||
用复傅立叶变换绘制曲线形成的任意图形。
An arbitrary diagram formed by a curve is drawn by a complex Fourier transform.
通过结合傅立叶变换得到的向量,重现曲线上的构成点。
The points on the curve are reproduced by combining the vectors obtained by the Fourier transform.
由于傅立叶变换的复数特性,所有的矢量都表现为匀速圆周运动。
Because of the complex Fourier transform, all vectors are in constant velocity circular motion.
原始曲线坐标必须存储在.mat文件中
** Original curve coordinates must already be stored in a.mat file **
通过本设计了解复傅立叶变换形成的图像,让学生认识到约瑟夫傅立叶的伟大。
Understand the image of the complex Fourier transform and let your students realize the greatness of Joseph Fourier.
本设计包括的文件:
TwoDFourierVisualization_plain.m: 主程序代码。
.mat files: 多种曲线的举例,可以加载到主程序中。
Included files
*TwoDFourierVisualization_plain.m: main code.
*.mat files: examples of various curves. Load into main code.
更多精彩文章请关注公众号:
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-24 05:29
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社