||
Biological characteristics of embryonic epicardial cells in vitro correlate with embryonic day
Xiaoming Wei, Yulin Gao, Xiaodong Jing, Songbai Deng, Jianlin Du, Yajie Liu, and Qiang She
Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
Acta Biochim Biophys Sin 2017, 49: 14–24; doi: 10.1093/abbs/gmw120
The epicardial cell (EpiC) culture system plays an important role in investigating the specific mechanisms and signaling molecules that are involved in the development of EpiCs. From this early formation until adulthood, EpiCs undergo dynamic changes in the expression of embryonic genes that correlate with changes in the embryonic EpiC properties. The differences of embryonic EpiC properties may affect the related results of experiments in which EpiC culture system is used; however, these differences have not been explored. Therefore, in this study we examined the differences in the biological characteristics of EpiCs on different embryonic days in vitro. EpiCs were isolated from embryonic ventricle explants on embryonic day (E) 11.5, E13.5, and E15.5. The differences in the migration, proliferation and differentiation were studied in EpiCs of different embryonic day by scratch assay, cell cycle analysis and platelet derived growth factor-bb (PDGF-BB) treatment. The results showed that EpiCs were successfully cultured from E11.5, E13.5, and E15.5 embryonic ventricle explants. The time windows of E11.5, E13.5, and E15.5 EpiC isolation out of the explants were different. The migration abilities of E11.5, E13.5, and E15.5 EpiCs decreased during embryonic development. Smooth muscle cell differentiation potential of early stage EpiCs was better than that of the later stage EpiCs. Although the proliferation ability of E11.5 EpiCs was significantly weaker than those of E13.5 and E15.5 EpiCs, the proliferation abilities of E13.5 and E15.5 EpiCs did not differ. These results suggest that the biological characteristics of EpiCs correlate with the timing of embryonic development, and different embryonic stage of ventricle should be properly chosen for culturing EpiCs depending on the purposes of the specific experiments.
PDGF-BB induces SMC differentiation of E11.5, E13.5 and E15.5 tracing EpiCs
阅读全文: http://www.abbs.org.cn/arts.asp?id=4103
获取全文: abbs@sibs.ac.cn
相关论文:
1 De novo cardiomyocytes from within the activated adult heart after injury
2 Induced pluripotent stem cells: developmental biology to regenerative medicine
4 Resident cardiac progenitor cells: At the heart of regeneration
5 Endocardial and Epicardial Epithelial to Mesenchymal Transitions in Heart Development and Disease
6 Human Pluripotent Stem Cell Differentiation into Functional Epicardial Progenitor Cells
关注ABBS
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-19 07:47
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社