||
来源http://carefreeenzymes.com/wp-content/uploads/2011/06/common_duckweed04.jpg
近日来自美中的科学家Christodoulos A. Floudas和Xin Xiao等联合报道了一种新型的能源植物——浮萍(Duckweed),这种水生植物具有生长迅速,可以在废水中存活,不威胁粮食安全,以及更容易采收(相对于微藻和其他水生植物而言)等优点。Floudas等人描述了从浮萍生物质转换成生物燃料的技术可行性。结果显示大规模生产一桶油的成本约$72,小规模生产汽油每桶约$100。
原文Thermochemical Conversion of Duckweed Biomass to Gasoline, Diesel, and Jet Fuel: Process Synthesis and Global Optimization. Industrial & Engineering Chemistry Research, DOI: 10.1021/ie3034703. http://pubs.acs.org/doi/pdf/10.1021/ie3034703
Abstract
Duckweed biomass is gasified in a thermochemical-based superstructure to produce gasoline, diesel, and kerosene using a synthesis gas intermediate. The superstructure includes multiple pathways for conversion of the synthesis gas to liquid hydrocarbons via Fischer–Tropsch synthesis or intermediate methanol synthesis. Low-temperature and high-temperature Fischer–Tropsch processes are examined using both iron and cobalt based catalysts. Methanol may be converted to hydrocarbons via the methanol-to-gasoline or methanol-to-olefins processes. The hydrocarbons will be refined into the final liquid products using ZSM-5 catalytic conversion, oligomerization, alkylation, isomerization, hydrotreating, reforming, and hydrocracking. A process synthesis framework is outlined to select the refining pathway that will produce the liquid fuels as the lowest possible cost. A rigorous deterministic branch-and-bound global optimization strategy will be incorporated to theoretically guarantee that the overall cost of the solution chosen by the synthesis framework is within a small fraction of the best possible value. A heat, power, and water integration is incorporated within the process synthesis framework to ensure that the cost of utility production and wastewater treatment are simultaneously included with the synthesis of the core refining processes. The proposed process synthesis framework is demonstrated using four case studies which determine the effect of refinery capacity and liquid fuel composition on the overall system cost, the refinery topological design, the process material/energy balances, and the lifecycle greenhouse gas emissions.
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-24 05:46
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社