Kara0807的个人博客分享 http://blog.sciencenet.cn/u/Kara0807

博文

[转载]基于多模态影像下的抑郁症大脑异常

已有 5721 次阅读 2020-7-31 10:45 |个人分类:智能科学与技术学报|系统分类:观点评述| 多模态影像, 抑郁症, 大脑异常 |文章来源:转载

image.png

image.png

【摘  要】近年来,结构性磁共振成像(sMRI)和功能性磁共振成像(fMRI)被广泛应用于抑郁症研究。从结构形态学、结构网络、功能网络3个角度探索抑郁症患者的大脑异常,了解其发病机制,辅助医生临床诊断、治疗和预后。目前大量研究发现抑郁症患者的海马体、杏仁核出现不同程度的萎缩,脑网络的连接强度、图论属性等均出现显著异常,且出现异常的脑区对应于人的情绪调节、注意力和认知控制等功能,异常的程度与抑郁的严重程度呈现高度相关性。从不同角度对抑郁症的研究现状进行综述,并对未来的研究提出了建议。

【关键词】 抑郁症 ; 脑网络 ; 多模态 ; 磁共振成像

【引用格式】

李姗,李永超,邹颖, 等. 基于多模态影像下的抑郁症大脑异常[J]. 智能科学与技术学报, 2020, 2(2): 116-125.

LI S, LI Y C, ZOU Y, et al. Brain abnormalities in depression based on multimodal imaging[J]. Chinese Journal of Intelligent Science and Technology, 2020, 2(2): 116-125.

1.引言

抑郁症是一种常见的精神疾病,其表现为心境低落、思维迟缓、意志活动减退、认知功能损害等,且具有高发病率、高复发率、高自杀率等特点,严重危害患者的身心健康。抑郁症已成为世界四大疾病之一,目前已有3.5亿患者,并将在2020年成为世界第二大疾病。其发病因素众多,患者受生物、心理以及社会环境等多个方面的影响,而关于抑郁症的发病机制仍在研究中。

对抑郁症的诊断目前主要依赖于临床症状,综合严重程度以及症状数量将患者划分为轻度抑郁症、中度抑郁症和重度抑郁症。近年来,随着磁共振影像技术的发展,出现了大量关于抑郁症患者大脑结构以及功能异常的研究,对抑郁症的病理变化及致病机制有了一定的了解,通过对脑影像进行分析,可以辅助医生做出更准确的诊断、早期预测以及干预;通过分析不同服药阶段的表现来评估药物疗效。磁共振成像主要分为两大类:结构性磁共振成像(structural magnetic resonance imaging, sMRI)和功能性磁共振成像(functional magnetic resonance imaging,fMRI),这些成像方法对人体均无创。抑郁症患者大脑结构形态学的显著变化出现在颞叶、前扣带皮层、眶额叶皮层、海马体、杏仁核、丘脑等区域,皮层的表面积和厚度都发生了显著变化,且皮下各结构出现了不同程度的萎缩和膨胀,这些结构都与情绪调节以及记忆等功能相关。而在结构网络和功能网络方面,连接的组织效率、连通性都出现了降低,小世界属性丧失,拓扑属性遭到破坏。抑郁症影像学的研究可应用于临床的辅助诊断、药物治疗效果评估、高危人群预测等。本文简述了不同影像的分析方法,并详细探讨了与抑郁症相关的3个重要的功能子网络,结合当前研究现状对未来的研究提出了建议。

2.脑网络构建方法


2.1 结构磁共振成像


形态学分析主要基于皮层厚度、体积、表面积、密度等属性,从解剖学的角度直观反映大脑的变化,其中皮质厚度较难直接测量,因此将其定义为白质表面和软膜表面的最短距离,该方法的有效性已得到验证。除形态学分析之外,大部分研究集中在脑网络分析,使用结构连接或者功能连接构建网络,对抑郁症患者的大脑变化进一步分析,其中每个感兴趣区域(region of interest,ROI)代表一个节点,每个感兴趣区域有其特定的功能,各感兴趣区域之间协同工作。

结构网络基于sMRI进行构建,反映了大脑结构连通性的异常,通常使用脑影像分析工具FreeSurfer 或统计参数图(statistical parametric mapping,SPM)等来计算大脑皮层厚度或灰质体积,根据选定脑区模板进行感兴趣区域的划分。基于每个感兴趣区域的皮层厚度或灰质体积构建结构网络,常用模板有Brodmann(BA)、自动解剖标签(automated anatomical labeling,AAL)、Harvard-Oxford Atlas(HOA)、Brainnetome Atlas-246 等。使用皮尔逊相关性分析来构建各脑区之间的连接,若选择的模板为n个脑区,则形成n×n 的连接矩阵,矩阵的每一行或每一列均表示一个脑区。基于脑网络的拓扑属性分析包括全局或局部属性、模块化、节点属性等,如节点强度表示节点的连接数,聚类系数表示某一节点i的相邻节点之间也互为相邻节点的可能性。其中,中心度用于度量网络中节点的作用与地位,最短路径长度与全局效率衡量了网络的全局传输能力,各项指标既包含大脑整体的完整性,也涉及各功能脑区的变化。

除此之外,弥散张量成像(diffusion tensor imaging,DTI)数据也常被用于构建结构网络,DTI网络通过对全脑纤维束进行追踪,从白质纤维角度评估大脑结构的变化,常用的度量包括平均弥散率(mean diffusivity,MD)和各向异性分数(fractional anisotropy,FA)等指标。

2.2 功能磁共振成像


除了局部一致性(regional homogeneity,ReHo)与低频振幅(amplitude of low frequency fluctuation, ALFF)2个属性,目前对静息态fMRI数据的分析常常基于先验模板或独立成分分析(independent component analysis,ICA)来提取感兴趣区域的血氧合水平依赖(blood oxygenation level dependent, Bold)信号,相比于先验模板提供已经制定好的脑区划分,ICA是一种数据驱动的信号处理方法,不同的研究可能提取出不同数量的独立成分,每个独立成分代表一个脑区。计算每个脑区的平均时间序列,对其进行皮尔逊相关性分析,通过 Fisher’s-z变换将数据转换为正态分布的z值,将计算的相关系数作为网络中边的权值,构建功能连接矩阵,并计算拓扑属性,功能网络的构建过程可借助已有的开源工具来实现,如 GRETNA 等。在网络属性的分析方面,功能网络与结构网络相似。

结构网络与功能网络的构建方式如图1所示。其中,图1(a)是原始磁共振影像;图1(b)是选定脑区划分模板;图1(c)的上半部分表示sMRI通过皮层厚度(或灰质体积),DTI通过追踪白质纤维束,构建结构网络;图1(c)的下半部分表示 fMRI通过对时间序列做区域间相关性分析,构建功能网络。

image.png

图1   结构网络与功能网络的构建方式


结构网络与功能网络分别从形态和功能两方面反映了抑郁症患者的大脑异常,为了探究结构与功能异常之间的映射关系,使用多个模态的磁共振影像进行联合分析也是研究热点之一。脑网络分析目前被广泛应用,通过选择适当的特征属性,还可对抑郁症进行预测以及辅助诊断。


2.3 抑郁症的主要相关网络


大量关于抑郁症的研究表明,患者的大脑异常主要出现在三大功能子网络,包括默认模式网络(default mode network,DMN)、认知控制网络(cognitive control network,CCN)以及突显网络(salience network,SN),且这三大功能子网络在调节情绪和认知功能上起到了极其重要的作用。在通过脑网络进行分析时,若研究目的是讨论某功能子网络的变化,那么在处理数据前只需挑选该功能子网络涉及的脑区即可,然后再构建网络。

2.3.1 默认模式网络
默认模式网络包括后扣带回皮质(posterior cingulate cortex,PCC)、内侧前额叶皮层(medial prefrontal cortex,mPFC)、楔前叶皮层(precuneus cortex,PCu)以及顶下小叶(inferior parietal lobule, IPL)等脑区。研究发现其与注意力、情绪加工、情景记忆等功能相关,并且随患者年龄的增长发生了显著的变化。

DMN 可分为前 DMN(anterior DMN)和后DMN(posterior DMN)。前DMN主要以内侧前额叶皮层为中心,且与杏仁核相连,因此与自我参照处理(self-referential processing)和情绪调节有关,抑郁症患者的 DMN 变化主要发生在前 DMN;后DMN与海马体关联,主要与记忆和意识有关。

默认模式网络在大脑不进行任务时极其活跃,而抑郁症患者的DMN相比正常人更为活跃,前DMN功能连接增加,后DMN部分功能连接减少,DMN 整体连通性增加。有研究推测 DMN的连接异常与抑郁症的反刍思维存在关联。

2.3.2 认知控制网络
认知控制网络也被称为中央执行网络(central executive network,CEN)或认知执行网络(cognitive executive network,CEN),主要包括外侧前额叶皮层、后顶叶皮层(posterior parietal cortex,PPC)、前额眼动区(frontal eye fields,FEF)以及部分背内侧前额叶皮层(dorsomedial prefrontal cortex, dmPFC)。

与默认模式网络在注意力和认知任务中休息相反,认知控制网络在认知任务中极其活跃,包括注意力、计划和工作记忆等。相较于健康个体,抑郁症患者认知控制网络的白质微结构异常,FA显著降低,功能连接与连通性显著降低,这些特征在与关注外部环境相关的区域表现的尤为明显,已有研究发现认知控制网络的静态功能连接可预测药物治疗的预后。

2.3.3 突显网络
突显网络由双侧的前脑岛(anterior insula,AI)、背侧前扣带回(dorsal anterior cingulate cortex, dACC)、杏仁核以及颞极构成,其中dACC是认知控制中的关键结构

突显网络主要协助大脑对收到的刺激做出反应,它的异常与抑郁症、精神分裂症等精神疾病显著相关,研究者发现了情绪、认知和平衡与突显网络的相关性。突显网络在DMN和CCN的切换中起到了重要作用,有研究发现突显网络中有一类被称为VEN(von economo neuron)的特殊神经元,该神经元可促进网络交换的过程,并且只在突显网络中被发现。

突显网络对DMN和CCN的异常切换可能会导致抑郁症的产生,抑郁症患者突显网络与前 DMN之间的连通性增加,与 CCN 的连接减少,同时,其右前脑岛的内部连接显著减少。突显网络连接的异常程度与抑郁严重程度相关,因此推测右前脑岛的连接异常导致了DMN和CCN的切换异常。


3.抑郁症患者的大脑变化


3.1 大脑形态学变化


形态学的分析可从解剖学角度描述抑郁症患者的大脑变化,其中皮层厚度、表面积、灰质体积、密度为常讨论的特征。抑郁症患者的部分脑区皮层厚度显著变薄或变厚,其中异常较为显著地集中在双侧和内侧前额叶皮层、后扣带皮层、左侧颞中回、内侧眶额回等脑区,异常变化的脑区均与边缘系统关联密切,控制着情绪调节、认知控制、注意力等。青少年抑郁症患者大脑皮层表面积总体呈现减小趋势,如左侧中央前回、内侧眶额皮层和额上回等。除此之外还伴随着灰质体积的变化,左侧额上回、双侧楔叶和丘脑的灰质体积显著增大,图2展示了皮层厚度与表面积减小区域。值得注意的是,虽然小脑功能通常被认为与协调运动、控制肌肉等行为相关,但已有部分研究发现抑郁症患者的小脑灰质萎缩,尤其体现在小脑后叶,同时小脑小叶的密度减小也可作为抑郁症的生物标志物,这些研究都体现了小脑在情绪调节以及记忆方面起到的作用。

image.png

图2   抑郁症患者大脑形态学变化


除了大脑皮层之外,抑郁症患者大脑形态学变化还出现在皮层下结构,发生显著变化的结构包括海马体、杏仁核、丘脑、壳核等,其中体积变化最大的是海马体。海马体和杏仁核在情绪调节、表达、工作记忆等方面起到重要作用。不仅抑郁症患者的海马体发生了显著变化,精神分裂症(schizophrenia)、阿尔兹海默症(Alzheimer’s disease,AD)等精神疾病患者的海马体都发生了显著的变化。笔者研究分析了海马体和杏仁核不同子区的形态学变化,结果显示,双侧海马体的下托和安蒙角(cornu ammonis,CA)1子区,左侧杏仁核的外侧和基底外侧,右侧杏仁核的基底外侧、前区、前皮层都发生了萎缩。在对抑郁症患者的海马体和杏仁核结构表面特征与汉密尔顿抑郁量表(hamilton depression scale,HAMD)评分进行相关分析时,发现二者呈显著正相关,研究者进一步推测,随着抑郁症患者症状的逐渐加重,海马体和杏仁核的萎缩有向其余子区发展的趋势。


虽然不同类型的精神疾病在大脑结构上均会出现变化,但变化的区域以及严重程度存在区别。有研究表明,与轻度认知障碍患者和抑郁症患者相比,阿尔兹海默症患者的海马体表现为整体的严重萎缩,平均减少30.9%,而轻度认知障碍患者的海马体体积减少了17%左右。轻度认知障碍患者的海马头区域有显著的萎缩,抑郁症患者则是在距杏仁核背侧12 mm处的前海马区域显著萎缩。与抑郁症患者相比,精神分裂症患者在海马CA1区域的萎缩程度更大。对杏仁核也有类似的研究,比较发现,精神分裂患者的杏仁核体积整体要小于双向情感障碍患者的杏仁核体积。在诊断过程中,结合患者临床表现等信息,可避免出现误诊的情况。即使是同一种精神疾病,不同类型也表现出不同的变化,如相比于难治性抑郁症患者,治疗敏感抑郁症患者的结构异常区域更多;部分灰质体积显著减小的区域并未在难治性抑郁症患者中发现。


3.2 结构网络变化


研究发现抑郁症患者结构网络整体的组织效率与连通性均降低,在内侧额叶和内侧颞叶区域的中心节点(hub)较少,且右侧杏仁核和左侧额回的连通性较高,这些区域的功能异常与抑郁症患者的临床症状高度相关,同时有研究使用基于网络统计分析(network-based statistic,NBS)方法发现,抑郁症患者在默认模式网络中每个连接的重建神经束都相对减少。笔者在研究中也发现了抑郁症患者大脑的小世界属性出现丧失,网络连接和节点效率降低,整体效率与抑郁严重程度呈负相关。

形态学和结构网络的分析从不同角度论证了抑郁症患者的大脑结构已发生明显的损伤,网络拓扑属性被破坏,因此为了进一步研究抑郁症的发病机制,结合静息态fMRI的多模态分析非常有必要,可以从功能网络的角度增加对抑郁症的了解。

3.3 功能网络变化


抑郁症患者在内侧前额叶皮层和腹侧前扣带回皮层的功能连通性显著提高,同时在后扣带回皮层和角回等区域的功能连接性显著下降,抑郁症患者功能连接强度变化如图3所示,其中,红色线条表示连接强度增强,蓝色线条表示连接强度降低。除此之外,相比正常对照组,抑郁症患者的聚集系数、整体效率以及局部效率降低,路径长度增加,且小世界属性遭到破坏。

相对于常见的功能连接,近年来出现了对动态功能连接的分析。笔者将动态功能连接划分为强连接状态和弱连接状态,发现抑郁症患者处于弱连接状态的时间更长且出现功能连接降低的情况,其中部分连接的动态性与抑郁量表显著相关。也有研究发现针对不同的状态,抑郁症患者动态功能连接的连接方式不同,尤其是前额叶网络(prefrontal network,FN)、感觉运动网络(sensorimotor network, SMN)和小脑网络(cerebellum network,CN)。通过对动态网络进行分析,发现与健康对照组相比,抑郁症患者的前扣带皮层的社区分配分布和灵活性存在显著差异,并且抑郁症患者的前扣带皮层与杏仁核、丘脑等之间的连接强度显著降低。

抑郁症患者的听觉皮层和丘脑以及后扣带回之间的连接减少,伴随着感觉处理出现缺陷,这可能与抑郁症患者的注意力降低有关。除了基于fMRI 信号的功能连接外,还有其他度量标准,如格兰杰因果关系、结构方程模型等。近年来研究者对动态因果模型的有效连接也进行了分析,抑郁症患者高阶功能网络之间的有效连接、高阶功能网络内部的有效连接均发生了改变,表现在默认模式网络和突显网络之间的连接减少且默认模式网络内部有效连接显著升高。

image.png

图3   抑郁症患者功能连接强度变化


为了对结构和功能的异常进行联合分析,已有研究使用多模态的方法,发现结构与功能之间的变化存在相关性。抑郁症患者FA值与前扣带皮层、双侧海马体的功能连接之间分别存在负相关,同时患者左外侧眶额叶皮层的灰质体积增加伴随着大脑活动的减少。笔者研究发现与结构网络相似,功能网络的小世界属性也出现了丧失,且与形态变化密切相关,进一步分析发现抑郁症严重程度与节点效率和连接呈现负相关,针对抑郁症早期结构网络和功能网络的鲁棒性,推测抑郁症患者结构网络的变化要先于功能网络的变化。

4.临床辅助诊断应用

通过对抑郁症患者的脑影像进行分析,一个重要的应用前景是临床的辅助诊断,抑郁症患者的诊断不仅需要患者积极地配合,还需要医生丰富的诊断经验,如果产生误诊,会严重影响患者的治疗进程,相比患者主观描述的多变性与不完整,磁共振成像能够更客观地反映大脑变化。根据之前的研究,对于首发型与复发型的抑郁症患者来说,不同的治疗方式、不同的服药情况等都会产生截然不同的大脑变化,同时性别、年龄等也是不可忽视的因素。因此计算机辅助诊断系统可以提供一个可靠的建议,帮助医生高效准确地对患者进行诊断,并制定合适的治疗方案。

通过对患者的病理变化进行分析,提取相应的生物标志物,再结合机器学习和神经网络,经过特征选择后,构造合适的预测模型的方法已被大量用于针对精神疾病的预测以及分类研究。构造模型时,常使用k折交叉验证来评估稳定性,即随机将数据划分为k份,1份作为测试集,其余k-1份作为训练集,k一般选择10或5。也有研究使用留一法,留一法为k折交叉验证的特殊情况,即当k=n(样本总量)时,称为留一法。因为留一法不能考虑分层采样,而且当样本量大时计算开销过大,相比之下十折交叉验证更被广为认可;但当样本量过少时,使用留一法更为常见,该方法可以更充分地利用数据,因此应根据实际情况选择验证方法。

结构与功能的指标都被应用于抑郁症分类。结构方面,使用皮质厚度、灰质、白质以及小脑结构等都获得过较好的分类效果。使用多变量模式分析(multivariate pattern analysis,MVPA)对特征进行提取以及降维,使用留一法结合LIBSVM对难治性抑郁症患者和治疗敏感抑郁症患者的分类准确率可达85.7%。有研究使用过滤器对结构指标进行特征选择,选择结果集中在眶额叶皮层、颞叶、内侧额叶皮层等区域,构建的FBM-FBM-RVM模型对抑郁症患者的识别率可达到90%。功能网络方面常用的特征为连接和所构建网络的图论属性,在使用ICA提取20个成分后,通过联合多个功能网络,如默认模式网络和突显网络,计算其赫斯特(Hurst)指数,经过进一步判别分析,线性核SVM对抑郁症患者的识别率达到90%。除此之外,Rosa等人提出基于高斯图模型和L1范数正则化线性支持向量机的稀疏网络分类模型,该模型通过估计逆协方差矩阵的稀疏模型来估计脑区间的功能连接,并且采用嵌套交叉验证来确保测试集与训练集互不影响。近期有研究团队提出一种基于高阶网络的分类方法,其使用基于滑动窗的动态功能连接,将所有样本的动态功能连接时间序列进行聚类,在提取特征后,也获得了较好的结果。以上研究用于辅助临床诊断,但生活中存在抑郁高风险人群,如孕妇、抑郁症患者子女、留守儿童等,未来也可利用影像学指标对生活中的抑郁高风险人群进行预测。


5.结束语

抑郁症作为常见的精神疾病之一,近年来被广泛关注,其不仅给患者及其家庭带来巨大损害,还与痴呆症、高血压以及心脏病等重大疾病有关联。大量研究使用磁共振成像探索抑郁症的病理变化和发病机制。尽管已有大量研究讨论了关于抑郁症的病理学变化,但人们对发病机制的了解仍然有限。本文从大脑形态学、结构网络、功能网络 3个角度讨论了当前的研究现状。

抑郁症受各类因素影响,如年龄、性别、肥胖、地区、饮食习惯、家庭环境等,目前已有大量研究讨论了性别和年龄对抑郁症的影响,但仍需要对其他方面进行更多的探索。


不同年龄的抑郁症患者有不同的表现,成年重度抑郁症患者形态变化主要为皮层厚度变薄,青少年重度抑郁症患者表现为大脑皮层表面积减少,晚发型抑郁症患者的皮下结构变化程度明显比早发型抑郁症患者的皮下结构变化程度高。而对于不同类型的抑郁症来说,复发型抑郁症患者的大脑变化要显著大于首发型抑郁症患者的大脑变化。同时,治疗的不同阶段也对应不同的大脑异常变化。

目前大部分研究是基于基线的研究,即横向研究,其仅限于反映不同类型的抑郁症之间的差异,或抑郁症患者与未患病人群之间的差异。针对抑郁症的纵向研究较少,通过纵向的研究可分析不同治疗方法、不同治疗阶段的治疗效果。同时,大部分工作是基于组水平的研究,不能完全反映个体之间的差异,而在临床治疗中,医生面对的都是独立的患者,症状不一定相同。在未来针对抑郁症的研究中,可以多开展纵向或基于个体的研究,同时结合其他学科的优势,如基因和分子等学科,更加深入地了解抑郁症的发病机制。磁共振成像的分析有助于对抑郁患者进行更准确的靶向治疗,制定更合适的治疗方案以及新药物的研发,降低抑郁症给患者和社会带来的影响。

作者简介 About authors

李姗(1997-),女,兰州大学信息科学与工程学院甘肃省可穿戴装备重点实验室硕士生,主要研究方向为大脑形态学分析、情感计算、机器学习等 。


李永超(1995-),女,兰州大学信息科学与工程学院甘肃省可穿戴装备重点实验室硕士生,主要研究方向为功能脑网络分析、抑郁症辅助诊断、机器学习等 。


邹颖(1994-),女,兰州大学信息科学与工程学院甘肃省可穿戴装备重点实验室硕士生,主要研究方向为生物医学图像处理、情感计算与机器学习等 。


杨琳(1998-),女,兰州大学信息科学与工程学院甘肃省可穿戴装备重点实验室本科生,主要研究方向为功能与功能脑网络分析、机器学习等 。


王茵(1998-),女,兰州大学信息科学与工程学院甘肃省可穿戴装备重点实验室本科生,主要研究方向为功能脑网络分析、情感计算、机器学习等 。


姚志军(1977-),男,博士,兰州大学信息科学与工程学院甘肃省可穿戴装备重点实验室教授,博士生导师,主要研究方向为生物医学影像数据处理、普适情感计算、计算机应用技术、人工智能、机器学习等 。


胡斌(1965-),男,博士,兰州大学信息科学与工程学院甘肃省可穿戴装备重点实验室教授、院长,2011年之前,一直担任瑞士苏黎世联邦理工学院客座教授。主要研究方向为普适计算、心理生理计算、数据建模等。

image.png

image.png



https://blog.sciencenet.cn/blog-951291-1244381.html

上一篇:[转载]“深度强化学习”线上论坛圆满结束!
下一篇:[转载]社区疫情排查的智能优化调度方法
收藏 IP: 27.223.89.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2025-1-6 05:07

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部