xiaoqiugood的个人博客分享 http://blog.sciencenet.cn/u/xiaoqiugood

博文

改文章随想2:量子点与带隙

已有 6297 次阅读 2015-1-4 15:21 |个人分类:关注的问题|系统分类:科研笔记

关注:

1) 何为量子点

2) 光伏材料及相关





网络摘录:

http://ea.hfut.edu.cn/ea/index.php/cn/research/research-2/research-2-2


3.量子点太阳能电池。该电池主要利用量子点的特殊物理性质实现太阳光全光谱吸收,同时能减少量子损耗,理论上可实现很高的光电转换效率,但目前其制造技术仍在探索阶段。本方向拟探索新结构的量子点电池,研究其光电转换机理,从根本上提高量子点电池的效率。目前本所制备的量子点敏化电池的效率达2.6%

    多源热蒸发镀膜设备,多靶磁控溅射镀膜设备,电极蒸镀设备,真空手套箱,丝网印刷镀膜机,太阳能电池热封机,太阳能电池IV曲线测试系统,太阳能电池量子效率测试系统,电化学工作站,各类气氛炉、马弗炉等。相关材料结构、光学和电学性能测试设备也将陆续到位,届时将形成完善的太阳能电池材料和器件的性能检测体系。






东大的量子点太阳能电池的单元转换效率达到26.8%

2014年06月30日08:53  

 http://finance.people.com.cn/n/2014/0630/c348883-25217037.html


日本东京大学尖端科学技术研究中心教授冈田至崇开发的中间能带方式量子点太阳能电池,72倍聚光时的单元转换效率达到了26.8%。此前这种方式的转换效率最高纪录是在1000倍聚光时达到21.2%。

该电池单元的开路电压为2.05V,短路电流密度为1193.3mA/cm2,填充因子为78.8%。这些是UL台湾实验室使用5mm见方的单元测得的数据。

此次,冈田教授为在提高转换效率的同时抑制聚光时的发热而采用了新构造。与化合物多接合太阳能电池等相比,中间能带方式的量子点太阳能电池的优点是电流量大,但电流量大会导致发热量增大,因此存在提高聚光倍率时输出功率会降低的问题。

于是,此次在量子点层上形成了InGaP层,以吸收过去射入量子点周围的GaAs的部分光。由于量子点层与InGaP层是串联的,因此能减小电流量,提高电压。

今后,冈田教授打算再将聚光倍率提高,以确认发热的影响是否减小。



摘录:太阳能电池

http://baike.baidu.com/link?url=nSN1yb0Ur_47XpVfeNEvz-aTnvz0GIibvJlLYxt9xImONkOANo4jCkGwHCCXl2tbuyOLFmQSm3N7rhqHcbmDna

 


太阳能电池又称为“太阳能芯片”或光电池”“,是一种利用太阳光直接发电的光电半导体薄片。它只要被光照到,瞬间就可输出电压及在有回路的情况下产生电流。在物理学上称为太阳能光伏(Photovoltaic,photo光,voltaics伏特,缩写为PV),简称光伏

   太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。以光电效应工作的薄膜式太阳能电池为主流,而以光化学效应工作的实施太阳能电池则还处于萌芽阶段。


1发展编辑
    数据显示2012年,我国太阳能电池继续保持产量和性价比优势,国际竞争力愈益增强。产量持续增大,预计2012年,我国太阳能电池产能将超过40GW,产量将超过24GW,仍将占据全球半壁江山。


      随着太阳能电池行业的不断发展,内业竞争也在不断加剧,大型太阳能电池企业间并购整合与资本运作日趋频繁,国内优秀的太阳能电池生产企业愈来愈重视对行业市场的研究,特别是对产业发展环境和产品购买者的深入研究。正因为如此,一大批国内优秀的太阳能电池品牌迅速崛起,逐渐成为太阳能电池行业中的翘楚。


原理编辑

    太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结内建电场的作用下,光生空穴流向p区,光生电子流向n区,接通电路后就产生电流。这就是光电效应太阳能电池的工作原理。
太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。
光—热—电转换
(1) 光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。前一个过程是光—热转换过程;后一个过程是热—电转换过程,与普通的火力发电一样。太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍。一座1000MW的太阳能热电站需要投资20~25亿美元,平均1kW的投资为2000~2500美元。因此,只能小规模地应用于特殊的场合,而大规模利用在经济上很不合算,还不能与普通的火电站或核电站相竞争。
光—电直接转换

     太阳能电池发电是根据特定材料的光电性质制成的。黑体(如太阳)辐射出不同波长(对应于不同频率)的电磁波, 如红外线、紫外线、可见光等等。当这些射线照射在不同导体或半导体上,光子与导体或半导体中的自由电子作用产生电流。射线的波长越短,频率越高,所具有的能量就越高,例如紫外线所具有的能量要远远高于红外线。但是并非所有波长的射线的能量都能转化为电能,值得注意的是光电效应于射线的强度大小无关,只有频率达到或超越可产生光电效应的阈值时,电流才能产生。

    能够使半导体产生光电效应的光的最大波长同该半导体的禁带宽度相关,譬如晶体硅的禁带宽度在室温下约为1.155eV,因此必须波长小于1100nm的光线才可以使晶体硅产生光电效应。 太阳电池发电是一种可再生的环保发电方式,发电过程中不会产生二氧化碳温室气体,不会对环境造成污染。按照制作材料分为硅基半导体电池、CdTe薄膜电池、CIGS薄膜电池、染料敏化薄膜电池、有机材料电池等。其中硅电池又分为单晶电池、多晶电池和无定形硅薄膜电池等。对于太阳电池来说最重要的参数转换效率,在实验室所研发的硅基太阳能电池中,单晶硅电池效率为25.0%,多晶硅电池效率为20.4%,CIGS薄膜电池效率达19.6%,CdTe薄膜电池效率达16.7%,非晶硅(无定形硅)薄膜电池的效率为10.1%

      太阳电池是一种可以将能量转换的光电元件,其基本构造是运用P型与N型半导体接合而成的。半导体最基本的材料是“硅”,它是不导电的,但如果在半导体中掺入不同的杂质,就可以做成P型与N型半导体,再利用P型半导体有个空穴(P型半导体少了一个带负电荷的电子,可视为多了一个正电荷),与N型半导体多了一个自由电子的电位差来产生电流,所以当太阳光照射时,光能将硅原子中的电子激发出来,而产生电子和空穴的对流,这些电子和空穴均会受到内建电位的影响,分别被N型及P型半导体吸引,而聚集在两端。此时外部如果用电极连接起来,形成一个回路,这就是太阳电池发电的原理。
       简单的说,太阳光电的发电原理,是利用太阳电池吸收0.4μm~1.1μm波长(针对硅晶)的太阳光,将光能直接转变成电能输出的一种发电方式。
     由于太阳电池产生的电是直流电,因此若需提供电力给家电用品或各式电器则需加装直/交流转换器,换成交流电,才能供电至家庭用电或工业用电。
太阳能电池的充电发展太阳能电池应用在消费性商品上,大多有充电的问题,过去一般的充电对象采用镍氢或镍镉干电池,但是镍氢干电池无法抗高温,镍镉干电池有环保污染的问题。超级电容发展快速,容量超大,面积反缩小,加上价格低廉,因此有部份太阳能产品开始改采超级电容为充电对象,因而改善了太阳能充电的许多问题:
  1. 充电较快速,
  2. 寿命长5倍以上,
  3. 充电温度范围较广,
  4. 减少太阳能电池用量(可低压充电)。

分类编辑

     太阳能电池按结晶状态可分为结晶系薄膜式和非结晶系薄膜式(以下表示为a-)两大类,而前者又分为单结晶形和多结晶形。
     按材料可分为硅薄膜形、化合物半导体薄膜形和有机膜形,而化合物半导体薄膜形又分为非结晶形(a-Si:H,a-Si:H:F,a-SixGel-x:H等)、ⅢV族(GaAs,InP等)、ⅡⅥ族(Cds系)和磷化锌 (Zn 3 p 2 )等。
      太阳能电池根据所用材料的不同,太阳能电池还可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池、有机太阳能电池、塑料太阳能电池,其中硅太阳能电池是发展最成熟的,在应用中居主导地位。




 



https://blog.sciencenet.cn/blog-567091-856365.html

上一篇:表面重构、超结构、二维氧化、二维氢化、体内氧化、体内氢化
下一篇:包层材料再认识
收藏 IP: 159.226.141.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-24 16:45

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部