xiaohai2008的个人博客分享 http://blog.sciencenet.cn/u/xiaohai2008

博文

半监督最小二乘支持向量回归机

已有 3603 次阅读 2011-11-3 09:38 |个人分类:机器学习|系统分类:论文交流| 半监督学习, LS-SVR

In many real-world applications, unlabeled examples are inexpensive and easy to obtain. Semi-supervised approaches try to utilize such examples to boost the predictive performance. But previous research mainly focuses on classification problem, and semi-supervised regression remains largely under-studied. In this work, a novel semi-supervised regression method, semi-supervised LS-SVR (S2LS-SVR), is proposed on the basis of LS-SVR. Similar to the LS-SVR, one only solves a convex linear system in the training phrase too, thus largely speeding up training. Experimental results on corn data set indicate that our approach is feasible and efficient.

全文见:2011_8_6_885_892.pdf



https://blog.sciencenet.cn/blog-611051-504053.html

上一篇:多任务最小二乘支持向量回归机
下一篇:pLSI: probabilistic Latent Semantic Index
收藏 IP: 168.160.25.*| 热度|

1 黄富强

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-28 10:16

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部