Chenfiona的个人博客分享 http://blog.sciencenet.cn/u/Chenfiona

博文

AI复原”美男学霸”,一文综述背后神算法

已有 2118 次阅读 2019-8-19 09:43 |个人分类:好文推荐|系统分类:论文交流

·前 言·

前不久,82岁院士王德民AI修复照爆红网络,《人民日报》赞其"美而不自知"。几十年前模糊的黑白老照片,通过AI处理,神奇地还原出一位科学界的"美男学霸"。

图片来自网络



所谓的AI复原,其实就是应用了超分辨率技术。什么是超分辨率?其涉及的模型与算法有哪些?研究前景如何?当超分辨率与深度学习技术相结合,又会带来哪些新思路?IJAC特约综述:基于深度学习的单个图像超分辨率,即日起限时免费下载,答案就在文中......


Deep Learning Based Single Image Super-resolution: A Survey

Viet Khanh Ha, Jin-Chang Ren, Xin-Ying Xu, Sophia Zhao, Gang Xie, Valentin Masero, Amir Hussain

全文下载:

1)SpringerLink:

https://link.springer.com/article/10.1007/s11633-019-1183-x

2)IJAC官网:

http://www.ijac.net/en/article/doi/10.1007/s11633-019-1183-x

当期(Vol.16, No.4)全部文章限时免费下载:

特约综述+最新研究,好文云集!


全文导读


单个图像超分辨率(Single image super-resolution)吸引了越来越多研究者的关注,并广泛应用于卫星成像(satellite imaging)、医疗成像(medical imaging)、计算机视觉(computer vision)、安全监控图像(security surveillance imaging)、遥感(remote sensing)、目标检测及识别(objection detection, and recognition)中。


所谓超分辨率(Single image super-resolution,SISR),是指由低分辨率图像(low-resolution (LR) image)创建高分辨率图像(high-resolution (HR) images)的过程,这一技术可很好地用于解决各类现实问题,如处理因带宽(bandwidth)、像素大小(pixel size)、场景细节(scene details)及其他因素导致图像或视频不清晰的问题。


图片来自论文


总体而言,可以把能够解决SISR问题的各种技术分为三大类:基于插值的方法(interpolation-based)、基于重建的方法(reconstruction-based)和基于样本的方法(example-based methods),三种方法各有优劣,文中进行了详细论述。


近年来,深度学习技术得到极大发展与繁荣,在很多领域催生出大量尖端科技,也给SISR带来了新思路。鉴于其在特征提取与映射(feature extraction and mapping)中表现出的良好性能,深度学习技术可很好预测低分辨率图像(low-resolution images)中丢失的高频细节(high-frequency details)。


图片来自论文


8月,IJAC出版了由英国思克莱德大学Jin-Chang Ren教授团队带来的特约综述:基于深度学习的单个图像超分辨率(Deep Learning Based Single Image Super-resolution: A Survey)。本文首先论述了研究背景,而后讨论了基于样本的各类SISR算法,并介绍了深度学习相关模型的最新研究进展,对比了不同基于卷积神经网络的SISR算法,最后展开深度讨论,提出未来研究可能的方向和需要解决的问题。


图片来自Springer


全文信息


Deep Learning Based Single Image Super-resolution: A Survey

Viet Khanh Ha, Jin-Chang Ren, Xin-Ying Xu, Sophia Zhao, Gang Xie, Valentin Masero, Amir Hussain

摘要:

Single image super-resolution has attracted increasing attention and has a wide range of applications in satellite imaging, medical imaging, computer vision, security surveillance imaging, remote sensing, objection detection, and recognition. Recently, deep learning techniques have emerged and blossomed, producing " the state-of-the-art” in many domains. Due to their capability in feature extraction and mapping, it is very helpful to predict high-frequency details lost in low-resolution images. In this paper, we give an overview of recent advances in deep learning-based models and methods that have been applied to single image super-resolution tasks. We also summarize, compare and discuss various models from the past and present for comprehensive understanding and finally provide open problems and possible directions for future research.

关键词:

Image super-resolution, convolutional neural network, high-resolution image, low-resolution image, deep learning.

全文下载:

1)SpringerLink:

https://link.springer.com/article/10.1007/s11633-019-1183-x

2)IJAC官网:

http://www.ijac.net/en/article/doi/10.1007/s11633-019-1183-x


以上内容系IJAC小编翻译,如有失偏颇,欢迎后台指正!


RECOMMEND

最优质的论文

【综述】美外籍院士Brian Anderson: 社交网络中舆论动力学研究进展

特约综述+最新研究,好文云集!

【热门精选】五大方向、经典论文

帝国理工学院:自然语言处理中大数据的智能收集与分析

北大王立威团队: 零样本细粒度图像分析新模型

【全文免费】国内外特约综述&优质论文

【当期目录】四月新文,研海踏青

英国克兰菲尔德大学: 用于故障监测与诊断的全新多层分析算法

公共安全新卫士: 人群异动自动监测系统

【院士特辑】猪福派送,猪多好文!

【新年大礼】IJAC新网站下起红包雨!

【综述专栏】实现产品研发“众包”的框架、关键技术及挑战

【新年精选】新晋IEEE Fellow文章集锦

【综述集锦】两年精选综述,都在这里!

【综述专栏】中科院自动化所杜清秀:基于微惯性技术的行人航迹推演系统研究现状

拉夫堡大学陈文华:精准农业中分类问题的研究

【专题好文】应用于服务机器人的全新语义认知算法

【综述专栏】应用于智能微型机器人的软件系统

【特约专题】先进机器人的智能控制与计算

【综述专栏】华盛顿大学陈一昕: 深度学习在健康检测数据中的应用



更多精彩内容,欢迎关注

1) IJAC官方网站:

http://link.springer.com/journal/11633

http://www.ijac.net

2) Linkedin: Int. J. of Automation and Computing

3) 新浪微博: IJAC-国际自动化与计算杂志

4) Twitter: IJAC_Journal

5) Facebook: ijac journal

关于杂志或文章,您有任何意见或建议,欢迎后台留言或私信小编

本文编辑:欧梨成

点击"阅读原文",进入全文下载



https://blog.sciencenet.cn/blog-749317-1194227.html

上一篇:[转载]【资源共享】9大类186组公开数据集
下一篇:陶建华团队:基于半监督梯形网络的语音情感识别
收藏 IP: 103.254.68.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-29 03:53

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部