||
我们常说1920年海原8.5级特大地震。但我们是否知道这个8.5是怎么来的吗?
USGS网页上列的是7.9级。根据现有的数据,230公里的破裂,10米的最大位移(平均可能仅为5-6米),假定15公里的断裂深度和常规的rigidity,矩震级可能是7.6-7.9(见下表)。不难理解USGS为什么选了7.9这个数值。
Rigidity μ |
Fault length L (km) |
Fault width, depth W (km) |
Average slip D (m) |
|
Moment (μLWD) |
Moment magnitude= 2/3(log10(moment)-16.1) |
|
3E+11 |
230 |
10 |
6 |
|
4E+27 |
7.68 |
|
3E+11 |
230 |
15 |
10 |
|
1E+28 |
7.94 |
USGS website |
3E+11 |
230 |
20 |
10 |
|
1E+28 |
8.03 |
|
3E+11 |
300 |
20 |
10 |
|
2E+28 |
8.10 |
|
3E+11 |
350 |
25 |
10 |
|
3E+28 |
8.21 |
|
3E+12 |
230 |
15 |
7 |
|
7E+28 |
8.51 |
|
|
|
|
|
|
2.80E+28 |
8.30 |
lower limit, Chen and Molnar, 1977 |
|
|
|
|
|
3.50E+28 |
8.36 |
upper limit, Chen and Molnar, 1977 |
那么,1920年海原地震的震级是否被高估了。8.5这个数值的最初来源是哪里呢?
似乎没有多少人深究。搜寻之下,原来是Richter (1958)。后来的人几乎不提,但Chen and Molnar (1977)中写得很清楚。兰州所出的《1920年海原大地震》书中提到震级是Richter得到的,但没有引用相关文献。这个Richter就是里氏震级之冠名人,地震学鼻祖级人物。
Chen and Molnar (1979)中给出的地震矩,对应于8.3的矩震级。也小于8.5之说。
如果我们意识到8.5是指里氏震级的话,问题也不是多大,但是对于1900世纪初期,刚有仪器记录的一些大地震,我们没有这样的清晰概念,使之与后来常用的面波震级或矩震级混为一谈,而引发一系列学术研究层面的谬误。里氏震级适用于中小地震或近震(地震发生地与仪器记录较近)的震级标定,侧重于震波的高频成分的高频检震仪。对于大地震,容易有饱和的偏差缺陷。这是一个共识。有兴趣的人可以翻找Hiroo Kanamori等在引入矩震级时的论述。所以里氏震级的数值不适合于描述大地震。1920年海原大地震并非特例,如1906年旧金山大地震也如此:Richter(1958)给出的震级是8.3,大于现在文献中常用的矩震级(Mw)7.9.【也有的用Ms7.7级】。即:对于1906年旧金山大地震,我们不再用Richter的震级。对此地震的震级,有过较详细的研究和阐述。
似乎到了应该澄清和纠正的时候了,有人/地震学专家感兴趣吗?
正如Chen, Molnar 和我的邮件沟通所示。当初,在断裂产状和位移数据不明的情况下,他们的结果可能有误,而且这是目前可以矫正的。可以重新计算地震矩。
-----
To: Jing Liu
Cc: Peter Hale Molnar
Subject: RE: 1920 Haiyuan M~8 earthquake
Dear Dr. Liu:
Thank you for writing. I have not worked on this subject for a very long time
and am pleasantly surprised that people still inquire about this paper from
time to time.
Yes, Peter Molnar and I simply quoted
the magnitude reported by Richter (which did not appear in the abstract).
The idea is that the determination of the seismic moment should give an
improved estimate of the true size of the Haiyuan earthquake.
For technical reasons that will not improve with the passage of
time, such as unfavorable and poor-known instrument response, finite length of
the mechanical recording arm, limitations in digitizing old paper copies, etc.,
the accuracy (not precision) of our estimate of the moment can easily be off by
a factor of two.
Another major source of uncertainty,
which could be narrowed down with new data/technology, is the average dip of
the rupture at depth. As you may already know, the excitation of
Rayleigh waves depends strongly on the dip angle of a dip-slip fault. This is
particularly true for shallow-dipping faults where a subhorizonal fault
approaches a degenerate case for Rayleigh wave excitation. In our study, we simply assumed a dip of 45 degrees because no other
information was available back in the mid-1970's.
I have not followed recent research on the 1920 rupture, but suspect that field
studies also suffer from poorly constrained fault width and dip at depth. In
principle, deep-penetrating seismic profiles may be able to constrain the
rupture's average dip at depth. Of course, mapping out a fault at depth is one
thing; telling how much of it ruptured during a particular event is a far more
difficult task. Perhaps CEA would be interested in carrying out such a study?
In short, I think it is safe to say that the magnitude of the Haiyuan event is
unlikely to be 8.6, but I have no new basis to tell how much smaller the true
magnitude is.
Best,
Wang-Ping
----------------
From:
Peter Hale Molnar
I had forgotten how little we knew at that time.
The faulting is nearly pure strike-slip, presumably on a vertical plane, except
at the east end.
I had forgotten that we assumed reverse (or was it normal) faulting.
peter
----------------
1/1 | 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧湱鈧懓瀚崳纾嬨亹閹烘垹鍊炲銈嗗笒椤︿即寮查鍫熲拺闁告繂瀚埢澶愭煕濡灝浜圭紒顔肩墦瀹曞ジ鎮㈢粙鍨紟婵犳鍠楅〃鍛涘Δ鍛闁挎洖鍊归悡銉︾節闂堟稒锛嶆俊鎻掓憸缁辨帡鎮╅悜妯煎涧婵烇絽娲ら敃顏呬繆閸洖妞介柛鎰ㄦ櫆閺嗕即姊绘担鍛婃儓闁归攱鍨圭槐鐐存媴閸撳弶缍庨梺鎯х箺椤鐣锋径鎰厪濠电偛鐏濋崝婊堟煟濠靛嫬鐏叉慨濠冩そ閹兘寮堕幐搴敤闂備胶鎳撻崵鏍箯閿燂拷:3 | 濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴濐潟閳ь剙鍊块幐濠冪珶閳哄绉€规洏鍔戝鍫曞箣閻欏懐骞㈤梻鍌欐祰椤鐣峰Ο琛℃灃婵炴垶纰嶉浠嬫煏閸繃鍟掗柡鍐ㄧ墛閺呮煡鏌涘☉鍗炲箺婵炲牊鐓″铏圭矙濞嗘儳鍓板銈嗗灥椤﹂潧顕f繝姘櫜闁告稑鍊婚崰搴ㄥ煝鎼淬劌绠氱憸搴敊閸曨垱鐓涘璺烘濞呭棛绱掔拠鑼妞ゎ偄绻橀幖鍦喆閸曨偆锛忛梻渚€娼ф灙闁稿孩鐓¢幃鐢稿閵堝棌鎷洪梺鑽ゅ枑濠㈡ê鈻撻埡鍛厵闁告垯鍊栫€氾拷 | 濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌熼梻瀵割槮缁炬儳顭烽弻锝夊箛椤掍焦鍎撻梺鎼炲妼閸婂潡寮诲☉銏╂晝闁挎繂妫涢ˇ銉х磽娴e搫小闁告濞婂濠氭偄閸忓皷鎷婚柣搴f暩鏋┑鈥茬矙濮婃椽宕崟顒€娅ょ紓浣筋嚙閻楁挸顕f繝姘╅柕澶堝灪閺傗偓闂備胶纭堕崜婵嬫晪缂備焦鍔栭惄顖氼潖濞差亜宸濆┑鐘插閻g兘鎮楅崗澶婁壕闂佸綊妫跨粈浣虹不閺嶃劋绻嗛柕鍫濆€告禍楣冩⒑鐎圭姵顥夋い锔诲灦閸┿垹顓奸崱妯肩Ф闂侀潧臎閸涱垰甯掔紓鍌氬€风粈渚€宕愰崫銉х煋闁圭虎鍠撻崑鎴澝归崗鍏肩稇闂佸崬娲弻锝夊棘閹稿孩鍎撻悗娈垮枟婵炲﹤顫忕紒妯诲闁惧繒鎳撶粭鈥斥攽閻愭彃绾ч柣妤冨Т閻g兘骞囬弶鎸庡祶濡炪倖鎸荤粙鎴炵閻愵剚鍙忔俊顖滃帶娴滈箖鎮楀鐐 | 濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌熼梻瀵割槮缁炬儳顭烽弻锝夊箛椤掍焦鍎撻梺鎼炲妼閸婂潡寮诲☉銏╂晝闁挎繂妫涢ˇ銉х磽娴e搫小闁告濞婂濠氭偄閸忓皷鎷婚柣搴$仛閻℃洜绮eΔ鍛拺閺夌偞澹嗛ˇ锕傛倵濮橆偄宓嗙€殿喛顕ч埥澶愬閻樻彃绁梻渚€娼ф灙闁稿氦浜划缁樼節濮橆厸鎷洪梺鍛婄☉楗潙鈻撻弴鐘亾閸忓浜鹃梺褰掓?缁€浣虹不閺嶃劋绻嗛柕鍫濆€告禍楣冩⒑鐎圭姵顥夋い锔诲灦閸┿垹顓奸崱妯肩Ф闂侀潧臎閸涱垰甯掔紓鍌氬€风粈渚€宕愰崫銉х煋闁圭虎鍠撻崑鎴澝归崗鍏肩稇闂佸崬娲弻锝夊棘閹稿孩鍎撻悗娈垮枟婵炲﹤顫忕紒妯诲闁惧繒鎳撶粭鈥斥攽閻愭彃绾ч柣妤冨Т閻g兘骞囬弶鎸庡祶濡炪倖鎸荤粙鎴炵閻愵剚鍙忔俊顖滃帶娴滈箖鎮楀鐐 | 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鈩冩珕闂佽姤锚椤︻喚绱旈弴鐔虹瘈闁汇垽娼у瓭闂佹寧娲忛崐婵嬪箖瑜斿畷鍗炩枎韫囷絾顥¢梺鑽ゅТ濞诧妇绮婇幘顔肩哗濞寸姴顑嗛悡鐔镐繆椤栨碍鎯堢紒鐙欏洦鐓欓柛蹇曞帶婵牊绻涢懝閭﹀殭闁宠鍨归埀顒婄秵閸嬧偓闁归攱妞介弻锝夋偐閸忓懓鍩呴梺鍛婃煥閼活垶鍩㈠澶婄疀闁绘鐗忛崢鐢告⒑閸涘﹤鐏熼柛濠冪墱閳ь剚鐔幏锟� | 闂傚倸鍊搁崐鎼佸磹閹间礁纾圭€瑰嫭鍣磋ぐ鎺戠倞鐟滃繘寮抽敃鍌涚厱妞ゎ厽鍨垫禍婵嬫煕濞嗗繒绠婚柡宀€鍠撶槐鎺楀閻樺磭浜紓鍌欒兌婵箖锝炴径鎰﹂柛鏇ㄥ灠缁犳盯鏌涢锝嗙妞ゅ骸绉瑰铏圭矙濞嗘儳鍓炬繛瀛樼矤娴滎亜顕g拠娴嬫闁靛繒濮堥妸锔轰簻闁哄倸鐏濈紞鏍ㄦ叏鐟欏嫷娈滈柟顔煎槻楗即宕ㄩ褎姣夐梺姹囧焺閸ㄩ亶銆冩繝鍌ゅ殨闁哄被鍎辩粻鐟懊归敐鍛础闁告瑥妫濆铏圭磼濡崵顦ラ梺绋匡工濠€閬嶅焵椤掍胶鍟查柟鍑ゆ嫹 |
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2025-1-23 00:01
Powered by ScienceNet.cn
Copyright © 2007-2025 中国科学报社