JiangPQ的个人博客分享 http://blog.sciencenet.cn/u/JiangPQ

博文

热穿透深度(thermal penetration depth)的推导

已有 8818 次阅读 2013-7-11 22:05 |系统分类:科研笔记| thermal, depth, penetration, 热穿透深度, 瞬态导热

Periodic heating on the surface of a semi-infinite body induces an exponentially decaying temperature profile with a thermal penetration depth

 

which identifies the depth normal to the surface at which the temperature amplitude is of its surface amplitude. This concept is commonly adopted in time domain thermoreflectance (TDTR) and other transient thermoreflectance techniques, and is derived as follows:


Let's consider the one-dimensional transient heat conduction problem in a semi-infinite body. The governing equation and corresponding initial and boundary conditions are as follows:

.frac{{{.partial ^2}T(x,t)}}{{.partial {x^2}}} = .frac{1}{.alpha }.frac{{.partial T(x,t)}}{{.partial t}}.quad .quad x > 0,.quad t > 0    .qquad .qquad(1)T = {T_i} + f(t) = {T_i} + A.cos (.omega t - .beta ),{.rm{  }}x = 0,.quad t > 0    .qquad .qquad(23)T(x,t) = {T_i}.quad .quad x .to .infty ,.quad t > 0    .qquad .qquad(3)

T(x,t) = {T_i}.quad .quad x > 0,.quad t = 0    .qquad .qquad(4)

where A is the amplitude of oscillation, ω is the angular frequency, and β is the phase delay.


Introducing excess temperature .vartheta  = T - {T_i}, the governing equation and corresponding boundary and initial conditions become

.frac{{{.partial ^2}.vartheta (x,t)}}{{.partial {x^2}}} = .frac{1}{.alpha }.frac{{.partial .vartheta (x,t)}}{{.partial t}}.quad .quad x > 0,.quad t > 0    .qquad .qquad(24).vartheta (x,t) = f(t) = A.cos (.omega t - .beta ).quad .quad x = 0,.quad t > 0    .qquad .qquad(25).vartheta (x,t) = 0.quad .quad x .to .infty ,.quad t > 0    .qquad .qquad(26)

.vartheta (x,t) = 0.quad .quad x > 0,.quad t = 0    .qquad .qquad(27)


Duhamel’s theorem can be used to handle the time-dependent boundary condition. Instead of solving eqs. (24) – (27) directly, we will start with a simpler auxiliary problem which is similar to eqs. (24) - (27), only that in eq. (25) t is treated as a parameter τ, rather than time, as defined below:

.frac{{{.partial ^2}.Phi (x,t)}}{{.partial {x^2}}} = .frac{1}{.alpha }.frac{{.partial .Phi (x,t)}}{{.partial t}}.quad .quad x > 0,.quad t > 0    .qquad .qquad(28).Phi (x,t) = f(.tau ) = A.cos (.omega .tau  - .beta ).quad .quad x = 0,.quad t > 0    .qquad .qquad(29).Phi (x,t) = 0.quad .quad x .to .infty ,.quad t > 0    .qquad .qquad(30)

.Phi (x,t) = 0.quad .quad x > 0,.quad t = 0    .qquad .qquad(31)


Duhamel’s theorem (Ozisik, 1993) stated that the solution to the original problem is related to the solution of the auxiliary problem by

.vartheta (x,t) = .frac{.partial }{{.partial t}}.int_{.tau  = 0}^t {.Phi (x,t - .tau ,.tau )d.tau }     .qquad .qquad(32)

which can rewritten using Leibniz’s rule

.vartheta (x,t) = .int_{.tau  = 0}^t {.frac{.partial }{{.partial t}}.Phi (x,t - .tau ,.tau )d.tau }  + .Phi {.left. {(x,t - .tau ,.tau )} .right|_{.tau  = t}}    .qquad .qquad(33)


The second term on the right hand side is


.Phi {.left. {(x,t - .tau ,.tau )} .right|_{.tau  = t}} = .Phi (x,0,.tau ) = 0    .qquad .qquad(34)

therefore, eq. (33) becomes

.vartheta (x,t) = .int_{.tau  = 0}^t {.frac{.partial }{{.partial t}}.Phi (x,t - .tau ,.tau )d.tau }     .qquad .qquad(35)


The solution of the auxiliary problem can be expressed as

.Phi (x,t,.tau ) = f(.tau ).left[ {1 - {.rm{erf}}.left( {.frac{x}{{.sqrt {4.alpha t} }}} .right)} .right] = .frac{{2f(.tau )}}{{.sqrt .pi  }}.int_{x/.sqrt {4.alpha t} }^.infty  {{e^{ - {.eta ^2}}}d.eta }     .qquad .qquad(36)


The partial derivative appearing in eq. (35) can be evaluated as


.frac{.partial }{{.partial t}}.Phi (x,t - .tau ,.tau ) = f(.tau ).frac{x}{{.sqrt {4.pi .alpha } {{(t - .tau )}^{3/2}}}}.exp .left[ { - .frac{{{x^2}}}{{4.alpha (t - .tau )}}} .right]    .qquad .qquad(37)


Substituting eq. (37) into eq. (35), the solution of the original problem becomes

.vartheta (x,t) = .frac{x}{{.sqrt {4.pi .alpha } }}.int_{.tau  = 0}^t {.frac{{f(.tau )}}{{{{(t - .tau )}^{3/2}}}}.exp .left[ { - .frac{{{x^2}}}{{4.alpha (t - .tau )}}} .right]d.tau }     .qquad .qquad(38)


Introducing a new independent variable

.xi  = .frac{x}{{.sqrt {4.alpha (t - .tau )} }}

eq. (38) becomes

.vartheta (x,t) = .frac{2}{{.sqrt .pi  }}.int_{x/.sqrt {4.alpha t} }^.infty  {f.left( {t - .frac{{{x^2}}}{{4.alpha {.xi ^2}}}} .right).exp ( - {.xi ^2})d.xi }     .qquad .qquad(39)


For the periodic boundary condition specified in eq. (25), we have


.vartheta (x,t) = .frac{{2A}}{{.sqrt .pi  }}.int_{x/.sqrt {4.alpha t} }^.infty  {.cos .left[ {.omega .left( {t - .frac{{{x^2}}}{{4.alpha {.xi ^2}}}} .right) - .beta } .right].exp ( - {.xi ^2})d.xi }     .qquad .qquad(40)

which can be rewritten as

.begin{array}{l}
 .vartheta (x,t) = .frac{{2A}}{{.sqrt .pi  }}.int_0^.infty  {.cos .left[ {.omega .left( {t - .frac{{{x^2}}}{{4.alpha {.xi ^2}}}} .right) - .beta } .right].exp ( - {.xi ^2})d.xi }  .. 
 {.rm{           }} - .frac{{2A}}{{.sqrt .pi  }}.int_0^{x/.sqrt {4.alpha t} } {.cos .left[ {.omega .left( {t - .frac{{{x^2}}}{{4.alpha {.xi ^2}}}} .right) - .beta } .right].exp ( - {.xi ^2})d.xi }  .. 
 .end{array}    .qquad .qquad(41)


Evaluating the first integral on the right hand side of eq. (41) yields

.begin{array}{l}
 .vartheta (x,t) = A.exp .left[ { - x{{.left( {.frac{.omega }{{2.alpha }}} .right)}^{1/2}}} .right].cos .left[ {.omega t - x{{.left( {.frac{.omega }{{2.alpha }}} .right)}^{1/2}} - .beta } .right] .. 
 {.rm{           }} - .frac{{2A}}{{.sqrt .pi  }}.int_0^{x/.sqrt {4.alpha t} } {.cos .left[ {.omega .left( {t - .frac{{{x^2}}}{{4.alpha {.xi ^2}}}} .right) - .beta } .right].exp ( - {.xi ^2})d.xi }  .. 
 .end{array}    .qquad .qquad(42)


It can be seen that as t .to .infty , the second term will become zero and the first term represents the steady oscillation.

{.vartheta _s}(x,t) = A.exp .left[ { - x{{.left( {.frac{.omega }{{2.alpha }}} .right)}^{1/2}}} .right].cos .left[ {.omega t - x{{.left( {.frac{.omega }{{2.alpha }}} .right)}^{1/2}} - .beta } .right]    .qquad .qquad(43)

where A.exp .left[ { - x{{.left( {.omega /(2.alpha )} .right)}^{1/2}}} .right] represents the amplitude of oscillation at point x. It is apparent that the amplitude of the oscillation decreases as x increases. The location at which the oscillation amplitude drops to of its surface amplitude is at



Source: http://www.thermalfluidscentral.org/encyclopedia/index.php/One-dimensional_transient_heat_conduction_in_semi-infinite_body 





https://blog.sciencenet.cn/blog-756363-707279.html

上一篇:声子的非弹性散射
下一篇:Silicon wafer cleaning recipe
收藏 IP: 137.132.3.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2025-1-1 23:52

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部