||
等离子体和太阳风
太阳的活动情形与人类在地球上之生存环境息息相关,因此,太阳自然地成为人类航天计划最重要的探索目标。20 世纪 90 年代,以 Ulysses、SOHO 等为代表的一系列太空飞船的任务,还有最近的欧洲空间局与中国科学院合作的“SMILE”计划,目标都是直指太阳以及地球附近空间的辐射带。
俗话说得好:“万物生长靠太阳”,太阳发光又发热,供给地球上一切生命所需的热量和能量。然而,太阳除了向四周辐射光和热之外,还有一个不广为人知的向宇宙空间“发威”方式,叫做“太阳风”。
从彗星尾巴的方向说起
人类对太阳风的最初认识,开始于对彗星尾巴形状和方向的观察,虽然古人当时并不知道有什么“太阳风”,只是根据观测资料,将慧尾的方向与太阳所在的位置联系起来。《晋书·天文志》中指出:“彗体无光,傅日而为光,故夕见则东指,晨见则西指。在日南北,皆随日光而指。”。
图1:彗星
古代的观测手段有限,用肉眼就能看到的大彗星毕竟是少数,并且,彗星周期很长,从几十年到百万年都有。比如说,人类了解最多的哈雷彗星,属于“短周期彗星”,周期也有76年。因此,古人们将这些多年难得来访一次的“稀客”看着是不祥之兆,称为扫帚星。实际上,现代天文观测资料告诉我们,太阳系中彗星的数目可以说是多到“不计其数”,到2016年8月为止,有记载的彗星便已经有3940个【1】。
美丽的彗星总是拖着长长的尾巴,彗星的直径仅几十公里,但彗尾却长达几千公里。一般而言,彗尾不止一条,比如图1b所示的2006年发现的麥克諾特彗星,多条彗尾如孔雀开屏一样呈扇形张开在天空中,异常地壮观和美丽。拥有两条彗尾的彗星十分普遍,其基本成因也有科学的解释:一条叫尘埃尾,另一条叫做离子尾,见图1的示意图a(金黄色的是尘埃尾,蓝色的是离子尾)。尘埃尾是由跟随彗核一同运动的尘埃物质(气体、沙粒、小石块)反射太阳光而形成,因此,它通常呈现黄色或者红色,尘埃尾的方向除了与太阳位置有关以外,还与彗星自身的运动速度和方向有关,也正是因为彗核的轨道运动对周围尘埃物质的“拖曳”作用,尘埃尾有时看起来是弯曲的弧形。
离子尾的形成与“太阳风”有关,它永远都指向背向太阳的方向。乍一听有点不可思议,地球上会刮风,是因为地球上有大气,太阳怎么也会“刮风”呢?难道太阳上也有“大气”?确实如此,只不过与地球大气的成分不完全一样而已,太阳风来自于太阳大气的最外层,即日冕,其主要成分是等离子体。所以,太阳刮出来的是“等离子风”。
太阳风中包含着大量的带电粒子,吹向四方时运动电荷形成磁场,到达彗星附近时与彗核周围的磁场相互作用而发光。因此,离子尾跟随的是太阳风的磁力线,而不是彗星轨道的路径,所以总是指向背对太阳的方向。并且,太阳风的速度非常快,远远大于彗星的运动速度,因此离子尾看起来不像尘埃尾那样呈现出弯曲美妙的弧形,却总是笔直地硬邦邦地向外延伸出去。离子气体中含有光谱为蓝色的CO+离子,因而使得大多数离子尾呈蓝色。
起初,科学家们用来自太阳辐射的“光压说”来解释彗星的离子尾,但计算表明光辐射产生不了这么大的压力。1958年,尤金·派克(Parker)认为日冕外层的太阳大气会逃逸到空间中去,因此而预言应该有一股强劲的等离子体风从太阳不间断地吹出来,充斥了行星间的空间。但当时的大多数科学家反对派克的太阳风假说,他的观点遭嘲笑,论文被拒稿。
直到1960年代人造卫星上天后,强有力的观测事实才证实了太阳风的存在。
太阳风的来龙去脉
太阳的辐射能来源于核心的核聚变,核心温度高达15,000,000K,然后到太阳表面处,温度下降到5800K左右。太阳表面的上方,便是大概可分为3层的太阳大气:紧靠着太阳表面的薄薄的光球层(500公里左右)、然后是1500公里左右色球层、最外层的日冕可以延伸到几个太阳直径甚至更远。但日冕区的亮度却仅为光球层的百万分之一,只有在日全食的时候才便于观测。
按照常理来分析,似乎距离太阳核心越远的大气分层,温度应该越低,但事实却不是如此。从5800K度的光球层开始,色球层的温度起初略有下降,但后来急剧升高到27000K度左右,到了日冕区域,温度甚至达到了几百万摄氏度的高温,见图2a。
比较地球的大气而言,太阳大气的物质密度要稀薄得多,最密的光球层,密度也大约只有地球(海平面)大气密度的0.1%,色球和日冕的密度就更为稀疏了。我们在地球上看到的太阳,是一团闪亮的金黄色火球,那基本上是来自于光球层的可见光辐射。产生于高温日冕层的太阳风主要辐射的是带电粒子流。
图2:太阳大气
日冕的高温是如何形成的?这仍然是困惑物理学家的一个未解之谜。但温度极高的事实却是被光谱分析以及各种间接观测手段所证实了的。太阳的主要成分是氢和氦,在几百万度的高温下,氢原子和氦原子中的电子都纷纷从原子核的束缚中“解放”出来,成为自由电子,与带正电的离子混合在一起作高速运动,这种混合物被称之为“等离子体”。等离子体是物质的第4态,因为它不同于原来意义上的物质三态:固体、液体、气体。图2b显示了各种等离子体得以存在的密度及温度范围。
等离子体的形态类似气体,但是由离子及电子组成的,它们广泛存在于宇宙中,是宇宙中丰度最高的物质形态。其实,在我们的日常生活中也经常见到它们,比如说火焰、霓虹灯、氢弹等。当今世界各国企图攻克的受控热核聚变反应,其研究对象便是等离子体。
日冕跟火焰的密度相近,但是温度却要高出3-4个数量级。所以,太阳就像是一团悬浮在宇宙中的熊熊燃烧的超大火焰。地面上的空气流动能形成风,在日冕的高温等离子体中,不停地有某些摆脱太阳引力的高速粒子向外流出,形成“太阳风”。
地球磁场随“风”起舞
比较太阳的光辐射而言,太阳风的能量是很小的,大约只有光辐射能量的十亿分之一。然而,太阳大火吹出来的“等离子风”对地球的作用却非同小可。
等离子体是由质子、α粒子、少数重离子和电子流组成,太阳风将这些带电粒子以300至800公里/秒的速度“刮”到地球,这些速度大大超过空气中声速的粒子产生的磁场效应使得地球磁场随风而舞。
图3:太阳风和地球
幸好有了地球的磁场,为我们抵挡住太阳风的袭击,否则地球人就惨了。在图3a的示意图中,从左上方日冕处刮向地球的太阳风,改变了地球磁场的形状,看起来似乎是将地球附近的磁力线“刮”向了后方,而新形成的地球外围磁层就像一把遮阳大伞,顶住了太阳风,为地球撑起了一把保护伞。虽然不可见的两股电磁力在地球上方无声地激烈战斗着,但这把地磁大伞构成了一片安全的空腔,保护着地面上包括人类在内的生命体不受高速带电粒子的危害,也保护着空间基础设施,如卫星等能正常工作。
光球层的光辐射只需要8分钟就能抵达地球,太阳风中的带电粒子却需要经过40小时左右的飞行。这些粒子到达地球后,被磁场“大伞”阻挡在外,只好绕道而行。然而,“风”有风的特性,有时轻柔飘渺,有时风云突变。太阳风也是如此,太阳磁场的活动性大约以11年的周期变化,此外还有突发事件,比如说当太阳突然剧烈活动时,太阳风也就来得迅速刮得猛,大伞百密一疏防不胜防,总会有漏洞,免不了闯进一些“不法分子”,这些随风飘来的高能离子,沿着地球附近的磁力线侵入地球极区,与极区上空的大气层作用放电,产生壮观绚丽的极光,见图3b。
图3b可见,极光五彩缤纷,呈现各种颜色,那是因为带电粒子进入不同层次的大气层时,碰到不同的原子(主要是氧和氮),放电颜色取决于在什么高度碰到了哪种原子。变化的太阳风,碰到了变化的地球风,两风相斗,互相作用,使得产生的极光“随风舞动”,美丽玄妙,变幻无穷。
北极光和南极光固然使人类着迷,吸引人们不远万里到极地观赏这一大奇观。但是,在这种太阳的非常时期,科学家、工程师、还有某些行业的特别技术人员们,往往正在为太阳风带给地球的一些其它影响而忙碌:也许是某种局部的破壞性灾难;也许是使得气温增高气候反常;也许是卫星失去控制;也许是使电力网瘫痪,互联网失效,通信中断,甚至于还可能对人体引起一些说不清的效应,诸如身体疾病增多,心理情绪波动等等。
科学家们也借此难得的机会研究太阳和太阳风。实际上,无论正常期还是非常期,科学家们一直不停止地研究太阳风。特别是进入航天时代以来,美国宇航局及其它国家发射了多个监测太阳的航天器:如1980年的“太阳峰年卫星”,1990年的“尤利西斯”,1995年的“轨道太阳望远镜”,2006年的“日地关系天文台”等等。
1989年3月13日2:44,魁北克水力发电厂的控制系统突然崩溃【2】,来路不明的异常高压导致电力网短路,致使大面积电网瘫痪长达9小时;同时,自由欧洲电台的信号受到干扰。冷战时期的西方政府分外敏感,一开始有人担心这可能是来自前苏联的第一波核武器攻击?但之后立刻发现一些相关现象:绕极轨道的卫星失去控制;气象卫星的通信中断;日本也发生卫星失控现象,更重要的是,几乎同时,在极区产生了强烈的极光,连远在美国南方的德州都能看见。证据表明,这些异常现象是来自于大约3天前太阳发生的一次“磁暴”,太阳风把这次“爆炸”的效应传递到了地球上。
之后还有多次观察到的“磁暴”引发的地球灾难:
1989年8月,另一个磁暴影响到多伦多股票市场的微芯片,导致交易;1991年4月29日,強磁暴破坏美国缅因州一核电站;1994年1月20-21日,磁暴使加拿大两个通讯卫星发生故障;1998年5月19日,美国和德国都有通讯卫星发生故障……
哪儿是太阳系的疆界?
2012年8月25日,美国地球物理联盟宣布“旅行者”1号探测器正式离开太阳系的“边界”,进入星际空间。但是,太阳系的边界在哪儿?这个问题不是那么容易回答的。首先要看你如何定义这个“边界”。如果用一个恒星的“势力范围”来界定它的疆界的话,也至少有三种明显的方式:1. 从它的引力所及的范围;2. 光辐射所及的范围;3. 本篇文章所介绍的太阳风所及的范围。
辐射作用和引力作用都遵从平方反比率按距离的增长而下降,可以连续变化直到无穷,并没有一个清楚的边界。阳光照亮的范围显然不宜用来定义“边界”,因为太阳的亮度不会在某处嘎然而止。太阳能不能被看见?这个概念包含了太多主观的因素,或者说取决于测量技术的发展。至于引力范围,也是个相当模糊的界限。有人认为太阳引力的边界就是太阳引力不再占主导地位的时候,也许可以把太阳系边界定义到绕日旋转的最远的天体?但是,考察一下行星及彗星发现的历史,就觉得这不是一个合适的方法。
过去曾经认为冥王星是太阳系中最远的行星,但后来不停地陆续发现了许多矮行星及其它小天体,挑战冥王星的行星地位,使它于2006年被取消了太阳系行星的资格。此外,还有难以计数的彗星,实际上,天文学家认为,在冥王星之外远离太阳的边沿区域,有可能存在一个长周期彗星的巨大“仓库”:叫做奥尔特云,这片模糊的未知地带可能延伸到距太阳约2光年之遥。
因此,天体物理学家最后将太阳风的大概范围定义为太阳系的“边界”。
与太阳风相类似,宇宙中的其它恒星也都会吹出自己的“等离子风”。这些看不见的磁性“星风”,在宇宙空间中互相纠缠搏斗抗衡,其道理和图3a所示的地球磁场抵抗太阳风的情形也差不多,不过太阳距离别的恒星比较远,它的太阳风变形少,看起来就像是在宇宙空间中吹出了一个“大泡泡”,见图4a。别的恒星风的作用,在图中笼统用星际媒质形成的“宇宙风”来代表,宇宙风的方向,与太阳运动的方向相反。
图4:太阳系的边界
在太阳风不能继续推动星际媒质的地方称之为日球层顶(heliopause),这是太阳风和“星际宇宙风”之间抗衡而产生的“驻点”,通常可以认为是太阳系的边界。虽然日球层顶也无精确固定的数值,但比较起用辐射亮度或者引力来界定的边界,还是要明确和清楚多了。
对旅行者1号而言,当它接近和通过太阳驻点时,可以通过探测到如下三种情况来判断到达了太阳系边界:太阳风风力急跌,宇宙射线水平飙升,周围磁场大小和方向的改变。
太阳和太阳风对人类如此重要,天体物理学家们当然要利用先进的现代航天技术,来对太阳活动得到更多的数据,从而验证他们的理论,减少太阳风的危害。下一篇中,我们将代表性地介绍一个太阳探测器:“尤利西斯”。
参考文献:
【1】http://www.minorplanetcenter.net/
【2】维基百科(第22太阳周期):https://zh.wikipedia.org/wiki/%E7%AC%AC22%E5%A4%AA%E9%99%BD%E9%80%B1%E6%9C%9F
本文是同步发表在微信号“知识分子”和“太空联盟”系列文章《星星背后的物理》之8
1/0 | 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ゆ繝鈧柆宥呯劦妞ゆ帒鍊归崵鈧柣搴㈠嚬閸欏啫鐣峰畷鍥ь棜閻庯絻鍔嬪Ч妤呮⒑閸︻厼鍔嬮柛銊ョ秺瀹曟劙鎮欏顔藉瘜闂侀潧鐗嗗Λ妤冪箔閹烘挶浜滈柨鏂跨仢瀹撳棛鈧鍠楅悡锟犮€侀弮鍫濋唶闁绘柨寮剁€氬ジ姊绘担鍛婂暈缂佽鍊婚埀顒佸嚬閸o綁宕洪姀鈥崇窞闁归偊鍘鹃崢鍗炩攽閳藉棗鐏犻柣蹇旂箖缁傚秹宕烽鐘碉紲濡炪倖妫侀崑鎰櫠閿旈敮鍋撶憴鍕闁靛牊鎮傞獮鍐閵忋垻鐓撻梺鍓茬厛閸犳洜妲愰悢灏佹斀闁绘ɑ鍓氶崯蹇涙煕閻樻剚娈滈柕鍡楀暣瀹曘劑顢橀崶銊р槈閾绘牠鏌涘☉鍗炲箻妞わ富鍣e娲箰鎼淬垻顦ラ梺绋匡工缂嶅﹪骞冮敓鐘参ㄩ柨鏂垮⒔閻﹀牓姊婚崒姘卞缂佸甯¢弫宥咁吋閸℃洜绠氶梺鍦帛鐢骞夐崫銉х<閺夊牄鍔屽ù顕€鏌熼瑙勬珚闁诡喗绮岃灒闁绘挸瀛╅柨顓熺節閻㈤潧鍓崇紒鑼舵鐓ら柕鍫濐槹閺呮繃銇勮箛鎾村櫢缂佽妫濋弻娑㈩敃閿濆棛顦ュ┑锛勫仒缁瑩寮诲☉銏犵疀闁靛⿵闄勯悵鏇㈡⒑閸濆嫭顥欓柛妤€鍟块~蹇曠磼濡顎撻梺鍛婄☉閿曘儵宕曢幘缁樷拺鐟滅増甯楅弫閬嶆煕閵娿儲璐℃俊鍙夊姍閹瑧鈧稒锚椤庢捇姊洪崨濠冨碍鐎殿喖澧庣槐鐐存償閵婏腹鎷洪梺璇″瀻閸涱垼鍟堟俊鐐€ら崑鍕囬鐐村仼闂佸灝顑呯欢鐐烘煙闁箑骞橀柛姗嗕簼缁绘繈鎮介棃娑楃捕闂佽绻戠换鍫濈暦濠靛棌鍫柛顐ゅ枔閸樿棄鈹戦悩缁樻锭閻庢凹鍓熼幃姗€宕f径瀣伎婵犵數濮撮崯顖炲Φ濠靛鐓欐い鏃€鍎抽崢瀵糕偓娈垮枛閻栧ジ鐛幇顓熷劅妞ゆ柨鍚嬮弳蹇涙⒒閸屾艾鈧兘鎳楅崼鏇炵疇闁规崘顕ч崥褰掓煛瀹ュ骸骞栫紒鐙€鍨堕弻銊╂偆閸屾稑顏�:0 | 婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繘鏌i幋锝嗩棄闁哄绶氶弻娑樷槈濮楀牊鏁鹃梺鍛婄懃缁绘﹢寮婚敐澶婄婵犲灚鍔栫紞妤呮⒑闁偛鑻晶顕€鏌涙繝鍌涘仴妤犵偞鍔栫换婵嬪礃椤忓棗楠勯梻浣稿暱閹碱偊顢栭崶鈺冪煋妞ゆ棃鏁崑鎾舵喆閸曨剛锛橀梺鍛婃⒐閸ㄧ敻顢氶敐澶婇唶闁哄洨鍋熼娲⒑缂佹ḿ鎳冮柟铏姍閻涱噣濮€閵堝棌鎷婚梺绋挎湰閻燂妇绮婇悧鍫涗簻妞ゆ劑鍩勫Σ鎼佹煟閿濆懎妲婚摶锝夋偠濞戞帒澧查柣蹇撳暙閳规垿鎮欓弶鎴犱桓缂佺偓婢樼粔褰掋€侀弴鐔侯浄閻庯綆鍋嗛崢顏堟⒑閸撴彃浜濈紒璇插暣瀹曨垶骞掑Δ浣哄幐闂佸憡鍔戦崝搴㈡櫠濞戙垺鐓涢柛娑卞枤閸欌偓闂佸搫鏈粙鎴﹀煡婢舵劕纭€闁绘劘灏欓鎴炵節閻㈤潧浠滈柣妤€锕幃锟犲灳閹颁焦缍庨梺鎯х箰濠€閬嶆儗濞嗘劗绠鹃柛鈩兠崝銈夋煕閹惧瓨绶叉い顏勫暣婵″爼宕卞Δ鍐ф樊婵$偑鍊х粻鎾翅缚瑜旈、姘舵晲閸℃瑧鐦堝┑顔斤供閸樿棄鈻嶅⿰鍫熲拺闁告稑锕﹂埥澶愭煕婵犲偆鐓肩€规洜澧楅幆鏃堝Ω閵壯冨箳闂佺懓鍚嬮悾顏堝礉瀹€鈧划璇差潩鏉堛劌鏋戦柟鍏兼儗閻撳牓寮繝鍥ㄧ厱闁哄洢鍔岄悘锟犳煟閹惧鈽夋い顓℃硶閹瑰嫰鎮滃鍡橈紒婵犵數鍋涢幊搴∥涘☉姘潟闁圭儤姊圭€氭岸鏌ょ喊鍗炲妞わ絽鎼—鍐Χ鎼粹€茬盎缂備胶绮敃銏ょ嵁閺嶎厼鎹舵い鎾跺枎閺嬪倿姊洪崨濠冨闁稿妫濋弫宥堢疀濞戞瑢鎷绘繛鎾村焹閸嬫挻绻涙担鍐插娴犳岸姊绘担鍛靛湱鈧稈鏅犻幃锟犳晸閻樿尙鐣洪梺姹囧灮鏋い顐㈡嚇閺屾洟宕煎┑鍥舵闂佸綊鏀卞钘夘潖濞差亝鍤掗柕鍫濇噺閻庢儳鈹戦悩顔肩仾闁挎岸鏌嶇紒妯诲磳闁糕晪绻濆畷銊╊敊閹冪闂傚倷绀侀幉锟犲垂椤栫偛纾归柡宥庡亐閸嬫挸顫濋悙顒€顏� | 婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繘鏌i幋锝嗩棄闁哄绶氶弻娑樷槈濮楀牊鏁鹃梺鍛婄懃缁绘﹢寮婚敐澶婄闁挎繂妫Λ鍕⒑閸濆嫷鍎庣紒鑸靛哺瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈嗐亜椤撶姴鍘寸€殿喖顭烽弫鎰緞婵犲嫮鏉告俊鐐€栫敮濠囨倿閿曞倸纾块柟鍓х帛閳锋垿鏌熼懖鈺佷粶濠碘€炽偢閺屾稒绻濋崒娑樹淮閻庢鍠涢褔鍩ユ径鎰潊闁冲搫鍊瑰▍鍥⒒娴g懓顕滅紒璇插€歌灋婵炴垟鎳為崶顒€唯鐟滃繒澹曢挊澹濆綊鏁愰崨顔藉創閻忓繐绻樺娲川婵犲孩鐣锋繝鐢靛仜閿曘倝顢氶敐鍡欑瘈婵﹩鍘兼禍婊堟⒑缁嬭法绠伴柣銊у厴楠炲繑绻濆顓犲幗闁硅壈鎻徊楣冨汲閳哄懎鍑犳い蹇撳閺€浠嬫煃閵夈劌鐨洪柣顓熺懄閹便劍绻濋崘鈹夸虎閻庤娲﹂崑濠傜暦閻旂⒈鏁嗛柍褜鍓欓埢宥夊Χ閸モ晝锛濇繛杈剧悼閻℃棃宕靛▎鎾寸厽婵°倓鐒︾亸顓熴亜閺囶亞绋荤紒缁樼箓椤繈顢栭埞鐐珚闁哄本娲樺鍕醇濠靛牅鐥梻浣告惈閸婄敻宕戦幘缁樷拻闁稿本鐟ㄩ崗宀€鐥鐐靛煟鐎规洘绮岄埞鎴犫偓锝庡亝濞呮梻绱撻崒姘偓鐑芥倿閿曞倸绀夐柡宥庡幗閸庡孩銇勯弽銊ュ毈婵炲吋鐗楃换娑橆啅椤旇崵鐩庨悗鐟版啞缁诲倿鍩為幋锔藉亹闁圭粯甯╅崝澶愭⒑娴兼瑧鎮奸柛蹇旓耿楠炲啫螖閸涱厾顦ф繝銏f硾閿曪絾绔熼弴銏♀拻濞达絽鎽滅粔鐑樹繆椤愩儲纭剁紒顔肩墛閹峰懘鎼归柅娑氱憹闂備礁鎼粔鏌ュ礉鐎n剚宕查柛鈩冪⊕閻撳繘鏌涢锝囩畵闁逞屽墮閹诧紕绮嬪鍡愬亝闁告劏鏂侀幏娲煟鎼粹剝璐″┑顔炬暬钘熷璺侯儍娴滄粓鏌ㄩ弮鍥跺殭闁诲骏绠撻弻娑㈠煘閸喚浠煎銈嗘尭閵堢ǹ鐣烽崡鐐嶇喖鎳栭埞顑惧€濆缁樼瑹閳ь剙岣胯閸e綊姊洪崨濠佺繁闁搞劍澹嗛弫顕€骞掗弮鍌滐紳闂佺ǹ鏈懝楣冨焵椤掑嫷妫戠紒顔肩墛缁楃喖鍩€椤掆偓閻g兘骞囬弶澶哥炊闂侀潧锛忛崨顖氬脯闂傚倷绀佸﹢閬嶆惞鎼淬劌绐楅柟鎹愵嚙绾惧鏌熺€涙ḿ璐╃憸鐗堝笒缁€鍌炴煕韫囨艾浜圭紒瀣喘濮婄粯鎷呯粙鑳煘濠电偛妯婇崣鍐嚕婵犳碍鏅插璺猴攻椤ユ繈姊洪崷顓€鍦偓娑掓櫊瀹曟洟骞樼紒妯衡偓鍨箾閸繄浠㈤柡瀣枎閳规垿鎮欑拠褍浼愬銈庡亜缁绘帞妲愰幒鎳崇喓鎷犲顔瑰亾閹剧粯鈷戦柟顖嗗懐顔婇梺纭呮珪閹稿墽鍒掗銏犵伋闁哄倶鍎查弬鈧梻浣虹帛閸旀牞銇愰崘顏嗘/鐟滄棃寮婚敐鍛傛棃宕橀妸鎰╁灲閺岋綁鏁愰崶褍骞嬪Δ鐘靛仜濞差厼顕i崼鏇炵閹艰揪绱曢妶璺衡攽閿涘嫬浜奸柛濠冪墵楠炴劙鎳¢妶鍥╃厯闂佺懓顕崑鐔笺€呴弻銉︾厽闁逛即娼ф晶顖炴煕濞嗗繒绠插ǎ鍥э躬椤㈡稑饪伴崘銊ょ帛濠电偛鐡ㄧ划鎾剁不閺嶎厼绠栨俊銈傚亾妞ゎ偅绻堥幃娆擃敆閳ь剟顢旈敓锟� | 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤濠€閬嶅焵椤掑倹鍤€閻庢凹鍙冨畷宕囧鐎c劋姹楅梺鍦劋閸ㄥ綊宕愰悙鐑樺仭婵犲﹤鍟扮粻鑽も偓娈垮枟婵炲﹪寮崘顔肩<婵炴垶鑹鹃獮鍫熶繆閻愵亜鈧倝宕㈡禒瀣瀭闁割煈鍋嗛々鍙夌節闂堟侗鍎愰柣鎾存礃缁绘盯宕卞Δ鍐唺缂備胶濮撮…鐑藉蓟閳ュ磭鏆嗛柍褜鍓熷畷浼村箻閼告娼熼梺鍦劋椤ㄥ懘锝為崨瀛樼厽婵☆垵娅i敍宥吤瑰⿰搴濈敖缂佽鲸鎹囧畷鎺戔枎閹烘垵甯┑鐘愁問閸o絿绮婚弽顓熸櫜闁绘劖娼欑欢鐐烘煙闁箑鍔﹂柨鏇炲€归悡鏇㈡煛閸ャ儱濡奸柣蹇曞Х缁辨帡鎮╁畷鍥ㄥ垱闂佸搫鏈惄顖炪€侀弴銏℃櫜闁糕剝鐟Σ鐗堜繆閻愵亜鈧洘顨ラ崫銉х煋闁荤喖鍋婂ḿ鏍煣韫囨挻璐¢柣顓熺懄缁绘盯宕卞Ο鍝勫Б闂佸憡鎸鹃崑鎾舵崲濞戞埃鍋撳☉娆嬬細闁活厹鍊曢湁婵犲﹤绨肩花缁樸亜閺囶亞鎮奸柟椋庡Т闇夐悗锝庡亽濞兼棃姊绘笟鈧ḿ褏鎹㈤幒鎾村弿闁割偁鍎辨儫闂佹寧妫佸銊ц姳婵犳碍鈷戦柛婵嗗閳ь剚鎮傞幃妯衡攽閸垻顦梺鍝勭Р閸斿秹宕h箛娑欏仭婵炲棗绻愰瀛樼箾閸喓鐭掗柡宀€鍠栭、娆撴偂鎼粹懣鈺佄斿Δ濠佺胺闁告鍟块悾鐑藉Ω閳哄﹥鏅i悷婊冮琚欏鑸靛姈閳锋垶鎱ㄩ悷鐗堟悙闁绘帗妞介弻娑㈠Ω閳衡偓閹查箖鏌曢崱妤€鏆炵紒缁樼箞瀹曟帡濡堕崨顕呭悪闂傚倷绀侀幖顐ゆ偖椤愶箑纾块弶鍫氭櫇娑撳秹鏌i悢绋挎珵鐟滅増甯楅弲鏌ユ煕濞戝崬鏋︾痪顓涘亾闂傚倷绀侀幉锟犳偡閵夈儙娑樷攽閸♀晜缍庨梺鎯х箰濠€杈╁閸忛棿绻嗘い鏍ㄧ箓閸氳銇勯敂鍝勫姦婵﹨娅g划娆撳礌閳ュ厖绱f繝鐢靛Л閸嬫捇姊洪鈧粔鎾倿閸偁浜滈柟鍝勭Х閸忓矂鏌涢悢鍝ュ弨闁哄瞼鍠栧畷娆撳Χ閸℃浼� |
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2025-3-15 14:47
Powered by ScienceNet.cn
Copyright © 2007-2025 中国科学报社