-
tion. Dynamics of the two ART 2 systems are similar.
Equations for the ART 2 model of Fig. 9 are given in
Ref. 5.

The ART 2 model in Fig. 10 is also similar to the one
in Fig. 6, except here the input vector I is the output of
a preprocessing stage that imitates the lower and up-
per loops of Fl- This allows I itself to be used as an
input to the orienting subsystem, rather than the vec-
tor u, which is more like the architecture of ART 1 (Fig.
2). The advantage of this is that I does not change
when F2 becomes active, and so provides a more stable
input to the orienting subsystem throughout the trial
than does u in Fig. 6. Figure 11 summarizes one cate-
gory structure established by the ART 2 system of Fig.
10. All parameters, including vigilance, are the same
in the simulations of Fig. 3 and 11. The input patterns
depicted in Fig. 11 are the result of preprocessing the
inputs of Fig. 3. Table I shows which categories of Fig.
3 correspond to categories in Fig. 11. Except for cate-
gories 1 and 7 of Fig. 3, which are each split into two in
Fig. 11, the category structure generated by the two
models is identical.
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Table I. Corresponding Categories

Figure 3 Figure 11

1 land2
2 3
3 4
4 14
5 6
6 7
7 8and9
8 10
9 11

10 12
11 13
12 15
13 16
14 17
15 18
16 19
17 20
18 21
19 22
20 5

18 19 20 21 22

Bb§bJ~
Fig. 11. Recognition category summary for the ART 2 system in
Fig. 10. System parameters and vigilance level are the same as in
Fig. 3, which was generated using the ART 2 model of Fig. 6. Be-
cause of the constant I input to the orienting subsystem, the ART 2
system of Fig. 10 is here seen to be slightly more sensitive to pattern

mismatch at a given vigilance level, all other things being equal.
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