Chenfiona的个人博客分享 http://blog.sciencenet.cn/u/Chenfiona

博文

90s解读AI | 西电公茂果团队: 综述-多模态数据的联邦学习

已有 266 次阅读 2024-11-5 16:23 |个人分类:好文推荐|系统分类:论文交流

标签.jpg

90s解读AI

随着大众对保护数据隐私的意识加强,作为训练模型主要范式之一的联邦学习(FL)因具有数据隐私保护功能而在近年来受到研究者们的越发关注。但是,大多数FL客户端当前还是单模态。随着边缘计算的崛起,多种多样的传感器和可穿戴设备产生了大量不同模态的数据,从而推动了对多模态联邦学习(MMFL)的研究。西安电子科技大学公茂果教授团队对多模态联邦学习(MMFL)领域的研究进行了深入剖析。文章首先分析了MMFL的主要动力。然后将当前已提出的MMFL方法根据MMFL的模态分布和模态注释进行了归类。接着讨论了MMFL的数据集和应用场景。最后列出了MMFL的局限与挑战,并为未来的研究进行了展望并提出了方法。

全文导读

西电公茂果团队 | 综述: 多模态数据的联邦学习

视频可见于https://mp.weixin.qq.com/s/Qu-J58F2IWDn78Dy_tBOdA

全文下载:

Federated Learning on Multimodal Data: A Comprehensive Survey

Yi-Ming Lin, Yuan Gao, Mao-Guo Gong, Si-Jia Zhang, Yuan-Qiao Zhang, Zhi-Yuan Li

https://link.springer.com/article/10.1007/s11633-022-1398-0

https://www.mi-research.net/en/article/doi/10.1007/s11633-022-1398-0

关于Machine Intelligence Research

Machine Intelligence Research(简称MIR,原刊名International Journal of Automation and Computing)由中国科学院自动化研究所主办,于2022年正式出版。MIR立足国内、面向全球,着眼于服务国家战略需求,刊发机器智能领域最新原创研究性论文、综述、评论等,全面报道国际机器智能领域的基础理论和前沿创新研究成果,促进国际学术交流与学科发展,服务国家人工智能科技进步。期刊入选"中国科技期刊卓越行动计划",已被ESCI、EI、Scopus、中国科技核心期刊、CSCD等20余家国际数据库收录,入选图像图形领域期刊分级目录-T2级知名期刊。2022年首个CiteScore分值在计算机科学、工程、数学三大领域的八个子方向排名均跻身Q1区,最佳排名挺进Top 4%,2023年CiteScore分值继续跻身Q1区。2024年获得首个影响因子(IF) 6.4,位列人工智能及自动化&控制系统两个领域JCR Q1区。

往期目录

2024年第5期 | 大语言模型,无人系统,统一分类与拒识...

2024年第4期 | 特约专题: 多模态表征学习

2024年第3期 | 分布式深度强化学习,知识图谱,推荐系统,3D视觉,联邦学习...

2024年第2期 | 大语言模型、零信任架构、常识知识推理、肿瘤自动检测和定位...

2024年第1期 | 特约专题: AI for Art

2023年第6期 | 影像组学、机器学习、图像盲去噪、深度估计...

2023年第5期 | 生成式人工智能系统、智能网联汽车、毫秒级人脸检测器、个性化联邦学习框架... (机器智能研究MIR)

2023年第4期 | 大规模多模态预训练模型、机器翻译、联邦学习......

2023年第3期 | 人机对抗智能、边缘智能、掩码图像重建、强化学习... 

2023年第2期 · 特约专题 | 大规模预训练: 数据、模型和微调

2023年第1期 | 类脑智能机器人、联邦学习、视觉-语言预训练、伪装目标检测... 

2022年第6期 | 因果推理、视觉表征学习、视频息肉分割...

2022年第5期 | 重磅专题:类脑机器学习

2022年第4期 | 来自苏黎世联邦理工学院Luc Van Gool教授团队、清华大学戴琼海院士团队等

2022年第3期 | 聚焦自然语言处理、机器学习等领域;来自复旦大学、中国科学院自动化所等团队

2022年第2期 | 聚焦知识挖掘、5G、强化学习等领域;来自联想研究院、中国科学院自动化所等团队

主编谭铁牛院士寄语, MIR第一期正式出版!

好文推荐

自动化所刘成林团队 | 统一分类与拒识: 一种一对多框架

上海交大张拳石团队 | 综述: 基于博弈交互理论的神经网络可解释性研究

专题好文 | 再思考人群计数中的全局上下文

专题好文 | Luc Van Gool团队: 基于分层注意力的视觉Transformer

浙江大学孔祥维团队 | 综述: 迈向真正以人为本的XAI

澳大利亚国立大学Nick Barnes团队 | 对息肉分割的再思考: 从分布外视角展开

前沿观点 | Segment Anything并非一直完美: SAM模型在不同真实场景中的应用调查

精选好文 | 推荐系统的波纹知识图谱卷积网络

复旦邱锡鹏团队 | MOSS: 一个开源的对话式大语言模型

自动化所黄凯奇团队 | 分布式深度强化学习:综述与多玩家多智能体学习工具箱

约翰霍普金斯大学Alan Yuille团队 | 从时序和高维数据中定位肿瘤的弱标注方法

专题综述 | 大语言模型中的知识生命周期

精选综述 | 零信任架构的自动化和编排: 潜在解决方案与挑战

欧洲科学院院士蒋田仔团队 | 脑成像数据的多模态融合: 方法与应用

金耀初团队&郑锋团队 | 综述: 深度工业图像异常检测

专题好文 | 创新视听内容的联合创作: 计算机艺术面临的新挑战

下载量TOP好文 | 人工智能领域高下载文章集锦 (2022-2023年)

引用量TOP好文 | 人工智能领域高引用文章集锦 (2022-2023年)

综述 | 清华张学工教授: 肺癌影像组学中的机器学习

哈工大江俊君团队 | DepthFormer: 利用长程关联和局部信息进行精确的单目深度估计

Luc Van Gool团队 | 通过Swin-Conv-UNet和数据合成实现实用图像盲去噪

贺威团队&王耀南院士团队 | 基于动态运动基元的机器人技能学习

乔红院士团队 | 类脑智能机器人:理论分析与系统应用 (机器智能研究MIR)

南科大于仕琪团队 | YuNet:一个速度为毫秒级的人脸检测器

上海交大严骏驰团队 | 综述: 求解布尔可满足性问题(SAT)的机器学习方法

西电公茂果团队 | 综述: 多模态数据的联邦学习

高文院士团队 | 综述: 大规模多模态预训练模型

前沿观点 | 谷歌BARD的视觉理解能力如何?对开放挑战的实证研究

港中文黄锦辉团队 | 综述: 任务型对话对话策略学习的强化学习方法

南航张道强教授团队 | 综述:用于脑影像基因组学的机器学习方法

ETHZ团队 | 一种基于深度梯度学习的高效伪装目标检测方法 (机器智能研究MIR)

Luc Van Gool团队 | 深度学习视角下的视频息肉分割

专题综述 | 高效的视觉识别: 最新进展及类脑方法综述

北大黄铁军团队 | 专题综述:视觉信息的神经解码

专题综述 | 迈向脑启发计算机视觉的新范式

专题好文 | 新型类脑去噪内源生成模型: 解决复杂噪音下的手写数字识别问题

戴琼海院士团队 | 用以图像去遮挡的基于事件增强的多模态融合混合网络

ETH Zurich重磅综述 | 人脸-素描合成:一个新的挑战

华南理工詹志辉团队 | 综述: 面向昂贵优化的进化计算

东南大学张敏灵团队 | 基于选择性特征增广的多维分类方法

联想CTO芮勇团队 | 知识挖掘:跨领域的综述

复旦邱锡鹏团队 | 综述:自然语言处理中的范式转换

MIR资讯

挺进Q1区前10名!MIR首个影响因子发布

专题征稿 | 用于视频理解的多模态学习、时序建模及基础模型

专题征稿 | Special Issue on Embodied Intelligence

专题征稿 | Special Issue on Transformers for Medical Image Analysis

特别提醒!请认准MIR官方渠道,谨防受骗

2024年 AI 领域国际学术会议参考列表

MIR 优秀编委 & 优秀审稿人 & 高被引论文 (2023年度)

年终喜报!MIR科技期刊世界影响力指数跻身Q1区 (含100份龙年礼包)

最新 | 2023研究前沿及热点解读 (附完整PDF)

前进20名!MIR再度跻身国际影响力TOP期刊榜单

喜报 | MIR入选图像图形领域 T2级 “知名期刊”!

双喜!MIR入选”2022中国科技核心期刊”,并被DBLP收录 | 机器智能研究MIR

报喜!MIR入选2022年国际影响力TOP期刊榜单

喜报 | MIR被 ESCI 收录!

喜报 | MIR 被 EI 与 Scopus 数据库收录

片尾名片.jpg



https://blog.sciencenet.cn/blog-749317-1458679.html

上一篇:专题征稿 | 用于视频理解的多模态学习、时序建模及基础模型
下一篇:90s解读AI | 自动化所宗成庆团队: Transformer模型-从机器翻译到其他任务的通用框架
收藏 IP: 159.226.178.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-22 19:37

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部