xiaoqiugood的个人博客分享 http://blog.sciencenet.cn/u/xiaoqiugood

博文

氚的测量调研

已有 7598 次阅读 2014-9-14 22:08 |个人分类:表面科学|系统分类:科研笔记

关注:

1)氚量的测量原理

2) 常见的测量方法

 

量热、激光拉曼、四极质谱、微色谱、BIXS,LIBS

 

 

 

 

液体闪烁

摘自:

http://baike.baidu.com/view/1151270.htm?fr=aladdin

液体闪烁计数器(liquid scintillation counter)是使用液体闪烁体闪烁液接受射线并转换成荧光光子的放射性计量仪。

 

液体闪烁计数器主要测定发生β核衰变放射性核素,尤其对低能β更为有效

仪器原理编辑

其基本原理是依据射线与物质相互作用产生荧光效应。
     首先是闪烁溶剂分子吸收射线能量成为激发态,再回到基态时将能量传递闪烁体分子,闪烁体分子由激发态回到基态时,发出荧光光子。荧光光子被光电倍增管(PM)接收转换为光电子,再经倍增,在PM阳极上收集到好多光电子,以脉冲信号形式输送出去。将信号符合、放大、分析、显示,表示出样品液中放射性强弱与大小。
2主要功能编辑
     液体闪烁计数器虽以测定低能β放射性核素为主,但近几年来,随着核技术应用领域的不断拓展,还开发出许多其它领域的测试功能。该仪器一次可测300个样,自动换样、显示、打印,有三个计数道,对3H计数效率大于60%,14C计数效率大于95%。
 
1 常用放射性核素测定
液闪计数器可用于3H、14C、32P、33P、35S、45Ca、55Fe、36Cl、86Rb、65Zn、90Sr、203Hg等含有放射性核素的动植物、微生物和非生物样品测定。
 
2 H number法猝灭校正
 
在测定样品放射性的同时,测出H#数值,可以直观的判断出该样品的猝灭程度。
 
3 两相检测
 
用于检测含水放射性样品与闪烁液的分相问题,以避免由此而引起的计数效率下降。
 
4 自动猝灭补偿(AQC)
通过最佳的窗口等条件设置,以期使猝灭样品达到较高的计数效率。
5 随机符合监测(RCM)
可用于监测制样过程中化学发光引起的单光子事件的假计数,可以从测定结果中扣除。
6 能谱寻找与分析
此功能对未知核素的β能谱定位与分布做出可靠准确的测量,为道宽设置提供依据。
7 单光子监测(SPM)
可用于生物发光与生物中单光子事件的测定。
8 半衰期校正
对于短半衰期核素可校正出放射性强度与时间的关系。给出现存放射性强度的量。
9 双标与三标记测定
通过设置不同道宽等条件,测定同一个样品中的双标记或三标记放射性,区分出各个标记的放射性强度
3应用编辑
液体闪烁计数器主要用于探测一些低能β核素示踪原子的放射性样品,目前已广泛的应用于工业、农业、生物医学、分子生物学、环境科学、考古与地质构造等领域科研工作中的核素示踪与核辐射测量。主要包括以下几个方面:
 
1 细胞与分子生物学
主要利用3H、14C、32P等放射性核素进行体内或体外标记,研究细胞生物体内核酸、蛋白质等生物大分子的合成与降解代谢及其转化途径。尤其在核酸分子标记分子杂交、探针制备等方面应用更为广泛。
 
2 生物医学
利用放射免疫分析技术测定动物或人体内激素等微量活性物质,研究动物和人体体内内分泌和其它生理代谢行为。
3 动植物营养
 
通过对大量或微量元素标记测定,研究动物、植物对营养元素、矿质元素的吸收利用率、生理代谢及其缺素症,为研究防治对策提供依据。
 
 
利用标记示踪原子,研究有毒有害物质在环境体系的行为、去向和污染程度,包括用于重金属和农药等污染研究,以及在环境中水体、大气、土壤、居室内放射性天然背景值的监测。
 
5 生物体中发光测定
利用单光子监测了测定生物体内发光与单光子事件和环境变化关系的研究。
 
6. 检验检疫领域也会有低本底液闪仪来检测大理石的放射性。红酒的鉴别。食醋的鉴别等。

 

 

盖革计数器

摘自:http://en.wikipedia.org/wiki/Geiger%E2%80%93M%C3%BCller_tube

http://baike.baidu.com/view/323681.htm?fromtitle=%E7%9B%96%E9%9D%A9%E8%AE%A1%E6%95%B0%E5%99%A8&type=syn

 

一种专门探测电离辐射(α粒子、β粒子γ射线)强度的记数仪器。由充气的管或小室作探头,当向探头施加的电压达到一定范围时,射线在管内每电离产生一对离子,就能放大产生一个相同大小的电脉冲并被相连的电子装置所记录,由此测量得单位时间内的射线数。
1英文编辑
Geiger-Müller counter
2介绍编辑
气体电离探测器。是H.盖革和P.米勒在1928年发明的。与正比计数器类似,但所加的电压更高。带电粒子射入气体,在离子增殖过程中,受激原子退激,发射紫外光子,这些光子射到阴极上产生光电子,光电子向阳极漂移,又引起离子增殖,于是在管中形成自激放电为了使之能够计数,计数器中充有有机气体或卤素蒸气,能吸收光子,起到猝熄作用。
     盖革-米勒计数器优点是灵敏度高,脉冲幅度大,缺点是不能快速计数。1908年,德国物理学家盖革(Hans Wilhelm Geiger,1882-1945)(左图)按照卢瑟福(E. Ernest Rutherford,1871~1937)的要求,设计制成了一台α粒子计数器。卢瑟福和盖革利用这一计数器对α粒子进行了探测。
     1909年盖革和马斯登(Ernest Marsden,1889-1970)在实验中发现α粒子碰在金箔上偶尔会发生极大角度的偏折。卢瑟福对这个实验的各种参数作了详细分析,于1911年提出了原子的有核模型
从1920年起,盖革和德国物理学家米勒(E. Walther Muller,1905-1979)对计数器作了许多改进,灵敏度得到很大提高,被称为盖革-米勒计数器,应用十分广泛。
       盖革-米勒计数器是根据射线能使气体电离的性能制成的,是最常用的一种金属丝计数器。两端用绝缘物质封闭的金属管内贮有低压气体,沿管的轴线装了金属丝,在金属丝和管壁之间用电池组产生一定的电压(比管内气体的击穿电压稍低),管内没有射线穿过时,气体不放电。当某种射线的一个高速粒子进入管内时,能够使管内气体原子电离,释放出几个自由电子,并在电压的作用下飞向金属丝。 这些电子沿途又电离气体的其它原子,释放出更多的电子。越来越多的电子再接连电离越来越多的气体原子,终于使管内气体成为导电体,在丝极与管壁之间产生迅速的气体放电现象。从而有一个脉冲电流输入放大器,并有接于放大器输出端的计数器接受。计数器自动地记录下每个粒子飞入管内时的放电,由此可检测出粒子的数目。
1937年盖革和物理学家席勒(Leo Szilard,1898-1964)(右图)用九个盖革-米勒计数器排成一个环形,测定了宇宙射线的角分布。
盖革-米勒计数器是核物理学粒子物理学中不可缺少的探测器,至今仍然是实验室中敏锐的“眼睛”(左图)。
3盖革计数器编辑
盖革计数器的原理图盖革计数器(Geiger counter)又叫盖革-米勒计数器
(Geiger-Müller counter),是一种用于探测电离辐射的粒子探测器,通常用
于探测α粒子和β粒子,也有些型号盖革计数器可以探测γ射线及X射线。
4构造及原理编辑
盖革计数器是根据射线对气体的电离性质设计成的。其探测器(称“盖革管”)
的通常结构是在一根两端用绝缘物质密闭的金属管内充入稀薄气体(通常是掺
加了卤素的稀有气体,如氦、氖、氩等),在沿管的轴线上安装有一根金属丝
电极,并在金属管壁和金属丝电极之间加上略低于管内气体击穿电压的电压。
这样在通常状态下,管内气体不放电;而当有高速粒子射入管内时,粒子的能
量使管内气体电离导电,在丝极与管壁之间产生迅速的气体放电现象,从而输
出一个脉冲电流信号。通过适当地选择加在丝极与管壁之间的电压,就可以对
被探测粒子的最低能量,从而对其种类加以甄选。
盖革计数器也可以用于探测γ射线,但由于盖革管中的气体密度通常较小,高能
γ射线往往在未被探测到时就已经射出了盖革管,因此其对高能γ射线的探测灵
敏度较低。在这种情况下,碘化钠闪烁计数器则有更好的表现。
5历史编辑
盖革计数器最初是在1908年由德国物理学家汉斯·盖革和著名的英国物理学家卢
瑟福在α粒子散射实验中,为了探测α粒子而设计的。后来在1928年,盖革又和
他的学生米勒(Walther Müller)对其进行了改进[1],使其可以用于探测所有
的电离辐射。
1947年,美国人Sidney H. Liebson在其博士学位研究中又对盖革计数器做了进
一步的改进[2],使得盖革管使用较低的工作电压,并且显著延长了其使用寿命
。这种改进也被称为“卤素计数器”。
1964年,在美国和德国都有了成熟技术,并且有专业的生产厂家开始量产。
盖革计数器因为其造价低廉、使用方便、探测范围广泛,至今仍然被普遍地使
用于核物理学、医学、粒子物理学及工业领域。
现代盖革-米勒计数器已开始采用大规模集成电路代替了当年的三极管驱动发声器
件的方式实现有效计数并可计算出相应的辐照强度及累积受辐照量,并可通过显
示设备精确显示出来。

 

From Wikipedia, the free encyclopedia
Plot of ion pair current against applied voltage for a cylindrical gaseous radiation detector with a central wire anode.

The Geiger–Müller tube (or G-M tube) is the sensing element of the Geiger counter instrument used for the detection of ionizing radiation. It was named after Hans Geiger who invented the principle in 1908,[1] and Walther Müller who collaborated with Geiger in developing the technique further in 1928 to produce a practical tube that could detect a number of different radiation types.[2][3]

It is a gaseous ionization detector and uses the Townsend avalanche phenomenon to produce an easily detectable electronic pulse from as little as a single ionising event due to a radiation particle. It is used for the detection of gamma radiation, X-Rays, and alpha and beta particles. It can also be adapted to detect neutrons. The tube operates in the "Geiger" region of ion pair generation. This is shown on the accompanying plot for gaseous detectors showing ion current against applied voltage using a model based on a tube detector with a co-axial central anode.

Whilst it is a robust and inexpensive detector, it is unable to measure high radiation rates efficiently, has a finite life in high radiation areas and is unable to measure incident radiation energy, so no spectral information can be generated and there is no discrimination between radiation types.

 

 

正比计数器编辑
本词条缺少信息栏名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!
 
proportional counter用气体作为工作物质,输出脉冲幅度[1] 与初始电离有正比关系的粒子探测器可以用来计数单个粒子,并根据输出信号的脉冲高度来确定入射辐射的能量。
1概况编辑
这种探测器的结构大多采用圆柱形,中心是阳极细丝,圆柱筒外壳是阴极,工作气体一般是隋性气体和少量负电性气体的混合物。入射粒子与筒内气体原子碰撞使原子电离,产生电子和正离子。在电场作用下,电子向中心阳极丝运动,正离子以比电子慢得多的速度向阴极漂移。电子在阳极丝附近受强电场作用加速获得能量可使原子再电离。从阳极丝引出的输出脉冲幅度较大,且与初始电离成正比。
2使用情况编辑
正比计数器具有较好的能量分辨率和能量线性响应,探测效率高,寿命长,广泛应用于核物理和粒子物理实验。1-50keV的X射线经常用正比计数器进行探测。要求是具有较薄的入射窗口,以获得较低的低能端探测下限,较大的观测面积,以及良好的气密性。常用的是铍窗正比计数器。当代X射线探测器多采用正比计数器阵列和装有多根阳极丝和阴极丝的多丝正比室,以获得更大的有效观测面积。
近年来制作的气体闪烁正比计数器,能量分辨率比一般气态正比计数器约高一倍。为了观测较弱的X射线源,需要高灵敏度的探测器,为此制作了大面积窗口正比计数器,如小型天文卫星-A携带的窗口面积为840厘米的铍窗正比计数器,采用的是正比计数器组合的方法。此外,确定X射线源的位置需要有高分辨率的探测器;而为了制造这种探测器,就相应地需要制作对测定位置灵敏度高的正比计数器。

 

 



https://blog.sciencenet.cn/blog-567091-827774.html

上一篇:认识ITER-1:从各国的聚变研究实验装置说起
下一篇:钢说
收藏 IP: 139.205.190.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-23 05:05

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部