本专著曾经在科学网连载。在去年4月, 这部专著最终在Amazon发表(ISBN: 9781655790249,简装本99美元). 感兴趣读者可以给我发信(Email地址:yuzh@iccas.ac.cn), 我可以免费提供校样本(共477页)。
《Questioning Fundamental Principles of
Organic Chemistry》
TABLE OF CONTENTS
CHAPTER 1 FUNDAMENTAL PRINCIPLES OF ORGANIC CHEMISTRY BEING
QUESTIONABLE
Abstract 1
1.1. Introduction 2
1.1.1. Fundamental Principles of Organic Chemistry 2
1.1.2. Alternation of Conjugation Competition 4
1.2. Experiments and Discussion 6
1.2.1. Synthesis of 2-(N-methylamino)-anthracene 7
1.2.2. Determination of Conjugated-Backbone 8
1.3. Questionable Fundamental Principles 14
1.4. Conclusions 16
1.5. Reference 16
CHAPTER 2 ABNORMAL LARGE TWIST ANGLE OF NBA
Abstract 19
2.1. Introduction 20
2.1.1. Large Distorted Stilbene-like Species 21
2.1.2. Classic Model and Interpretations 24
2.1.3. Substituent Effect 25
2.2. Experimental Questioning 27
2.2.1. Questioning Role of Non-bonded Interaction 27
2.2.2. Questioning CT-2 Interaction Role 29
2.3. Theoretical Researches 30
2.3.1. NBA-like Species with Five-membered Ring 30
2.3.2. Substituted N-benzylideneanilines 35
2.4. Conclusions 44
2.5. References 46
CHAPTER 3 CONSTRUCTION OF FLMO BASIS SET
Abstract 52
3.0. Forewords 53
3.1. Introduction 57
3.2. Constructing LFMO Basis Set 59
3.2.1. Fragmentation of a Molecule 59
3.2.2. Sub-LFMO Basis Set for Fragment B 61
3.2.3. Superposition of Sub-basis Sets 70
3.3. Summary 71
3.4. Appendix 71
3.5. References 74
CHAPTER 4 p-DELOCALIZATION DESTABILIZATION
Abstract 79
4.1. Introduction 80
4.1.1. Morokuma Energy Decomposition 80
4.1.2. Natural Energy Decomposition Analysis 84
4.1.3. Our p-s Energy Decomposition Method 84
4.2. Construction of Localized States 87
4.2.1. Construction of LFMO basis set 87
4.2.2. Construction of DSI State 89
4.2.3. Construction of FUD State 90
4.2.4. Construction of DSI-2 State 91
4.3. Vertical Delocalization Energy 91
4.3.1. N-benzylideneaniline 91
4.3.2. Heterocyclic NBA-like Species 97
4.3.3. Substituted NBAs 99
4.4. Summary 105
4.5. Appendix 106
4.6. References 112
CHAPTER 5 ELECTRON DELOCALIZATION DESTABILIZATION
Abstract 115
5.1. NBO Method 116
5.1.1. NBO Basis Set 116
5.1.2. NBO Vertical Delocalization Energy 119
5.1.3. Localization Degree of LMO Basis Set. 120
5.2. p-delocalization Indeed Destabilization 126
5.2.1. Basic Flaws of NBO 127
5.2.2. Deleting Hartree-Fock Exchange 131
5.3. Destabilizing p-s Interaction 137
5.3.1. N-benzylideneaniline 137
5.3.2. NBA-like Species 141
5.4. Destabilizing Non-bonded s-s Interaction 143
5.4.1. Construction of FUL State 144
5.4.2. Reasonable STO-3G Basis Set 145
5.4.3. Construction of PDSI Electronic State 145
5.4.4. Non-bonded s-s Interaction 147
5.4.5. s-s Interaction Distorting Molecule. 148
5.5. Summary 151
5.6. Appendix 153
5.7. References 159
CHAPTER 6 RESTRICTED GEOMETRY OPTIMIZATION
Abstract 161
6.0. Forewords 162
6.0.1. So-called Evidence of Conjugation Stabilization 162
6.0.2. Benzene and Aromaticity 165
6.1. Our 2007 Method 169
6.1.1. Program of Localizing Geometry 170
6.1.2. A New Type of Additive Energy Effect 174
6.1.3. Extra Stabilization Energy of Benzene 177
6.2. ESEs for Benzene-like Species 180
6.2.1. Aza-1,3,5-Hexatrienes 181
6.2.2. Benzene-like Species 182
6.2.3. Furan-like Species 184
6.3. Substituted Benzenes 189
6.3.1. Extra Stabilization Energy 190
6.3.2. Extra Stabilization Energy of Parent Benzene Ring 194
6.3.3. Pure Conjugation Effect 194
6.3.4. Pure Inductive Effect 195
6.3.5. Conjugation and Inductive Effect 195
6.3.6. Substituent Effect Always Distortive 195
6.4. Conclusions 198
6.5. Appendix 198
6.6. References 203
CHAPTER 7 POLYCYCLIC BENZENOID HYDROCARBONS
Abstract 208
7.0. Forewords 209
7.0.1. Estimation of Resonance Energy 209
7.0.2. Calculation of Electron Delocalization Energy 210
7.0.3. Randić and Plavsić method 212
7.1. Method 215
7.1.1. GL Geometry of Phenanthrene 215
7.1.2. GE-m Geometries of Phenanthrene 215
7.1.3. Substituted 1,1-dibutadienyl-ethylene 218
7.1.4. ESE of Phenanthrene 219
7.1.5. Corrected ESE of Phenanthrene 219
7.2. Acenes 219
7.2.1. Generalized Definition of Fusion Bond 220
7.2.2. Fusion Double Bond 223
7.2.3. ESE and CESE 223
7.2.4. Energy Effect Increments 225
7.3. Position Rule and Energy Rule 230
7.4. Dibenzoacenes 231
7.4.1. Naphtho[2.3-e]pyrene 231
7.4.2. GL Sextet Rule 237
7.5. Conclusions 242
7.6. References 243
CHAPTER 8 NEW METHOD TO LOCALIZE p-ELECTRONS
Abstract 245
8.0. Forewords 246
8.0.1. Historical Roles of Cyclobutadiene 246
8.0.2. 4n+2 Rule 247
8.0.3. Kollma Method and Jug Method 248
8.0.4. Fundamental Flaws of BLW Method 249
8.1. Introduction 251
8.1.1. Our 2007 Method Needing Improvement 251
8.1.2. p-s Energy Decomposition 253
8.1.3. Two-electron Exchange Integrals 256
8.1.4. MPn Correlation Energy 257
8.1.5. Evidences for Role of HF-EX 258
8.2. Our 2011 Method 259
8.2.1. Versions of Our 2011 Method 260
8.2.2. Reliable Our 2011 Method 263
8.3. Extra Stabilization Energy of Benzene 267
8.3.1. Hartree-Fock Exchange Effects 267
8.3.2. More Reasonable Our 2011 Method 269
8.4. Vertical Delocalization Energy 273
8.5. Cyclobutadiene 274
8.6. Conclusions 275
8.7. Appendix 275
8.8. References 279
CHAPTER 9 [N]ANNULENES AND PBHS
Abstract 282
9.1. Introduction 283
9.1.1. [4n+2] Rule Not Always a Truth 284
9.1.2.Driving Force for Distorting Ring 285
9.2. p-s Energy Decomposition 286
9.2.1. DFT Molecular Energy 286
9.2.2. MPn Molecular Energy 288
9.3. Benzene 289
9.3.1. Three Distortion Models 289
9.3.2. BLE Leading to Minimization of Nuclear Repulsion 291
9.4. [N]Annulenes 294
9.4.1. Meaning of Symbol “[16]-54444” 295
9.4.2. Relationship between Configuration and VDE 296
9.4.3. Possible Configuration Isomers of a [N]Annulene 297
9.4.4. Vertical Delocalization Energies 302
9.4.5. Extra Stabilization Energy 306
9.5. PBHs 311
9.5.1. Phenanthrene 311
9.5.2. Acenes, Triphenylene and Chrysene 314
9.6. Conclusions 317
9.7. References 317
CHAPTER 10 STRAINED-AROMATIC MOLECULES - p-DISTORTIVITY
Abstract 321
10.0. Forewords 322
10.0.1. Mulliken’s Model of Charge Transfer Complex 323
10.0.2. Our Energy Decomposition Methods 323
10.0.3. Thermodynamic Mechanism of Reaction NH3 + BH3 328
10.1. Introduction 338
10.1.1. Mills-Nixon Effect. 341
10.1.2. Experimental Probe for p-Interaction Role 344
10.2. Eliminating p-Interaction 345
10.2.1. Construction of PLG 345
10.2.2. p-Delocalization Causing BLA 346
10.2.3. Energy Decomposition 348
10.3. Universality of p-Distortivity 351
10.3.1. Comparison of Dr(PLG) and Dr(G) 351
10.3.2. dDr(GP) versus DE(GP) 353
10.3.3. Large Differences between C6B6H6 and C6N6H6 357
10.4. Forces Acting on Ring Bonds 360
10.4.1. Endocyclic Bonds 364
10.4.2. Exocyclic Bonds 365
10.5. C6B6 and C6N3H3 368
10.5.1. Bond Angle 368
10.5.2. Bond Length 369
10.6. Secondary Structural Effects 369
10.7. Conclusions 370
10.8. References 372
CHAPTER 11 STRAINED-AROMATIC MOLECULES - ESE
Abstract 376
11.1. Introduction 377
11.2. Benzotricyclobutadiene 378
11.2.1. ESE of Whole Molecule 380
11.2.2. ESE of Central Ring 384
11.3. Strained-Aromatic Molecules 387
11.3.1. C6X6H6 and C6X3H3 (X = B, Al, Ga) 387
11.3.2. C6X6H6 (X = N, P, As, Si, Ge) 388
11.3.3. C6X3H3 (X = N, P, As) 389
11.3.4. C6X6 (X = B, N, P, As) 390
11.4. ESE versus Dr(G) 391
11.4.1. Molecules with Dr(G) > 0 391
11.4.2. Molecules with Dr(G) < 0 395
11.5. Conclusions 396
11.6. References 397
CHAPTER 12 LOCALIZED GEOMETRY OPTIMIZATION
Abstract 398
12.1. Introduction 399
12.1.1. Pauling's Resonance Theory 399
12.1.2. Coulson's Method 402
12.1.3. Dewar’s Viewpoint of Hybridization 403
12.1.4. Covalent Radii 403
12.1.5. Controversy over Resonance Existence 405
12.1.6. Historical Limitations 406
12.2. Development of Our Method 407
12.2.1. Our 2007 Method 407
12.2.2. Our 2011 Method 411
12.3. Our 2014 Method 413
12.3.1. More Reasonable than Our 2011 Method 413
12.4. Butadiene Derivatives 423
12.4.1. Localized GL Geometries 424
12.4.2. Adjacent Conjugation and Transmission 433
12.5. Conclusions 442
12.6. References 444
https://blog.sciencenet.cn/blog-94786-1306778.html
上一篇:
第五章(四)Formally Refuting the Maksić’s Comment (全文)