||
本文为美国佛罗里达理工学院(作者:Daljeet Kaur Kaushal)的硕士论文,共104页。
本文描述了一个集成大数据架构和深度学习模型的开发环境,以便于快速实验。本文的主要贡献有三个:
第一,描述了一个支持大数据收集和组织的体系结构,用于深度学习模型的研究。
其次,描述了一种用于创建数据视图的语言,该视图将各种大数据流转换为可供深度学习系统使用的视图。
第三,将该工具应用于多种不同的深度学习应用中,验证了系统的有效性。
This thesis describes a developmentenvironment that integrates big data architectures and deep learning models tofacilitate rapid experimentation. The thesis makes three major contributions:First, it describes a big-data architecture that supports big data collectionand organization supporting deep learning models. Second, it describes alanguage used to create a data view that converts the various big data streamsinto a view that can be used by a deep learning system. Third, it demonstratesthe system’s effectiveness by applying the tool to several different deeplearning applications.
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-29 14:14
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社