BajieKingofOutm的个人博客分享 http://blog.sciencenet.cn/u/BajieKingofOutm

博文

哈工大出版社出了一本好书,却坏了哈工大的名头

已有 6125 次阅读 2014-7-2 13:51 |系统分类:观点评述

因为教学的原因,到图书馆借了一本哈工大出版的《晶体生长手册》。这是《Springer Handbook of Crystal Growth》的影印版,哈工大出版时只是翻译了一下目录。书确实是本好书,可惜,就那么几个目录的翻译,就错误百出,特别是一些低级错误,简直是外行翻译。实在是坏哈工大的名头。前几天突然心血来潮,把目录的翻译校对了一下。勘误见下表。因为我也不专业,有些也拿不准,标记成了黄色。当然,我的翻译可能也有些不恰当甚至错误的地方,还有些原翻译不恰当的地方我也拿不出更好的翻译,还望博友们批评指正。

 

英文

原书翻译

勘误

Part A Fundamentals of Crystal Growth and Defect Formation

Part A晶体生长基础及缺陷形成

 

1 Crystal Growth Techniques and Characterization: An Overview

1.晶体生长技术和表征:综述

 

1.1 Historical Developments

 1.1发展历史

 

1.2 Theories of Crystal Growth

 1.2晶体生长理论

 

1.3 Crystal Growth Techniques

 1.3晶体生长技术

 

1.4 Crystal Defects and Characterization

 1.4晶体缺陷及表征

 

 

 参考文献

 

2 Nucleation at Surfaces

2.表面成核

 

2.1 Equilibrium Crystal–Ambient Phase

 2.1晶体环境相平衡

 

2.2 Work for Nucleus Formation

 2.2晶核形成及工作机理

晶核形成功

2.3 Rate of Nucleation

 2.3成核率

成核速率

2.4 Saturation Nucleus Density

 2.4饱和晶核密度

 

2.5 Second-Layer Nucleation in Homoepitaxy

 2.5在同质外延中的第二层成核

 

2.6 Mechanism of Clustering in Heteroepitaxy

 2.6异质外延中的聚集机理

 

2.7 Effect of Surfactants on Nucleation

 2.7表面活性剂对成核的影响

 

2.8 Conclusions and Outlook

 2.8结论与展望

 

 

 参考文献

 

3 Morphology of Crystals Grown from Solutions

3.溶液中的晶体生长形态

 

3.1 Equilibrium Shape

 3.1相平衡

平衡形状

3.2 The Theoretical Growth Shape

 3.2晶体的生长相理论

理论生长形状

3.3 Factors Influencing the Crystal Habit

 3.3影响晶体特性的因素

影响晶体生长习性的因素

3.4 Surface Structure

 3.4表面结构

 

3.5 Crystal Defects

 3.5晶体缺陷

 

3.6 Supersaturation – Growth Kinetics

 3.6成核动力学一一过饱和

过饱和-生长动力学

3.7 Solvent

 3.7溶剂

 

3.8 Impurities

 3.8杂质

 

3.9 Other Factors

 3.9其他因素

 

3.10 Evolution of Crystal Habit

 3.10晶体特性变化过程

晶体结晶习性面的演化

3.11 A Short Conclusion

 3.11小结

 

3.A Appendix

 3.A附录

 

 

 参考文献

 

4 Generation and Propagation of Defects During Crystal Growth

4.晶体生长过程中缺陷的生长及演变

晶体生长过程中缺陷的产生和增殖

4.1 Overview

 4.1综述

 

4.2 Inclusions

 4.2包晶

包含物

4.3 Striations and Growth Sectors

 4.3条纹和生长区

 

4.4 Dislocations

 4.4位错

 

4.5 Twinning

 4.5孪晶

 

4.6 Perfection of Crystals Grown Rapidly from Solution

 4.6溶液中快速生长完整晶体

 

 

 参考文献

 

5 Single Crystals Grown Under Unconstrained Conditions

5.没有约束条件下的单晶生长

 

5.1 Background

 5.1背景

 

5.2 Smooth and Rough Interfaces: Growth Mechanism and Morphology

 5.2光滑和粗糙的接触面:生长机理和形态学

光滑界面和粗糙界面:生长机理和形态学

5.3 Surface Microtopography

 5.3表面微形貌

 

5.4 Growth Forms of Polyhedral Crystals

 5.4多面体材料晶体的生长形貌

晶体多面体的生长形状

5.5 Internal Morphology

 5.5内部形态

 

5.6 Perfection of Single Crystals

 5.6完整单晶

 

 

 参考文献

 

6 Defect Formation During Crystal Growth from the Melt

6.熔体生长晶体期间缺陷的形成

 

6.1 Overview

 6.1综述

 

6.2 Point Defects

 6.2点缺陷

 

6.3 Dislocations

 6.3位错

 

6.4Second-Phase Particles

 6.4第二相粒子

 

6.5 Faceting

 6.5面缺陷

刻面化

6.6 Twinning

 6.6孪晶

 

6.7 Summary

 6.7总结

 

 

 参考文献

 

Part B Crystal Growth from Melt Techniques

PartB 熔体生长晶体技术

 

7 Indium Phosphide: Crystal Growth and Defect Control by Applying Steady Magnetic Fields

7.磷化铟:用稳定的磁场生长晶体及缺陷控制

磷化铟:通过外加稳定磁场生长晶体及控制缺陷(或:外加稳定磁场作用下的晶体生长及缺陷控制)

7.1 Historical Overview

 7.1 历史综述

 

7.2 Magnetic Liquid-Encapsulated Growth

 7.2 磁场下液体封盖生长法

 

7.3 Magnetic Field Interactions with the Melt

 7.3 熔体的磁场接触面

熔体与磁场的交互作用

7.4 Dislocation Density

 7.4 位错密度

 

7.5 Magnetic Field Effects on Impurity Segregation

 7.5 磁流量对杂质隔离的影响

磁场对杂质偏析的影响

7.6 Optical Characterization of InP:Fe

 7.6 InP:Fe的光学特征

InP:Fe的光学表征

7.7 Summary

 7.7 总结

 

 

 参考文献

 

8 Czochralski Silicon Single Crystals for Semiconductor and Solar Cell Applications

8.半导体直拉硅单晶和太阳能电池应用

用于半导体和太阳能电池的直拉硅单晶

8.1 Silicon Single Crystals for LSIs and Solar Applications

 8.1 激光扫描光散射技术生长硅单晶和太阳能电池应用

用于LSIs和太阳能电池的直拉硅单晶

8.2 Control of Crystal Defects in Czochralski Silicon

 8.2 直拉硅单晶的晶体缺陷的控制

直拉硅单晶的晶体缺陷控制

8.3 Growth and Characterization of Silicon Multicrystal for Solar Cell Applications

 8.3 太阳能电池应用的多晶硅的生长和特征

用于太阳能电池的多晶硅的生长和表征

8.4 Summary

 8.4 总结

 

 

 参考文献

 

9 Czochralski Growth of Oxide Photorefractive Crystals

9.氧化物光折变单晶的直拉生长法

氧化物光折变单晶的直拉法生长

9.1 Background

 9.1 背景

 

9.2 Crystal Growth

 9.2 晶体生长

 

9.3 Design and Development of Czochralski Growth System

 9.3 直拉生长系统的设计和发展

 

9.4 Growth of Lithium Niobate Crystals and Its Characteristics

 9.4 铌酸锂晶体的生长及其特性

 

9.5 Other Oxide Photorefractive Crystals

 9.5 其他氧化物光折变晶体

 

9.6 Growth of Sillenite Crystals and Its Characteristics

 9.6 软铋矿晶体的生长及其特性

 

9.7 Conclusions

 9.7 结论

 

 

 参考文献

 

10Bulk Crystal Growth of Ternary III–V Semiconductors

10.三元化合物-V族半导体体材料晶体生长

-V族三元化合物半导体大块晶体生长

10.1 III–V Ternary Semiconductors

 10.1 -V族三元化合物半导体

 

10.2 Need for Ternary Substrates

 10.2 三元化合物衬底的需求

 

10.3 Criteria for Device-Grade Ternary Substrates

 10.3 器件级三元化合物衬底标准

 

10.4 Introduction to Bridgman Crystal Growth Techniques

 10.4 布里兹曼晶体生长技术介绍

 

10.5 Overview of III–V Binary Crystal Growth Technologies

 10.5 -V族的二元化合物晶体生长技术综述

 

10.6 Phase Equilibria for Ternary Compounds

 10.6 三元化合物相平衡

 

10.7 Alloy Segregation in Ternary Semiconductors

 10.7 三元化合物半导体合金偏析

三元化合物半导体中的合金偏析

10.8 Crack Formation in Ternary Crystals

 10.8 三元化合物晶体裂纹的形成

三元化合物晶体中裂纹的形成

10.9 Single-Crystalline Ternary Seed Generation Processes

 10.9 单晶三元化合物籽晶生产工艺

 

10.10 Solute Feeding Processes for Homogeneous Alloy Growth

 10.10 均质合金生长的溶质配备过程

均质合金生长的溶质进料工艺

10.11 Role of Melt–Solid Interface Shapes

 10.11 熔体-固体界面形状的作用

 

10.12 Conclusion

 10.12 结论

 

 

 参考文献

 

11Growth and Characterization of Antimony-Based Narrow-Bandgap III–V Semiconductor Crystals

for Infrared Detector Applications

11.用于红外线探测器的锑基窄禁带-V族半导体晶体的生长与特性

 

11.1 Importance of Antimony-Based Semiconductors

 11.1 锑基半导体的重要性

 

11.2 Phase Diagrams

 11.2 相图

 

11.3 Crystal Structure and Bonding

 11.3 晶体结构和成键

 

11.4 Material Synthesis and Purification

 11.4 材料合成和提纯

 

11.5 Bulk Growth of InSb

 11.5 体材料InSb的生长

InSb块体的生长

11.6 Structural Properties of InSb, InAsxSb1−x,andInBixSb1−x

 11.6 InSbInAsxSbl-x.InBixSbl-x的结构特性

 

11.7 Physical Properties of InSb, InAsxSb1−x,andInBixSb1−x

 11.7 InSbInAsxSb1_x.InBixSb1_x的物理性质

 

11.8 Applications

 11.8 应用

 

11.9 Concluding Remarks and Future Outlook

 11.9 结语与展望

 

 

 参考文献

 

12Crystal Growth of Oxides by Optical Floating Zone Technique

12.光学浮区技术用于氧化物晶体生长

通过光学浮区技术进行的氧化物晶体生长

12.1 Historical Notes

 12.1 历史

 

12.2 Optical Floating Zone Technique – Application for Oxides

 12.2 光学浮区技术——氧化物的应用

光学浮区技术——在氧化物上的应用(或:应用于氧化物)

12.3 Optical Floating Zone and Traveling Solvent Crystal Growth Techniques

 12.3 光学浮区及溶区移动晶体生长技术

光学浮区及溶剂移动晶体生长技术

12.4 Advantages and Limitations of the Floating Zone Techniques

 12.4 浮区技术的优势和局限

 

12.5 Optical Floating Zone Furnaces

 12.5 光学浮区炉

 

12.6 Experimental Details of Ceramics and Rod Preparation for OFZT

 12.6 OFZT的陶瓷和晶棒生长的实验细节

用于OFZT的陶瓷和晶棒的制备实验细节

12.7 Stable Growth of Congruently and Incongruently Melting Oxides

 12.7 同成分和不同成分熔融氧化物的稳定生长

 

12.8 Constitutional Supercooling and Crystallization Front Stability

 12.8 结构过冷和结晶前的稳定性

组分过冷和晶化前沿的稳定性

12.9 Crystal Growth Termination and Cooling

 12.9 晶体生长的终止和冷却

 

12.10 Characterization of Crystals Grown by the OFZ Technique

 12.10 0FZ技术的晶体生长特点

OFZ技术生长晶体的表征

12.11 Determination of Defects in Crystals – The Experimental Approach

 12.11 晶体缺陷测定——实验方法

 

12.12 Details of Conditions for Growth of Selected Oxide Single Crystals by OFZ and TSFZ Methods

 12.12 0FZTSFZ方法选定氧化物单晶生长的具体条件

 

12.13 Conclusions

 

 

13Laser-Heated Pedestal Growth of Oxide Fibers

13.激光加热基座生长氧化物纤维

 

13.1 Fiber-Pulling Research

 

 

13.2 The Laser-Heated Pedestal Growth Technique

 

 

13.3 Fundamentals

 

 

13.4 Fiber Growth Aspects

 

 

13.5 Conclusions

 

 

 

 

 

14Synthesis of Refractory Materials by Skull Melting Technique

14.采用壳融技术合成高熔点材料

 

14.1 Overview

 

 

14.2 Techniques for Growth of Single Crystals in a Cold Crucible

 

 

14.3 Growth of Single Crystals Based on Zirconium Dioxide

 

 

14.4 Glass Synthesis by Skull Melting in a Cold Crucible

 

 

14.5 Conclusion

 

 

 

 

 

15Crystal Growth of Laser Host Fluorides and Oxides

15.激光基质氟化物和氧化物品体生长

 

15.1 Crystal Growth of Laser Fluorides and Oxides from Melt

 

 

15.2 Laser Crystal Defects

 

 

15.3 Crystal Growth Techniques Characterization

 

 

 

 

 

16Shaped Crystal Growth

16.晶体生长的成型

塑形晶体生长

16.1 Definitions and Scope of Discussion: SCG by CST

 

 

16.2 DSC – Basis of SCG by CST

 

 

16.3 SA and SCG by CZT

 

 

16.4 SA and SCG by VT

 

 

16.5 SA and SCG by FZT

 

 

16.6 TPS Capillary Shaping

 

 

16.7 TPS Sapphire Growth

 

 

16.8 TPS Silicon Growth

 

 

16.9 TPS Metals Growth

 

 

16.10 TPS Peculiarities

 

 

 

参考文献

 

Part C Solution Growth of Crystals

PartC 溶液法生长晶体

 

17Bulk Single Crystals Grown from Solution on Earth and in Microgravity

17 地球微重力下从溶液中生长体材料单晶

 

17.1 Crystallization: Nucleation and Growth Kinetics

17.1 结晶:成核和生长动力学

 

17.2 Low-Temperature Solution Growth

17.2 低温溶液的晶体生长

低温溶液生长

17.3 Solution Growth by Temperature Lowering

17.3 更低温度溶液的晶体生长

降温法溶液生长

17.4 Triglycine Sulfate Crystal Growth: A Case Study

17.4 硫酸三甘钛晶体生长:个案研究

 

17.5 Solution Growth of Triglycine Sulfate Crystals in Microgravity

17.5 微重力下硫酸三甘钛晶体的溶液生长

 

17.6 Protein Crystal Growth

17.6 蛋白质晶体生长

 

17.7 Concluding Remarks

17.7 结语

 

 

参考文献

 

18Hydrothermal Growth of Polyscale Crystals

18 水热法大尺寸晶体生长

多尺寸晶体的水热生长

18.1 History of Hydrothermal Growth of Crystals

18.1 水热法晶体生长的历史

 

18.2 Thermodynamic Basis of the Hydrothermal Growth of Crystals

18.2 水热法晶体生长的热力学基础

 

18.3 Apparatus Used in the Hydrothermal Growth of Crystals

18.3 水热法晶体生长的设备

 

18.4 Hydrothermal Growth of Some Selected Crystals

18.4 部分晶体的水热法生长

 

18.5 Hydrothermal Growth of Fine Crystals

18.5 精细晶体的水热法生长

 

18.6 Hydrothermal Growth of Nanocrystals

18.6 水热法生长纳米晶体

纳米晶的水热生长

18.7 Concluding Remarks

18.7 结语

 

18.A Appendix

18.A附录

 

 

参考文献

 

19Hydrothermal and Ammonothermal Growth of ZnO and GaN

19 水热法与氨热法生长ZnOGaN

 

19.1 Overview of Hydrothermal and Ammonothermal Growth of Large Crystals

19.1 水热法与氨热法生长大晶体综述

 

19.2 Requirements for Growth of Large, Low-Defect Crystals

19.2 低缺陷大晶体的生长要求

 

19.3 Physical and Mathematical Models

19.3 物理与数学模型

 

19.4 Process Simulations

19.4 过程模拟

 

19.5 Hydrothermal Growth of ZnO Crystals

19.5 水热法生长ZnO晶体

 

19.6 Ammonothermal GaN

19.6 氨热法生长GaN

 

19.7 Conclusion

19.7 结论

 

 

参考文献

 

20Stoichiometry and Domain Structure of KTP-Type Nonlinear Optical Crystals

20 KTP型非线性光学晶体的化学计量比和畴结构

 

20.1 Background

20.1 背景

 

20.2 Stoichiometry and Ferroelectric Phase Transitions

20.2 化学计量比与铁电相转变

 

20.3 Growth-Induced Ferroelectric Domains

20.3 生长引起的铁电畴

 

20.4 Artificial Domain Structures

20.4 人造畴结构

 

20.5 Nonlinear Optical Crystals

20.5 非线性光学晶体

 

 

参考文献

 

21High-Temperature Solution Growth:Application to Laser and Nonlinear Optical Crystals

21 高温溶液生长:用于激光和非线性光学的晶体

21 高温溶液生长:用于激光和非线性光学晶体

21.1 Basics

21.1 基础

 

21.2 High-Temperature Solution Growth

21.2 高温溶液生长

 

21.3 Growth of Bulk Laser and NLO Single Crystals by the TSSG Method

21.3 TSSG法生长激光体材料和NLO单晶

TSSG法生长大块激光单晶和NLO单晶

21.4 Liquid-Phase Epitaxy:Growth of Epitaxial Films of Laser and NLO Materials

21.4 液相外延:激光和NLO材料的外延膜的生长

液相外延:激光和NLO材料外延膜的生长

 

参考文献

 

22Growth and Characterization of KDP and Its Analogs

22 KDP及同类晶体的生长与表征

 

22.1 Background

22.1 背景

 

22.2 Mechanism and Kinetics of Crystallization

22.2 结晶机制和动力学

 

22.3 Growth Techniques for Single Crystals

22.3 单晶的生长技术

 

22.4 Effect of Growth Conditions on Defects of Crystals

22.4 生长条件对晶体缺陷的影响

 

22.5 Investigations on Crystal Quality

22.5 晶体质量检测

 

 

参考文献

 

 

 

 

Part D Crystal Growth from Vapor

PartD 晶体的气相生长

 

23Growth and Characterization of Silicon Carbide Crystals

23 SiC晶体的生长与表征

 

23.1 Silicon Carbide – Background and History

 23.1 SiC-背景与历史

 

23.2 Vapor Growth

 23.2 气相生长

 

23.3 High-Temperature Solution Growth

 23.3 高温溶液生长

 

23.4 Industrial Bulk Growth by Seed Sublimation

 23.4 籽晶升华的产业化体材料生长

 

23.5 Structural Defects and Their Configurations

 23.5 结构缺陷及其构造

 

23.6 Concluding Remarks

 23.6 结语

 

 

 参考文献

 

24AlN Bulk Crystal Growth by Physical Vapor Transport

24 物理气相传输法生长体材料AIN晶体

物理气相传输法生长大块AIN晶体

24.1 PVT Crystal Growth

 24.1 物理气相传输法晶体生长

 

24.2 High-Temperature Materials Compatibility

 24.2 高温材料兼容

 

24.3 Self-Seeded Growth of AlN Bulk Crystals

 24.3 AIN体材料晶体的自籽晶生长

 

24.4 Seeded Growth of AlN Bulk Crystals

 24.4 AIN体材料晶体的籽晶生长

 

24.5 Characterization of High-Quality Bulk Crystals

 24.5 高质量晶体表征

 

24.6 Conclusions and Outlook

 24.6 结论与展望

 

 

 参考文献

 

25Growth of Single-Crystal Organic Semiconductors

25 单晶有机半导体的生长

 

25.1 Basics

 25.1 基础

 

25.2 Theory of Nucleation and Crystal Growth

 25.2 成核与晶体生长理论

 

25.3 Organic Materials of Interest for Semiconducting Single Crystals

 25.3 对半导体单晶有机材料的兴趣

 

25.4 Pregrowth Purification

 25.4 提纯预生长

生长前的提纯

25.5 Crystal Growth

 25.5 晶体生长

 

25.6 Quality of Organic Semiconducting Single Crystals

 25.6 有机半导体单晶的质量

 

25.7 Organic Single-Crystalline Field-Effect Transistors

 25.7 有机单晶场效应晶体管

 

25.8 Conclusions

 25.8 结论

 

 

 参考文献

 

26Growth of III-Nitrides with Halide Vapor Phase Epitaxy (HVPE)

26 卤化物气相外延生长族氮化物

 

26.1 Growth Chemistry and Thermodynamics

 26.1 生长化学和热力学

 

26.2 HVPE Growth Equipment

 26.2 HVPE生长设备

 

26.3 Substrates and Templates for Bulk GaN Growth

 26.3 体材料GaN的生长衬底和模版

 

26.4 Substrate Removal Techniques

 26.4 衬底除去技术

 

26.5 Doping Techniques for GaN in HVPE

 26.5 HVPEGaN的掺杂方法

 

26.6 Defect Densities, Dislocations, and Residual Impurities

 26.6 缺陷密度、位错和残留杂质

 

26.7 Some Important Properties of HVPE-Grown Bulk GaN Material

 26.7 HVPE生长的体材料GaN的一些重要性能

HVPE生长的块体GaN的一些重要性能

26.8 Growth of AlN by HVPE: Some Preliminary Results

 26.8 通过HVPE生长AIN:一些初步的结论

 

26.9 Growth of InN by HVPE: Some Preliminary Results

 26.9 通过HVPE生长InN:一些初步的结论

 

 

参考文献

 

27Growth of Semiconductor Single Crystals from Vapor Phase

27 半导体单晶的气相生长

 

27.1 Classifications of Vapor Growth

 27.1 气相生长分类

 

27.2 Chemical Vapor Transport – Transport Kinetics

 27.2 化学气相传输——传输动力学

 

27.3 Thermodynamic Considerations

 27.3 热力学讨论

 

27.4 Growth of II–VI Compound Semiconductors by CVT

 27.4 CVT-化合物半导体的生长

-化合物半导体的CVT法生长

27.5 Growth of Nanomaterial from Vapor Phase

27.5 纳米材料的气相生长

 

27.6 Growth of I–III–VI2 Compounds

 27.6--,化合物生长

--2化合物生长

27.7Growth of GaN by VPE

27.7 VPE法生长氮化镓

 

27.8 Conclusion

 27.8 结论

 

 

 参考文献

 

Part E Epitaxial Growth and Thin Films

PartE 外延生长和薄膜

 

28Epitaxial Growth of Silicon Carbide by Chemical Vapor Deposition

28化学气相沉积的碳化硅外延生长

碳化硅的化学气相沉积外延生长

28.1 Polytypes of Silicon Carbide

 28.1 碳化硅极化类型

碳化硅的多型

28.2 Defects in SiC

 28.2 碳化硅的缺陷

 

28.3 Epitaxial Growth of Silicon Carbide

 28.3 碳化硅外延生长

 

28.4 Epitaxial Growth on Patterned Substrates

 28.4 图形衬底上的外延生长

 

28.5 Conclusions

 28.5 结论

 

 

 参考文献

 

29Liquid-Phase Electroepitaxy of Semiconductors

29 半导体的液相电外延

 

29.1 Background

 29.1 背景

 

29.2 Early Theoretical and Modeling Studies

 29.2 早期理论和模型的研究

 

29.3 Two-Dimensional Continuum Models

 

 

29.4 LPEE Growth Under a Stationary Magnetic Field

 

 

29.5 Three-Dimensional Simulations

 

 

29.6 High Growth Rates in LPEE: Electromagnetic Mobility

 

 

 

 

 

30Epitaxial Lateral Overgrowth of Semiconductors

30 半导体的外延横向增生

 

30.1 Overview

 

 

30.2 Mechanism of Epitaxial Lateral Overgrowth from the Liquid Phase

 

 

30.3 Dislocations in ELO Layers

 

 

30.4 Strain in ELO Layers

ELO层张力

ELO层中的应变

30.5 Recent Progress in Lateral Overgrowth of Semiconductor Structures

 

 

30.6 Concluding Remarks

 

 

 

 

 

31Liquid-Phase Epitaxy of Advanced Materials

31 新材料的液相外延

 

31.1 Historical Development of LPE

 

 

31.2 Fundamentals of LPE and Solution Growth

LPE的基础和溶液生长

LPE和溶液生长基础

31.3 Requirements for Liquid-Phase Epitaxy

 

 

31.4 Developing New Materials: On the Choice of the Epitaxial Deposition Method

 

 

31.5 LPE of High-Temperature Superconductors

 

 

31.6 LPE of Calcium Gallium Germanates

 

 

31.7 Liquid-Phase Epitaxy of Nitrides

 

 

31.8 Conclusions

 

 

 

 

 

32Molecular-Beam Epitaxial Growth of HgCdTe

32 分子束外延的HgCdTe生长

HgCdTe的分子束外延生长

32.1 Overview

 

 

32.2 Theory of MBE Growth

 

 

32.3 Substrate Materials

 

 

32.4 Design of the Growth Hardware

 

 

32.5 In situ Characterization Tools for Monitoring and Controlling the Growth

 

 

32.6 Nucleation and Growth Procedure

 

 

32.7 Dopants and Dopant Activation

掺杂和掺杂激活

掺杂剂和掺杂活化

32.8 Properties of HgCdTe Epilayers Grown by MBE

 

 

32.9 HgTe/CdTe Superlattices

 

 

32.10 Architectures of Advanced IR Detectors

 

 

32.11 IR Focal-Plane Arrays (FPAs)

 

 

32.12 Conclusions

 

 

 

 

 

33Metalorganic Vapor-Phase Epitaxy of Diluted Nitrides and Arsenide Quantum Dots

33 稀释氮化物的金属有机物气相外延和砷化物量子点

稀释氮化物和砷化物量子点的金属有机物气相外延

33.1 Principle of MOVPE

 

 

33.2 Diluted Nitride InGaAsN Quantum Wells

 

 

33.3 InAs/GaAs Quantum Dots

 

 

33.4 Concluding Remarks

 

 

 

 

 

 

 

 

 

 

 

34Formation of SiGe Heterostructures and Their Properties

34 锗硅异质结的形成及其特性

 

34.1 Background

 

 

34.2 Band Structures of Si/ Ge Heterostructures

 

 

34.3 Growth Technologies

 

 

34.4 Surface Segregation

表面隔离

表面偏析

34.5 Critical Thickness

 

 

34.6 Mechanism of Strain Relaxation

应力松弛机理

应变弛豫机理

34.7 Formation of Relaxed SiGe Layers

 

 

34.8 Formation of Quantum Wells, Superlattices, and Quantum Wires

量子阱的形成、超晶格、量子线

量子阱、超晶格和量子线的形成

34.9 Dot Formation

 

 

34.10 Concluding Remarks and Future Prospects

 

 

 

 

 

 

 

 

35Plasma Energetics in Pulsed Laser and Pulsed Electron Deposition

35 脉冲激光的等离子能量和脉冲电子淀积

脉冲激光和脉冲电子沉积中的等离子能量

35.1 Energetic Condensation in Thin Film Deposition

 

 

35.2 PLD and PED Techniques

 

 

35.3 Transformations of Atomic Energy in PLD and PED

 

 

35.4 Optimization of Plasma Flux for Film Growth

 

 

35.5 Conclusions

 

 

 

 

 

 

 

 

 

 

 

Part F Modeling in Crystal Growth and Defects

PartF 晶体生长及缺陷模型

 

36Convection and Control in Melt Growth of Bulk Crystals

36 熔体生长晶体体材料的传导和控制

熔体生长大块晶体时的对流及其控制

36.1 Physical Laws for Transport Processes

36.1 运输过程的物理定律

 

36.2 Flow Structures in the Melt

36.2 熔体的流动结构

熔体中的流体结构

36.3 Flow Control by External Forces

36.3 外力对流动的控制

通过外力进行流体控制

36.4 Outlook

36.4 前景

 

 

参考文献

 

37Vapor Growth of III Nitrides

37 族氮化物的气相生长

 

37.1 Overview of Vapor Growth of III Nitrides

37.1 族氮化物的气相生长概述

族氮化物气相生长概述

37.2 Mathematical Models for AlN/GaN Vapor Deposition

37.2 AIN/GaN气相淀积的数学模型

AlN/GaN气相沉积的数学模型

37.3 Characteristics of AlN/GaN Vapor Deposition

37.3 气相淀积AIN/GaN的表征

气相沉积AlN/GaN的表征

37.4 Modeling of GaN IVPE Growth – A Case Study

37.4 GaNIVPE生长模型——个案研究

 

37.5 Surface Evolution of GaN/AlN Film Growth from Vapor

37.5 气相GaN/AIN膜生长的表面形成

气相GaN/AlN膜生长的表面演化

37.6 Concluding Remarks

37.6 结语

 

 

参考文献

 

38Continuum-Scale Quantitative Defect Dynamics in Growing Czochralski Silicon Crystals

38 生长直拉硅晶体中连续尺寸量子缺陷动力学

生长中的直拉硅晶体连续尺寸定量缺陷动力学

38.1 The Discovery of Microdefects

38.1 微缺陷的发现

 

38.2 Defect Dynamics in the Absence of Impurities

38.2 无杂质时的缺陷动力学

 

38.3 Czochralski Defect Dynamics in the Presence of Oxygen

38.3 有氧时的直拉缺陷动力学

 

38.4 Czochralski Defect Dynamics in the Presence of Nitrogen

38.4 有氮时的直拉缺陷动力学

 

38.5 The Lateral Incorporation of Vacancies in Czochralski Silicon Crystals

38.5 直拉硅单晶中空位的横向合并

 

38.6 Conclusions

38.6 结论

 

 

参考文献

 

39Models for Stress and Dislocation Generation in Melt Based Compound Crystal Growth

39 熔体基底化合物晶体生长中应力和位错产生的模型

基于熔体的化合物晶体生长中的应力和位错产生模型

39.1 Overview

39.1 综述

 

39.2 Crystal Growth Processes

39.2 晶体生长过程

 

39.3 Dislocations in Semiconductors Materials

39.3 半导体材料的位错分布

半导体材料中的位错

39.4 Models for Dislocation Generation

39.4 位错产生的模型

 

39.5 Diamond Structure of the Crystal

39.5 晶体的金刚石结构

 

39.6 Deformation Behavior of Semiconductors

39.6 半导体的变形特性

 

39.7 Application of the Haasen Model to Crystal Growth

39.7 Haasen模型对晶体生长的应用

 

39.8 An Alternative Model

39.8 替代模式

 

39.9 Model Summary and Numerical Implementation

39.9 模型概述和数值实现

 

39.10 Numerical Results

39.1 0数值结果

 

39.11 Summary

39.1 1总结

 

 

参考文献

 

40Mass and Heat Transport in BS and EFG Systems

40 BSEFG系统中的质量和热量传输

 

40.1 Model-Based Prediction of the Impurity Distribution –Vertical BS System

40.1 杂质分布的基预测模型——垂直BS系统

基于模型的杂质分布预测——垂直BS系统

40.2 Model-Based Prediction of the Impurity Distribution – EFG System

40.2 杂质分布的基预测模型-EFG系统

基于模型的杂质分布预测——EFG系统

 

参考文献

 

Part G Defects Characterization and Techniques

PartG 缺陷表征及技术

 

41Crystalline Layer Structures with X-Ray Diffractometry

41晶体层结构的X射线衍射表征

 

41.1 X-Ray Diffractometry

41.1 X射线衍射

 

41.2 Basic Direct X-Ray Diffraction Analysis from Layered Structures

41.2 层结构的基本直接X射线衍射分析

 

41.3 Instrumental and Theoretical Considerations

41.3 设备和理论思考

 

41.4 Examples of Analysis from Low to High Complexity

41.4 从低到高的复杂性分析实例

复杂性从低到高的分析实例

41.5 Rapid Analysis

41.5 快速分析

 

41.6 Wafer Micromapping

41.6 薄膜微映射

晶片微映射

41.7 The Future

41.7 展望

 

 

参考文献

 

42X-Ray Topography Techniques for Defect Characterization of Crystals

42 晶体缺陷表征的X射线形貌技术

 

42.1 Basic Principles of X-Ray Topography

42.1 X射线形貌的基本原则

X射线形貌学的基本原理

42.2 Historical Development of the X-Ray Topography Technique

42.2 X射线形貌技术的发展历史

 

42.3 X-Ray Topography Techniques and Geometry

42.3 X射线形貌技术和几何学

 

42.4 Theoretical Background for X-Ray Topography

42.4 X射线形貌技术理论背景

 

42.5 Mechanisms for Contrast on X-Ray Topographs

42.5 X射线形貌上缺陷的对比原理

 

42.6 Analysis of Defects on X-Ray Topographs

42.6 X射线形貌上的缺陷分析

 

42.7 Current Application Status and Development

42.7 目前的应用状况和发展

 

 

参考文献

 

43Defect-Selective Etching of Semiconductors

43 半导体的缺陷选择性刻蚀

 

43.1 Wet Etching of Semiconductors: Mechanisms

 

 

43.2 Wet Etching of Semiconductors: Morphology and Defect Selectivity.. 1459

 

 

43.3 Defect-Selective Etching Methods

 

 

 

 

 

44Transmission Electron Microscopy Characterization of Crystals

44 晶体的透射电子显微镜表征

 

44.1 Theoretical Basis of TEM Characterization of Defects

 

 

44.2 Selected Examples of Application of TEM to Semiconductor Systems

 

 

44.3 Concluding Remarks: Current Application Status and Development

 

 

 

 

 

45Electron Paramagnetic Resonance Characterization of Point Defects

45 点缺陷的电子自旋共振表征

点缺陷的电子顺磁共振表征

45.1 Electronic Paramagnetic Resonance

 

 

45.2 EPR Analysis

 

 

45.3 Scope of EPR Technique

 

 

45.4 Supplementary Instrumentation and Supportive Techniques

 

 

45.5 Summary and Final Thoughts

 

 

 

 

 

46Defect Characterization in Semiconductors with Positron Annihilation Spectroscopy

46 半导体缺陷特性的正电子湮没光谱表征

 

46.1 Positron Annihilation Spectroscopy

 

 

46.2 Identification of Point Defects and Their Charge States

 

 

46.3 Defects, Doping, and Electrical Compensation

 

 

46.4 Point Defects and Growth Conditions

 

 

46.5 Summary

 

 

 

 

 

Part H Special Topics in Crystal Growth

PartH 晶体生长专题

 

47Protein Crystal Growth Methods

47 蛋白质晶体生长的方法

 

47.1 Properties of Biomacromolecular Solutions

47.1 生物高分子溶液的性质

生物大分子溶液的性质

47.2 Transport Phenomena and Crystallization

47.2 传输现象和形成晶体

 

47.3 Classic Methods of Crystal Growth

47.3 晶体生长的典型方法

 

47.4 Protein Crystallization by Diffusion-Controlled Methods

47.4 扩散一控制方法形成蛋白质晶体

蛋白质晶体的扩散控制法生长

47.5 New Trends in Crystal Growth (Crystal Quality Enhancement)

47.5 晶体生长的新趋势(晶体品质增强)

 

47.6 2-D Characterization via Atomic Force Microscopy (Case Study)

47.6 原子力显微镜的2-维表征(案例研究)

通过原子力显微镜进行2维表征(案例研究)

47.7 3-D Characterization via X-Ray Diffraction and Related Methods

47.7 X射线衍射的3-维表征和相关方法

通过X射线进行3维表征及相关方法

 

参考文献

 

48Crystallization from Gels

48 用凝胶法形成晶体

 

48.1 Gel Growth in Crystal Deposition Diseases

48.1 晶体淀积病中的凝胶生长

 

48.2 Experimental Methods

48.2 实验方法

 

48.3 Pattern Formation in Gel Systems

48.3 凝胶系统中的晶格的形成

凝胶系统中图样的形成

48.4 Crystals Grown Using Gel Technique

48.4 利用凝胶技术的晶体生长

利用凝胶技术生长的晶体

48.5 Application in Crystal Deposition Diseases

48.5 晶体淀积病的应用

在晶体淀积病中的应用

48.6 Crystal-Deposition-Related Diseases

48.6 晶体淀积相关的疾病

 

48.7 Calcium Oxalate

48.7 草酸钙

 

48.8 Calcium Phosphates

48.8 磷酸钙

 

48.9 Hydroxyapatite (HAP)

48.9 羟基磷灰石(HAP

 

48.10 Dicalcium Phosphate Dihydrate (DCPD)

48.10 二水磷酸氢钙(DCPD

 

48.11 Calcium Sulfate

48.11 硫酸钙

 

48.12 Uric Acid and Monosodium Urate Monohydrate

48.12 尿酸和单钠酸尿

 

48.13 L-Cystine

48.13 1-胱氨酸

 

48.14 L-Tyrosine, Hippuric Acid, and Ciprofloxacin

48.14 1-酪氨酸、马尿酸和环丙氟哌酸

 

48.15 Atherosclerosis and Gallstones

48.15 动脉硬化和胆结石

 

48.16 Crystallization of Hormones: Progesterone and Testosterone

48.16 激素的结晶:黄体酮和睾酮

 

48.17 Pancreatitis

48.17 胰腺炎

 

48.18 Conclusions

48.18 结论

 

 

参考文献

 

49Crystal Growth and Ion Exchange in Titanium Silicates

49 钛硅酸盐中晶体生长和离子交换

钛硅酸盐中的晶体生长和离子交换

49.1 X-Ray Methods

49.1 X射线方法

 

49.2 Equipment for Time-Resolved Experiments

49.2 时间一分辨实验的设备

 

49.3 Detectors

49.3 检测

探测器

49.4 Software

49.4 软件

 

49.5 Types of In Situ Cells

49.5 原位细胞的种类

原位单元的种类

49.6 In-Situ Studies of Titanium Silicates (Na-TS) with Sitinakite Topology

49.6 利用Sitinakite技术对钛硅酸盐(Na-TS)的原位研究

此处似乎不该是“…技术

49.7 Discussion of In Situ Studies

49.7 原位研究的讨论

 

49.8 Summary

49.8 总结

 

 

参考文献

 

50Single-Crystal Scintillation Materials

50 单晶闪烁材料

 

50.1 Background

50.1 背景

 

50.2 Scintillation Materials

50.2 闪烁材料

 

50.3 Future Prospects

50.3 前景展望

 

50.4 Conclusions

50.4 结论

 

 

参考文献

 

51Silicon Solar Cells: Materials, Devices, and Manufacturing

51 硅太阳能电池:材料、器件和制造

 

51.1 Silicon Photovoltaics

51.1 硅光生伏特

 

51.2 Crystal Growth Technologies for Silicon Photovoltaics

51.2 硅光生伏特的晶体生长技术

 

51.3 Cell Fabrication Technologies

51.3 电池制作技术

 

51.4 Summary and Discussion

51.4 总结和讨论

 

 

参考文献

 

52Wafer Manufacturing and Slicing Using Wiresaw

52 利用线锯制造和切割晶片

 

52.1 From Crystal Ingots to Prime Wafers

52.1 从晶体锭到基本的晶片

 

52.2 Slicing: The First Postgrowth Process in Wafer Manufacturing

52.2 切割:晶片制造中的第一个后生长工艺

 

52.3 Modern Wiresaw in Wafer Slicing

52.3 晶片切割中的现代线据

 

52.4 Conclusions and Further Reading

52.4 总结与展望

 

 



https://blog.sciencenet.cn/blog-664617-808427.html

上一篇:哪里有压迫,哪里有“屈服”
下一篇:忙了这么多天,浮体终于交工了
收藏 IP: 222.173.84.*| 热度|

2 史晓雷 Vetaren11

该博文允许注册用户评论 请点击登录 评论 (6 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-10-20 09:20

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部