$E=\int_{0}^{x}Fdx$
$=\int_{0}^{x}\frac{d}{dt}(mv)dx$
$=\int_{0}^{mv}vd(mv)$
$=\int_{0}^{v}vd\left ( \frac{m_{0}v}{\sqrt{1-(v/c)^{2}}} \right )$
$=m_{0}\int_{0}^{v}\frac{vdv}{\left [ 1-(v/c)^{2} \right ]^{3/2}}$
$=m_{0}c^{2}\left ( \frac{1}{\left [ 1-(v/c)^{2} \right ]^{1/2}}-1\right )$
$=(mc^{2}-m_{0}c^{2})$
$=(m-m_{0})c^{2}\Rightarrow E=mc^{2}$
https://blog.sciencenet.cn/blog-821001-642420.html
上一篇:
岩石的演化下一篇:
地核发现的故事