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ABSTRACT- The default ARTMAP algorithm and 
its parameter values specified here define a ready-to-use 
general-purpose neural network system for supervised 
learning and recognition. 

I. INTRODUCTION: 
ART TECHNOLOGY TRANSFER 

Adaptive Resonance Theory (ART) neural networks 
model real-time prediction, search, learning, and recognition. 
ART networks function both as models of human cognitive 
information processing [1,2,3] and as neural systems for 
technology transfer [4]. A neural computation central to both 
the scientific and the technological analyses is the ART 
matching rule [ 5 ] ,  which models the interaction between 
top-down expectation and bottom-up input, thereby creating 
a focus of attention which, in turn, determines the nature of 
coded memories. 

Sites of early and ongoing transfer of ART-based 
technologies include industrial venues such as the Boeing 
Corporation [6] and government venues such as MIT 
Lincoln Laboratoty [7]. A recent report on industrial uses of 
neural networks [8] states: 

[The] Boeing _.. Neural Information Retrieval 
System is probably still the largest-scale 
manufacturing application of neural networks. It uses 
[ART] to cluster binary templates of aeroplane parts 
in a complex hierarchical network that covers over 
100,000 items, grouped into thousands of self- 
organised clusters. Claimed savings in 
manufacturing costs are in millions of dollars per 
annum. (p. 4) 

At Lincoln Lab, a team led by Waxman developed an image 
mining system which incorporates several models of vision 
and recognition developed in the Boston University 
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Department of Cognitive and Neural Systems (BU/CNS). 
Over the years a dozen CNS graduates (Aguilar, Baloch, 
Baxter, Bomberger, Cunningham, Fay, Gove, Ivey, 
Mehanian, Ross, Rubin, Streilein) have contributed to this 
effort, which is now located at Alphatech, Inc. 

Customers for BUICNS neural network technologies 
have attributed their selection of ART over alternative 
systems to the model’s defining design principles. In listing 
the advantages of its THOT@ technology, for example, 
American Heuristics Corporation (AHC) cites several 
characteristic computational capabilities of this family of 
neural models, including fast on-line (one-pass) Ieaming, 
“vigilant” detection of novel patterns, retention of rare 
patterns, improvement with experience, “weights [which] ~IC 

understandable in real world terms,” and scalability 
(www.heuristics.com). 

Design principles derived from scientific analyses and 
design constraints imposed by targeted applications have 
jointly guided the development of many variants of the basic 
networks, including fuzzy ARTMAP [9], ART-EMAP [IO], 
ARTMAP-IC [ I l l ,  Gaussian ARTMAP [12], and 
distributed ARTMAP [3,13]. Comparative analysis of these 
systems has led to the identification of a default ARTMAP 
network, which features simplicity of design and robust 
performance in many application domains [4]. Selection of 
one particular ARTMAP algorithm, specified here with a 
complete set of default parameter settings, is intended to 
facilitate ongoing technology transfer. A user may start with 
this version of the system, then, if necessary, adjust 
parameters to suit individual applications. 

11. WINNER-TAKE-ALL vs. DISTRIBUTED 
CODE REPRESENTATIONS 

The default ARTMAP algorithm (Section IV) outlines a 
procedure for labeling an arbitrary number of output classes 
in a supervised learning problem. A critical aspect of this 
algorithm is the distributed nature of its internal code 
representation, which produces continuous-valued test set 
predictions distributed across output classes. 

The character of their code representations, distributed 
vs. winner-take-all, is, in  fact, a primary factor 
differentiating various ARTMAP networks. The original 
models [Y,14] employ winner-take-all coding during training 
and testing, as do many subsequent variations and the 
majority of ART systems that have been transferred to 
technology. Default ARTMAP is the same as fuzzy 
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ARTMAP during training, but uses a distributed code 
representation during testing. ARTMAP-IC [ 1 11 equals 
default ARTMAP plus instance counting, which biases a 
category node’s test set output by the number of training set 
inputs coded by that node. ‘Distributed ARTMAP 
(dARTMAP) employs a distributed code (and instance 
counting) during both training and testing [3,13]. Versions 
of these networks [4] form a nested sequence: 

fuzzy ARTMAP C default ARTMAP C 
ARTMAP-IC C distributed ARTMAP 

That is, distributed ARTMAP reduces to ARTMAP-IC 
when coding is set to winner-take-all during training; 
ARTMAP-IC reduces to default ARTMAP when counting 
weights are set equal to 1 ;  and default ARTMAP reduces to 
fuzzy ARTMAP when coding is set to winner-take-all 
during testing as well as training. 

ARTMAP variants with winner-take-all (WTA) coding 
and discrete target class predictions have shown consistent 
relative deficits in labeling accuracy and post-processing 
adjustment capabilities. 

weighted predictions across voters to make a final class 
choice. One strategy sums the u k  values of individual 
networks to produce a net distributed output pattern, which 
is then used to determine the predicted class. An alternative 
strategy first lets each voting network choose its own 
winning output class, then assigns the test set inputs on the 
basis of these individual votes. In most applications, the 
first of these two voting strategies produces better results. 

IV. DEFAULT ARTMAP ALGORITHM 

Fig. I and Table I summarize default ARTMAP 
notation. Table I1 lists default parameter values. A user who 
wishes to explore network variations might begin by varying 
the baseline vigilance, p .  In some cases, higher values of 
p increase predictive accuracy but may decrease code 
compression. 

- 

actual 
output 
class k = K 

111. THE DEFAULT ARTMAP SYSTEM 

Default ARTMAP codes the current input as a winner- 
take-all activation pattem during training and as a distributed 
activation pattern during testing. For distributed coding, the 
transformation of the filtered bottom-up input to an 
activation pattern across a field of nodes is defined by the 
increased-gradient CAMrule [ 131. The default network also 
implements the. MT- search algorithm [ I l l  and sets the 
baseline vigilance parameter equal to zero, for maximal 
code compression. Other design choices for default 
ARTMAP includefast learning, whereby weights converge 
to asymptote on each learning trial; single-epoch training, 
which emulates on-line learning; a choice-by-difference 
signal function [I51 from the input field to the coding field; 
and four-fold cross-validation. 

ARTMAP’s capacity for fast learning implies that the 
system can incorporate information from examples that are 
important but infrequent and can be trained incrementally. 
Fast learning also causes each network’s memory to vary 
with the order of input presentation during training. Voting 
across several networks trained with different orderings of a 
given input set takes advantage of this feature, typically 
improving performance and reducing variability as well as 
providing a measure of confidence in each prediction [9]. 
While the number of voting systems is, in general, a ike 
parameter, five voters have proven to be sufficient for many 
applications. Default ARTMAP thus trains five voting 
networks for each training set combination. .vac 

U Even with the number of voters fixed, other design 
choices appear in systems where output activations may be 
distributed. In particular, default ARTMAP, which produces 
a continuous-valued distribution U k  across output classes k 
for each test set item, presents options for combining 

feature 
vector a 

( a  ,... U i . . . U M )  

Fig. 1. Default ARTMAP notation. 
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TABLE I1 
DEFAULT PARAMETER VALUES 

NOTATION 

1 

j 

k 

M 

a 

A 

K 

Y 

J 

c 
411' 

T j  

uk 

w j  

wk 

P 

A 

1 . 1  
PC 

TABLE I 
DEFAULT ARTMAP NOTATION 

DESCRIPTION 

input component index 

coding node index 

output class index 

number of input features 

feature vector (ai), o a q s I 
complement coded input vector: 

A E (a,.') 
actual output class of training input 

coding field activation pattern (CAM): 

( y j  1 
chosen coding node (winner-take-all) 

number of committed coding nodes 

committed node subsets 

signal from input field to coding node j 

signal from coding field to output node k 

(WO ) coding node weight vectorj: 

output class weight vector k: ( w j k )  

vigilance variable 

component-wise minimum (fuzzy 
intersection): (PA q)i min(pi,qi) 

vector complement: p , E 1 -pi ( 9, 

NAME 

signal 
rule 
parameter 

learning 
kactinn 

match 
tracking 

baseline 
vigilance 

CAM 
rule 
power 

# 
training 
epochs 

# data 
subsets 

# voting 
systems 

PARA- - 
a 

P 

E 

- 
P 

P 

E 

F 

V 

- 

RANGE DEFAULT NOTES 
VALUE 

0.0 I 

I .o 

0.001 

0.0 

1 .o 

1 

4 

5 

+ a=O 
maximizes 
code 
compression 

p =  1 
implements 
fast learning 

E < 0 (MT-) 
codes 
inconsistent 
cases 

- p = o  
maximizes 
code 
compression 

Increased 
Gradient (E) 
CAM rule 
converges to 
WTA as 
P - m  

E= 1 
simulates on- 
line leaming 

F-fold cross- 
validation 
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A.  Classification Methodolagy 

This section outlines a canonical classification procedure 
for training and evaluating supervised learning systems, 
including ARTMAP. 

A.1. List output classes for the supervised learning 
problem. 

A.2. If possible, estimate an apriori  distribution of output 
classes. 

If not provided, create a ground truth set for each class 
by assigning output labels to a designated set of input 
vectors. 

A.4. Divide the ground truth set into F disjoint subsets. 

A S .  In each of the F subsets, designate either all ground 
truth inputs in that set; or P randomly chosen labeled 
inputs for each output class (or all inputs in a given 
class if fewer than P have been labeled). Fix random 
orderings of designated inputs in each subset. 

A.6. Choose one subset for validation, one for testing, and 
the rest for training. 

A.7. Train Vsystems (voters), each with E presentations of 
input vectors from one of the ordered training sets 
(Section 1V.B). 

For each voter, choose parameters by validation (if 
parameter choice is required). 

Present to each voter all test set inputs. Produce an 
output class prediction Ok for each test input 
(Section 1V.C). 

A.3. 

A.8. 

A.9. 

A. I O .  Sum the distributed output class predictions across 
the V voters. 

A. I 1. Label inputs by one of three methods (breaking ties 
by random choice): 

A.1 1.a. Baseline: Assign the input to the output 
class k with the largest summed prediction. 

A.1l.h. Prior probabilities: Select an output class 
at random according to the estimated a priori 
distribution in the data set. Assign that class label to 
the still-unlabeled input with the largest summed 
prediction for this class. 

A.1l.c. Validation: Bias the summed output class 
distribution, evaluating performance on the validation 
set. One such method [4] selects decision thresholds 
for each output class, with an upper bound of 10% set 
for each false alarm rate. Altematively, the distributed 
prediction of each voter (or of the sum) could be 

weighted by a steepest descent algorithm. Use the 
biased summed distribution to label the input by the 
baseline or prior probabilities method. 

A. 12. Posf-training output class adjustmenfs: 

A.12.a. Standard  p o s t - p r o c e s s i n g  methods: 
Mapping tasks, for example, may benefit from local 
image smoothing. Post-processing for speckle 
removal may be implemented as a simple voting filter 
which assigns to each pixel the label originally 
assigned to a majority of its eight neighbors plus 
three copies of itself. 

A.12.b. Class distribution adjustment: Starting 
with the output class predictions produced by any 
method (Step A.l I ) ,  target distribution percentages 
may he adjusted up or down (e.g., based on 
inspection of resulting classes), and class labels 
recomputed by the prior probabilities method. 

A.12.c. False alarm rate adjustment: A decision 
threshold for an over-represented class may be 
increased to reduce the validation set false alarm rate. 

A. 13. Classifer evaluation: Compute average performance 
statistics across all combinations of training subsets 
(each with Y voters). Classifier evaluation measures 
include test set output class distributions, hit and 
false alarm rates for each class, overall accuracy on the 
test set, performance variability between tasks, 
product appearance (e.g., for mapping, overall and by 
overlays for each class), and degree of improvement 
by post-processing. 

B. Defaul! ARTMAP Training (Winner-Take-All Code) 

The default ARTMAP algorithm specified here is a 
special case of the distributed ARTMAP (MRTMAP) 
algorithm described in [13]. 

B. 1. Complement code M-dimensional training set feature 
vectors a to produce 2M-dimensional input vectors A 

A 3 (a,.') and IAl= M 

B.2. Set initial values: W .  = 1, W .  - 0, C = 1 'J J k  - 

8 . 3 .  Select the first input vector A, with associated actual 
output class K 

B.4. Set initial weights for the newly committed coding 
node j = C : 

W C = A  
WCK = 1 
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B.S. Set vigilance p to its baseline value: 

and reset the code: 
P = P  

y = o  

B.6. Select the next input vector A, with associated actual 
output class K (until the last input of the last training 
epoch) 

B.7. Calculate signals to committed coding nodes 
i = I  ... C: . 

B.8. Search order: Sort the committed coding nodes with 
Tj > aM in order of Tj values (max to min) 

B.9. Search for a coding node J that meets the matching 
criterion and predicts the correct output class K ,  as 
follows: 

B.9.a. Code:  For the next sorted coding node 
( j =  J )  that meets the matching criterion 

B. 9 .h. Output class prediction: 

j = l  

B.9.c Correct prediction: If the active code J 
predicts the actual output class K (UK = WJK = I ) ,  
go to Step B.11 (learning) 

B.9.d Match tracking: If the active code J fails to 
predict the correct output class (aK = O), raise 
vieilance: 

Return to Step B.9.a (continue search). 

B.lO. After unsuccessfully searching the sorted list, increase 
C by 1 (add a committed node). 
Return to Step 8.4 

B. 1 1, Learning: Update coding weights: 

w[t"" = P(A A w?ld) + (1 - p)wyld.  

Return to Step B.5 (next input). 

C. Default ARTMAP Testing (Distributed Code) 

C. 1. Complement code M-dimensional test set feature 
vectors a to produce 2M-dimensional input vectors A 

Select the next input vector A, with associated actual 
output class K 

C.2. 

C.3. Reset the code: y = 0 

C.4. Calculate signals to committed coding nodes 

T .  J = [ A  A W j I + ( l - C l ) ( M - l W j l )  

j = l  ... C: 

C.S. Let A = ( A = l  ... C T j > & ) a n d  

A' = {A = 1.. .C: Tj = M )  = 

b=1 ... C w j  = A )  

C.6. Increased Gradient (E) CAMRule: 

C.6.a. Point box case: If A'#$ (i.e., W ;  = A 

for some j ) ,  set y j  = for each j EA' i-& 
C.6.h. If A' =$, set 

M - T j  
Y j  = foreach j EA 

C.7. Calculate distributed output class predictions: 
r - 

ak = 1 wjkY j 
j = l  

C.8. Until the last test input, return to Step C.2 

C.9. Predict output classes from Ok values, according to 
the chosen labeling method (see Step A.1 I )  
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