S C I 茶室分享 http://blog.sciencenet.cn/u/wanyuehua 分享科研乐趣,尽享成果收获!

博文

以DNA为基础的纳米结构热点论文

已有 8296 次阅读 2009-1-6 09:32 |个人分类:SCI应用实例|系统分类:科研笔记| 热点论文, SCI应用, 纳米结构

DNA为基础的纳米结构研究已成一研究热点,检索Web of Science发现目前该热点研究已有4,446篇论文,其中研究论文3403篇、会议论文365篇、评论288篇、会议摘要268篇、新闻48篇、社论31篇。4446篇论文被引频次总计91064次,每项平均引用次20.48次,H指数为125(有125篇文章每篇最少被引用125次),如图 1 所示。 


2008年这一热点课题有关论文发表在SCI收录期刊达到389篇(题目中检索到),其中研究论文339篇、会议论文23篇、社论8篇、会议摘要5篇、新闻5篇。389篇论文被引频次总计380次,每项平均引用次0.98次,H指数为8(有8篇文章每篇最少被引用8次),Proceedings of the National Academy of Sciences of the United States of America《美国国家科学院汇刊》和Nature Methods《自然方法》均刊登该一热点课题的有关社论和科学新闻,其中引用次数最多的是在NATURE上发表的三篇论文,这三篇论文被《自然》评出2008年度最佳论文。

2008131NATURE发表的2篇论文“DNA-programmable nanoparticle crystallization”和“DNA-guided crystallization of colloidal nanoparticles”目前已经被引用达到35次和32次,在首次发现与纳米颗粒相结合的DNA可以影响它们聚合10年之后,两个研究小组已将这一概念付诸实践。

Park等人发现,结合到金纳米颗粒上的DNA分子以及用来连接它们的DNA分子能够被选择用来确保这些纳米颗粒自组装进面心(face-centred)立方体或体心(body-centred)立方体晶体中。由Cole Krumbholz提供的封面图片是后者的一个特写画面。

Nykypanchuk等人识别出了DNA的设计要求和结晶条件,它们允许可逆地形成体心立方体晶体,其中纳米颗粒仅仅占据几个百分比的晶格体积。

这些进展也许使得创造有序的、可调节的3D纳米结构成为可能,这种结构适用于光子和磁应用、生物医学传感、以及信息或能量存储。

2008117NATURE发表的论文“Programming biomolecular self-assembly pathways 目前已经被引用9次,该论文是原理验证性实验,利用DNA发夹指导生物分子的合成。

DNA是自组装纳米结构所选择的建筑材料,但关于其使用的大多数例子都集中于特定目标,而不是建立有望达到在自然界才能够实现的多功能性的通用设计通道。Yin等人利用一个新体系在朝着实现多功能性的方向上向前迈出了一步。这个新体系基于模块化的DNA“发夹”,能将组装和拆装通道通过程序编入DNA的构造单元中。新协议的关键是“反应图”(reaction graph),即表示DNA模块及它们相互作用的一种简单方式,它能够简化整个设计过程。这将使组装程序能够准备分叉的接合分子、自催化DNA双螺旋对、分子树和一个能沿DNA轨道行走的双足分子。

 

1Times Cited: 35

Author(s): Park, SY (Park, Sung Yong); Lytton-Jean, AKR (Lytton-Jean, Abigail K. R.); Lee, B (Lee, Byeongdu); Weigand, S (Weigand, Steven); Schatz, GC (Schatz, George C.); Mirkin, CA (Mirkin, Chad A.)

Title: DNA-programmable nanoparticle crystallization

Source: NATURE, 451 (7178): 553-556 JAN 31 2008

Abstract: It was first shown(1,2) more than ten years ago that DNA oligonucleotides can be attached to gold nanoparticles rationally to direct the formation of larger assemblies. Since then, oligonucleotide-functionalized nanoparticles have been developed into powerful diagnostic tools(3,4) for nucleic acids and proteins, and into intracellular probes(5) and gene regulators(6). In contrast, the conceptually simple yet powerful idea that functionalized nanoparticles might serve as basic building blocks that can be rationally assembled through programmable base- pairing interactions into highly ordered macroscopic materials remains poorly developed. So far, the approach has mainly resulted in polymerization, with modest control over the placement of, the periodicity in, and the distance between particles within the assembled material. That is, most of the materials obtained thus far are best classified as amorphous polymers(7-16), although a few examples of colloidal crystal formation exist(8,16). Here, we demonstrate that DNA can be used to control the crystallization of nanoparticle - oligonucleotide conjugates to the extent that different DNA sequences guide the assembly of the same type of inorganic nanoparticle into different crystalline states. We show that the choice of DNA sequences attached to the nanoparticle building blocks, the DNA linking molecules and the absence or presence of a non- bonding single- base flexor can be adjusted so that gold nanoparticles assemble into micrometresized face- centred- cubic or body- centred- cubic crystal structures. Our findings thus clearly demonstrate that synthetically programmable colloidal crystallization is possible, and that a single-component system can be directed to form different structures.

Addresses: [Park, Sung Yong; Lytton-Jean, Abigail K. R.; Schatz, George C.; Mirkin, Chad A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA; [Park, Sung Yong; Lytton-Jean, Abigail K. R.; Schatz, George C.; Mirkin, Chad A.] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA; [Lee, Byeongdu] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA; [Weigand, Steven] Northwestern Univ, DND CAT Synchrotron Res Ctr, Argonne, IL 60439 USA

Reprint Address: Mirkin, CA, Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA.

E-mail Address: chadnano@northwestern.edu

Cited Reference Count: 30

 

 

2Times Cited: 32

Author(s): Nykypanchuk, D (Nykypanchuk, Dmytro); Maye, MM (Maye, Mathew M.); van der Lelie, D (van der Lelie, Daniel); Gang, O (Gang, Oleg)

Title: DNA-guided crystallization of colloidal nanoparticles

Source: NATURE, 451 (7178): 549-552 JAN 31 2008

Abstract: Many nanometre-sized building blocks will readily assemble into macroscopic structures. If the process is accompanied by effective control over the interactions between the blocks and all entropic effects(1,2), then the resultant structures will be ordered with a precision hard to achieve with other fabrication methods. But it remains challenging to use self- assembly to design systems comprised of different types of building blocks - to realize novel magnetic, plasmonic and photonic metamaterials(3-5), for example. A conceptually simple idea for overcoming this problem is the use of 'encodable' interactions between building blocks; this can in principle be straightforwardly implemented using biomolecules(6-10). Strategies that use DNA programmability to control the placement of nanoparticles in one and two dimensions have indeed been demonstrated(11-13). However, our theoretical understanding of how to extend this approach to three dimensions is limited(14,15), and most experiments have yielded amorphous aggregates(16-19) and only occasionally crystallites of close- packed micrometre- sized particles(9,10). Here, we report the formation of three- dimensional crystalline assemblies of gold nanoparticles mediated by interactions between complementary DNA molecules attached to the nanoparticles' surface. We find that the nanoparticle crystals form reversibly during heating and cooling cycles. Moreover, the body- centred- cubic lattice structure is temperature-tuneable and structurally open, with particles occupying only similar to 4% of the unit cell volume. We expect that our DNA-mediated crystallization approach, and the insight into DNA design requirements it has provided, will facilitate both the creation of new classes of ordered multicomponent metamaterials and the exploration of the phase behaviour of hybrid systems with addressable interactions.

Addresses: [Nykypanchuk, Dmytro; Maye, Mathew M.; Gang, Oleg] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA; [van der Lelie, Daniel] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA

Reprint Address: Gang, O, Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA.

E-mail Address: ogang@bnl.gov

Cited Reference Count: 28

 

 

3Times Cited: 9

Author(s): Yin, P (Yin, Peng); Choi, HMT (Choi, Harry M. T.); Calvert, CR (Calvert, Colby R.); Pierce, NA (Pierce, Niles A.)

Title: Programming biomolecular self-assembly pathways

Source: NATURE, 451 (7176): 318-U4 JAN 17 2008

Abstract: In nature, self- assembling and disassembling complexes of proteins and nucleic acids bound to a variety of ligands perform intricate and diverse dynamic functions. In contrast, attempts to rationally encode structure and function into synthetic amino acid and nucleic acid sequences have largely focused on engineering molecules that self- assemble into prescribed target structures, rather than on engineering transient system dynamics(1,2). To design systems that perform dynamic functions without human intervention, it is necessary to encode within the biopolymer sequences the reaction pathways by which self- assembly occurs. Nucleic acids show promise as a design medium for engineering dynamic functions, including catalytic hybridization(3-6), triggered self- assembly(7) and molecular computation(8,9). Here, we program diverse molecular self- assembly and disassembly pathways using a 'reaction graph' abstraction to specify complementarity relationships between modular domains in a versatile DNA hairpin motif. Molecular programs are executed for a variety of dynamic functions: catalytic formation of branched junctions, autocatalytic duplex formation by a cross- catalytic circuit, nucleated dendritic growth of a binary molecular 'tree', and autonomous locomotion of a bipedal walker.

Addresses: [Yin, Peng; Choi, Harry M. T.; Calvert, Colby R.; Pierce, Niles A.] CALTECH, Dept Bioengn, Pasadena, CA 91125 USA; [Yin, Peng] CALTECH, Dept Comp Sci, Pasadena, CA 91125 USA; [Pierce, Niles A.] CALTECH, Dept Appl & Computat Math, Pasadena, CA 91125 USA

Reprint Address: Pierce, NA, CALTECH, Dept Bioengn, Pasadena, CA 91125 USA.

E-mail Address: niles@caltech.edu

Cited Reference Count: 32



https://blog.sciencenet.cn/blog-57081-208802.html

上一篇:2008年免疫学领域热点论文
下一篇:2008年农业科学领域热点论文
收藏 IP: .*| 热度|

0

发表评论 评论 (1 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-29 18:24

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部