Jerkwin分享 http://blog.sciencenet.cn/u/Jerkwin

博文

材料弹性模量各向异性的三维图示方法

已有 20669 次阅读 2014-4-20 07:08 |个人分类:数学轮子|系统分类:科研笔记| matlab

  • 2014-04-17 21:21:03 感谢硕士生伊国辉整理此文

  • 2015-03-05 09:31:31 修正公式错误

  • 2016-06-30 09:14:23 增加不同晶系代码. 感谢 吴俊彦 校对格公式.

背景原理简介

各向异性广泛存在各种材料之中. 什么是各向异性呢? 简单来说, 就是晶体在不同方向有不同的性能. 我们很容易把各向异性和不均匀性混淆, 其实这是两个完全不同的概念. 各向异性就是说材料的性能与方向有关, 而不均匀性是指材料的性能与部位有关. 拿单晶来说, 内部任一点, 结构与性能都是相同的, 但不同方向却有不同的性能$.$

晶体是各向异性的, 不同方向性能不一样, 而且有着严格的对称性. 这里要说一下, 对称性是一个很了不起的性质, 在数学, 物理学中都有着广泛的应用, 而且在材料性质的分析中也常用到. 多晶材料存在择优取向, 也有一定的各向异性.

各种材料都有弹性, 大多数材料的弹性性质也具有各向异性. 例如, 在立方晶体中[111]方向通常比[100]方向更难压缩(stiff). 当我们对材料施加载荷, 材料会发生相应的形变, 在弹性范围内, 形变遵循胡克(Hook)定律, 即应力与应变是线性关系, 可以表示为 σ=Cεσ=Cε, 其中, <span class="MathJax" id="MathJax-Element-2-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">&#x03C3;" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">σσ 是应力, <span class="MathJax" id="MathJax-Element-3-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">&#x03B5;" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">εε 是应变, <span class="MathJax" id="MathJax-Element-4-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">C" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">CC 为杨氏模量(或称弹性模量), 也常用 <span class="MathJax" id="MathJax-Element-5-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">E" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">EE<span class="MathJax" id="MathJax-Element-6-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">Y" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">YY 来表示.

材料不同方向上弹性模量不同, 我们怎么描述这种不同呢? 最好用数学方法, 建立数学框架, 准确直观地将弹性各项异性描述出来. 下面我们就进行这种数学的描述. 本人数学水平有限, 不能一步一步推导, 但我们可以简要理解一下推导过程. 弹性各项异性的推导就是利用张量和群论推广胡克定律. 我们先只考虑低阶弹性常数. 考虑二阶的 <span class="MathJax" id="MathJax-Element-7-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">C<mrow class="MJX-TeXAtom-ORD">ijkl" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">CijklCijkl, 原来的胡克定律 <span class="MathJax" id="MathJax-Element-8-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">&#x03C3;=C&#x03B5;" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">σ=Cεσ=Cε 可推广为为矩阵形式

<span class="MathJax" id="MathJax-Element-9-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mi mathvariant="bold-italic">&#x03C3;=(<mtable rowspacing="4pt" columnspacing="1em">&#x03C3;1&#x03C3;2&#x03C3;3&#x03C3;4&#x03C3;5&#x03C3;6)=[<mtable rowspacing="4pt" columnspacing="1em">C<mrow class="MJX-TeXAtom-ORD">11C<mrow class="MJX-TeXAtom-ORD">12C<mrow class="MJX-TeXAtom-ORD">13C<mrow class="MJX-TeXAtom-ORD">14C<mrow class="MJX-TeXAtom-ORD">15C<mrow class="MJX-TeXAtom-ORD">16C<mrow class="MJX-TeXAtom-ORD">21C<mrow class="MJX-TeXAtom-ORD">22C<mrow class="MJX-TeXAtom-ORD">23C<mrow class="MJX-TeXAtom-ORD">24C<mrow class="MJX-TeXAtom-ORD">25C<mrow class="MJX-TeXAtom-ORD">26C<mrow class="MJX-TeXAtom-ORD">31C<mrow class="MJX-TeXAtom-ORD">32C<mrow class="MJX-TeXAtom-ORD">33C<mrow class="MJX-TeXAtom-ORD">34C<mrow class="MJX-TeXAtom-ORD">35C<mrow class="MJX-TeXAtom-ORD">36C<mrow class="MJX-TeXAtom-ORD">41C<mrow class="MJX-TeXAtom-ORD">42C<mrow class="MJX-TeXAtom-ORD">43C<mrow class="MJX-TeXAtom-ORD">44C<mrow class="MJX-TeXAtom-ORD">45C<mrow class="MJX-TeXAtom-ORD">46C<mrow class="MJX-TeXAtom-ORD">51C<mrow class="MJX-TeXAtom-ORD">52C<mrow class="MJX-TeXAtom-ORD">53C<mrow class="MJX-TeXAtom-ORD">54C<mrow class="MJX-TeXAtom-ORD">55C<mrow class="MJX-TeXAtom-ORD">56C<mrow class="MJX-TeXAtom-ORD">61C<mrow class="MJX-TeXAtom-ORD">62C<mrow class="MJX-TeXAtom-ORD">63C<mrow class="MJX-TeXAtom-ORD">64C<mrow class="MJX-TeXAtom-ORD">65C<mrow class="MJX-TeXAtom-ORD">66](<mtable rowspacing="4pt" columnspacing="1em">&#x03B5;1&#x03B5;2&#x03B5;3&#x03B5;4&#x03B5;5&#x03B5;6)=<mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">C<mi mathvariant="bold-italic">&#x03B5;" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">σ=σ1σ2σ3σ4σ5σ6=C11C21C31C41C51C61C12C22C32C42C52C62C13C23C33C43C53C63C14C24C34C44C54C64C15C25C35C45C55C65C16C26C36C46C56C66ε1ε2ε3ε4ε5ε6=Cεσ=(σ1σ2σ3σ4σ5σ6)=[C11C12C13C14C15C16C21C22C23C24C25C26C31C32C33C34C35C36C41C42C43C44C45C46C51C52C53C54C55C56C61C62C63C64C65C66](ε1ε2ε3ε4ε5ε6)=Cε

可以证明, 刚度矩阵 <span class="MathJax" id="MathJax-Element-10-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">C" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">CC 为对称阵, <span class="MathJax" id="MathJax-Element-11-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">C<mrow class="MJX-TeXAtom-ORD">ij=C<mrow class="MJX-TeXAtom-ORD">ji" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">Cij=CjiCij=Cji. 因此, 独立张量元数目至多只有21个. 晶系的对称性越高, 独立的张量元数目就越少. 需要指出的是, <span class="MathJax" id="MathJax-Element-12-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">C<mrow class="MJX-TeXAtom-ORD">ij" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">CijCij 的数目只与晶系有关, 而与晶系中具体的对称类型无关.

<span class="MathJax" id="MathJax-Element-13-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">C" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">CC 的逆矩阵 <span class="MathJax" id="MathJax-Element-14-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">S" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">SS 称为柔顺矩阵. 利用 <span class="MathJax" id="MathJax-Element-15-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">S" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">SS 可得到杨氏弹性模量的一般表达式. 我们用与[100], [010], [001]三个晶向的方向余弦来表示任意方向的杨氏模量. 设 <span class="MathJax" id="MathJax-Element-16-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">l1,l2,l3" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">l1,l2,l3l1,l2,l3 为空间某一方向与晶体主轴的方向余弦, 空间任一方向的杨氏模量 <span class="MathJax" id="MathJax-Element-17-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">E" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">EE 的大小只与方向有关, 具体表达式如下

<span class="MathJax" id="MathJax-Element-18-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">1<mrow class="MJX-TeXAtom-ORD">/E=S<mrow class="MJX-TeXAtom-ORD">11l14+2S<mrow class="MJX-TeXAtom-ORD">12<mo stretchy="false">(l1l2<mo stretchy="false">)2+2S<mrow class="MJX-TeXAtom-ORD">13<mo stretchy="false">(l1l3<mo stretchy="false">)2+2S<mrow class="MJX-TeXAtom-ORD">14<mo stretchy="false">(l2l3l12<mo stretchy="false">)+2S<mrow class="MJX-TeXAtom-ORD">15<mo stretchy="false">(l3l13<mo stretchy="false">)+2S<mrow class="MJX-TeXAtom-ORD">16<mo stretchy="false">(l2l13<mo stretchy="false">)<mtd />+S<mrow class="MJX-TeXAtom-ORD">22l24+2S<mrow class="MJX-TeXAtom-ORD">23<mo stretchy="false">(l2l3<mo stretchy="false">)2+2S<mrow class="MJX-TeXAtom-ORD">24<mo stretchy="false">(l3l23<mo stretchy="false">)+2S<mrow class="MJX-TeXAtom-ORD">25<mo stretchy="false">(l1l3l22<mo stretchy="false">)+2S<mrow class="MJX-TeXAtom-ORD">26<mo stretchy="false">(l1l23<mo stretchy="false">)<mtd /><mtd />+S<mrow class="MJX-TeXAtom-ORD">33l34+2S<mrow class="MJX-TeXAtom-ORD">34<mo stretchy="false">(l2l33<mo stretchy="false">)+2S<mrow class="MJX-TeXAtom-ORD">35<mo stretchy="false">(l1l33<mo stretchy="false">)+2S<mrow class="MJX-TeXAtom-ORD">36<mo stretchy="false">(l1l2l32<mo stretchy="false">)<mtd /><mtd /><mtd />+S<mrow class="MJX-TeXAtom-ORD">44<mo stretchy="false">(l2l3<mo stretchy="false">)2+2S<mrow class="MJX-TeXAtom-ORD">45<mo stretchy="false">(l1l2l32<mo stretchy="false">)+2S<mrow class="MJX-TeXAtom-ORD">46<mo stretchy="false">(l1l3l22<mo stretchy="false">)<mtd /><mtd /><mtd /><mtd />+S<mrow class="MJX-TeXAtom-ORD">55<mo stretchy="false">(l1l3<mo stretchy="false">)2+2S<mrow class="MJX-TeXAtom-ORD">56<mo stretchy="false">(l2l3l12<mo stretchy="false">)<mtd /><mtd /><mtd /><mtd /><mtd /><mtd />+S<mrow class="MJX-TeXAtom-ORD">66<mo stretchy="false">(l1l2<mo stretchy="false">)2" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">1/E=S11l41+2S12(l1l2)2+S22l42+2S13(l1l3)2+2S23(l2l3)2+S33l43+2S14(l2l3l21)+2S24(l3l32)+2S34(l2l33)+S44(l2l3)2+2+2+2+2+S15(l3l31)S25(l1l3l22)S35(l1l33)S45(l1l2l23)S55(l1l3)2+2+2+2+2+2+S16(l2l31)S26(l1l32)S36(l1l2l23)S46(l1l3l22)S56(l2l3l21)S66(l1l2)21/E=S11l14+2S12(l1l2)2+2S13(l1l3)2+2S14(l2l3l12)+2S15(l3l13)+2S16(l2l13)+S22l24+2S23(l2l3)2+2S24(l3l23)+2S25(l1l3l22)+2S26(l1l23)+S33l34+2S34(l2l33)+2S35(l1l33)+2S36(l1l2l32)+S44(l2l3)2+2S45(l1l2l32)+2S46(l1l3l22)+S55(l1l3)2+2S56(l2l3l12)+S66(l1l2)2

写为矩阵元素加和的形式为

<span class="MathJax" id="MathJax-Element-19-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">1<mrow class="MJX-TeXAtom-ORD">/E=<mo movablelimits="false">&#x2211;<mrow class="MJX-TeXAtom-ORD">m=13<mo movablelimits="false">&#x2211;<mrow class="MJX-TeXAtom-ORD">n=13<mo movablelimits="false">&#x2211;<mrow class="MJX-TeXAtom-ORD">p=13<mo movablelimits="false">&#x2211;<mrow class="MJX-TeXAtom-ORD">q=13S<mrow class="MJX-TeXAtom-ORD">mnpqlmlnlplq<mtd />=<mo movablelimits="false">&#x2211;<mo stretchy="false">(<mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">S<mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">LT<mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">L<mo stretchy="false">)<mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">L=<mo stretchy="false">(l12,l22,l33,l2l3,l1l3,l1l2<mo stretchy="false">)" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">1/EL=m=13n=13p=13q=13Smnpqlmlnlplq=(SLTL)=(l21,l22,l33,l2l3,l1l3,l1l2)1/E=∑m=13∑n=13∑p=13∑q=13Smnpqlmlnlplq=∑(SLTL)L=(l12,l22,l33,l2l3,l1l3,l1l2)

一种较对称, 方便推导的形式为

<span class="MathJax" id="MathJax-Element-20-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">1<mrow class="MJX-TeXAtom-ORD">/E=S<mrow class="MJX-TeXAtom-ORD">11l14+S<mrow class="MJX-TeXAtom-ORD">22l24+S<mrow class="MJX-TeXAtom-ORD">33l34<mtd />+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">44+2S<mrow class="MJX-TeXAtom-ORD">23<mo stretchy="false">)<mo stretchy="false">(l2l3<mo stretchy="false">)2+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">55+2S<mrow class="MJX-TeXAtom-ORD">13<mo stretchy="false">)<mo stretchy="false">(l1l3<mo stretchy="false">)2+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">66+2S<mrow class="MJX-TeXAtom-ORD">12<mo stretchy="false">)<mo stretchy="false">(l1l2<mo stretchy="false">)2<mtd />+2[<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">14+S<mrow class="MJX-TeXAtom-ORD">56<mo stretchy="false">)l12+S<mrow class="MJX-TeXAtom-ORD">24l22+S<mrow class="MJX-TeXAtom-ORD">34l32]l2l3<mtd />+2[S<mrow class="MJX-TeXAtom-ORD">15l12+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">25+S<mrow class="MJX-TeXAtom-ORD">46<mo stretchy="false">)l22+S<mrow class="MJX-TeXAtom-ORD">35l32]l1l3<mtd />+2[S<mrow class="MJX-TeXAtom-ORD">16l12+S<mrow class="MJX-TeXAtom-ORD">26l22+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">36+S<mrow class="MJX-TeXAtom-ORD">45<mo stretchy="false">)l32]l1l2" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">1/E=S11l41+S22l42+S33l43+(S44+2S23)(l2l3)2+(S55+2S13)(l1l3)2+(S66+2S12)(l1l2)2+2[(S14+S56)l21+S24l22+S34l23]l2l3+2[S15l21+(S25+S46)l22+S35l23]l1l3+2[S16l21+S26l22+(S36+S45)l23]l1l21/E=S11l14+S22l24+S33l34+(S44+2S23)(l2l3)2+(S55+2S13)(l1l3)2+(S66+2S12)(l1l2)2+2[(S14+S56)l12+S24l22+S34l32]l2l3+2[S15l12+(S25+S46)l22+S35l32]l1l3+2[S16l12+S26l22+(S36+S45)l32]l1l2

这三种不同的表达形式, 可根据需要选择使用.

不同晶系的杨氏弹性模量

上面杨氏弹性模量的公式有些复杂, 好在除三斜晶系外, 大多数晶体都具有对称性. 考虑到晶体的对称性, 某些弹性常数必定为零, 而某些则相等, 所以对具有对称性的晶体, 相应的的杨氏模量公式简单些. 下面两张图总结了不同晶系刚度矩阵和柔顺矩阵的特点, 以及不同晶系杨氏弹性模量的公式, 后者为许多文献所引用.

1 三斜晶系(Triclinic system)

三斜晶系是所有七大晶系中对称性最低的晶系, 因此拥有最多的独立矩阵元, 其形式为:

<span class="MathJax" id="MathJax-Element-21-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">C=[<mtable rowspacing="4pt" columnspacing="1em">C<mrow class="MJX-TeXAtom-ORD">11C<mrow class="MJX-TeXAtom-ORD">12C<mrow class="MJX-TeXAtom-ORD">13C<mrow class="MJX-TeXAtom-ORD">14C<mrow class="MJX-TeXAtom-ORD">15C<mrow class="MJX-TeXAtom-ORD">16<mtd />C<mrow class="MJX-TeXAtom-ORD">22C<mrow class="MJX-TeXAtom-ORD">23C<mrow class="MJX-TeXAtom-ORD">24C<mrow class="MJX-TeXAtom-ORD">25C<mrow class="MJX-TeXAtom-ORD">26<mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">33C<mrow class="MJX-TeXAtom-ORD">34C<mrow class="MJX-TeXAtom-ORD">35C<mrow class="MJX-TeXAtom-ORD">36<mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">44C<mrow class="MJX-TeXAtom-ORD">45C<mrow class="MJX-TeXAtom-ORD">46<mtd /><mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">55C<mrow class="MJX-TeXAtom-ORD">56<mtd /><mtd /><mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">66]" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">C=C11C12C22C13C23C33C14C24C34C44C15C25C35C45C55C16C26C36C46C56C66C=[C11C12C13C14C15C16C22C23C24C25C26C33C34C35C36C44C45C46C55C56C66]
<span class="MathJax" id="MathJax-Element-22-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">S=[<mtable rowspacing="4pt" columnspacing="1em">S<mrow class="MJX-TeXAtom-ORD">11S<mrow class="MJX-TeXAtom-ORD">12S<mrow class="MJX-TeXAtom-ORD">13S<mrow class="MJX-TeXAtom-ORD">14S<mrow class="MJX-TeXAtom-ORD">15S<mrow class="MJX-TeXAtom-ORD">16<mtd />S<mrow class="MJX-TeXAtom-ORD">22S<mrow class="MJX-TeXAtom-ORD">23S<mrow class="MJX-TeXAtom-ORD">24S<mrow class="MJX-TeXAtom-ORD">25S<mrow class="MJX-TeXAtom-ORD">26<mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">33S<mrow class="MJX-TeXAtom-ORD">34S<mrow class="MJX-TeXAtom-ORD">35S<mrow class="MJX-TeXAtom-ORD">36<mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">44S<mrow class="MJX-TeXAtom-ORD">45S<mrow class="MJX-TeXAtom-ORD">46<mtd /><mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">55S<mrow class="MJX-TeXAtom-ORD">56<mtd /><mtd /><mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">66]" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">S=S11S12S22S13S23S33S14S24S34S44S15S25S35S45S55S16S26S36S46S56S66S=[S11S12S13S14S15S16S22S23S24S25S26S33S34S35S36S44S45S46S55S56S66]

共有21个独立的矩阵元, 杨氏模量

<span class="MathJax" id="MathJax-Element-23-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">1<mrow class="MJX-TeXAtom-ORD">/E=S<mrow class="MJX-TeXAtom-ORD">11l14+S<mrow class="MJX-TeXAtom-ORD">22l24+S<mrow class="MJX-TeXAtom-ORD">33l34<mtd />+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">44+2S<mrow class="MJX-TeXAtom-ORD">23<mo stretchy="false">)<mo stretchy="false">(l2l3<mo stretchy="false">)2+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">55+2S<mrow class="MJX-TeXAtom-ORD">13<mo stretchy="false">)<mo stretchy="false">(l1l3<mo stretchy="false">)2+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">66+2S<mrow class="MJX-TeXAtom-ORD">12<mo stretchy="false">)<mo stretchy="false">(l1l2<mo stretchy="false">)2<mtd />+2[<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">14+S<mrow class="MJX-TeXAtom-ORD">56<mo stretchy="false">)l12+S<mrow class="MJX-TeXAtom-ORD">24l22+S<mrow class="MJX-TeXAtom-ORD">34l32]l2l3<mtd />+2[S<mrow class="MJX-TeXAtom-ORD">15l12+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">25+S<mrow class="MJX-TeXAtom-ORD">46<mo stretchy="false">)l22+S<mrow class="MJX-TeXAtom-ORD">35l32]l1l3<mtd />+2[S<mrow class="MJX-TeXAtom-ORD">16l12+S<mrow class="MJX-TeXAtom-ORD">26l22+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">36+S<mrow class="MJX-TeXAtom-ORD">45<mo stretchy="false">)l32]l1l2" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">1/E=S11l41+S22l42+S33l43+(S44+2S23)(l2l3)2+(S55+2S13)(l1l3)2+(S66+2S12)(l1l2)2+2[(S14+S56)l21+S24l22+S34l23]l2l3+2[S15l21+(S25+S46)l22+S35l23]l1l3+2[S16l21+S26l22+(S36+S45)l23]l1l21/E=S11l14+S22l24+S33l34+(S44+2S23)(l2l3)2+(S55+2S13)(l1l3)2+(S66+2S12)(l1l2)2+2[(S14+S56)l12+S24l22+S34l32]l2l3+2[S15l12+(S25+S46)l22+S35l32]l1l3+2[S16l12+S26l22+(S36+S45)l32]l1l2
2 单斜晶系(Monoclinic system)

考虑对称性后, 单斜晶系有13个独立的矩阵单元:

<span class="MathJax" id="MathJax-Element-24-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">C=[<mtable rowspacing="4pt" columnspacing="1em">C<mrow class="MJX-TeXAtom-ORD">11C<mrow class="MJX-TeXAtom-ORD">12C<mrow class="MJX-TeXAtom-ORD">130C<mrow class="MJX-TeXAtom-ORD">150<mtd />C<mrow class="MJX-TeXAtom-ORD">22C<mrow class="MJX-TeXAtom-ORD">230C<mrow class="MJX-TeXAtom-ORD">250<mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">330C<mrow class="MJX-TeXAtom-ORD">350<mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">440C<mrow class="MJX-TeXAtom-ORD">46<mtd /><mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">550<mtd /><mtd /><mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">66]" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">C=C11C12C22C13C23C33000C44C15C25C350C55000C460C66C=[C11C12C130C150C22C230C250C330C350C440C46C550C66]
<span class="MathJax" id="MathJax-Element-25-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">S=[<mtable rowspacing="4pt" columnspacing="1em">S<mrow class="MJX-TeXAtom-ORD">11S<mrow class="MJX-TeXAtom-ORD">12S<mrow class="MJX-TeXAtom-ORD">130S<mrow class="MJX-TeXAtom-ORD">150<mtd />S<mrow class="MJX-TeXAtom-ORD">22S<mrow class="MJX-TeXAtom-ORD">230S<mrow class="MJX-TeXAtom-ORD">250<mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">330S<mrow class="MJX-TeXAtom-ORD">350<mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">440S<mrow class="MJX-TeXAtom-ORD">46<mtd /><mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">550<mtd /><mtd /><mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">66]" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">S=S11S12S22S13S23S33000S44S15S25S350S55000S460S66S=[S11S12S130S150S22S230S250S330S350S440S46S550S66]
<span class="MathJax" id="MathJax-Element-26-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">1<mrow class="MJX-TeXAtom-ORD">/E=S<mrow class="MJX-TeXAtom-ORD">11l14+S<mrow class="MJX-TeXAtom-ORD">22l24+S<mrow class="MJX-TeXAtom-ORD">33l34<mtd />+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">44+2S<mrow class="MJX-TeXAtom-ORD">23<mo stretchy="false">)<mo stretchy="false">(l2l3<mo stretchy="false">)2+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">55+2S<mrow class="MJX-TeXAtom-ORD">13<mo stretchy="false">)<mo stretchy="false">(l1l3<mo stretchy="false">)2+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">66+2S<mrow class="MJX-TeXAtom-ORD">12<mo stretchy="false">)<mo stretchy="false">(l1l2<mo stretchy="false">)2<mtd />+2[S<mrow class="MJX-TeXAtom-ORD">15l12+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">25+S<mrow class="MJX-TeXAtom-ORD">46<mo stretchy="false">)l22+S<mrow class="MJX-TeXAtom-ORD">35l32]l1l3" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">1/E=S11l41+S22l42+S33l43+(S44+2S23)(l2l3)2+(S55+2S13)(l1l3)2+(S66+2S12)(l1l2)2+2[S15l21+(S25+S46)l22+S35l23]l1l31/E=S11l14+S22l24+S33l34+(S44+2S23)(l2l3)2+(S55+2S13)(l1l3)2+(S66+2S12)(l1l2)2+2[S15l12+(S25+S46)l22+S35l32]l1l3
3 正交晶系(Orthorhombic system)

正交晶系拥有相当高的对称性, 其独立矩阵元的数目为9个.

<span class="MathJax" id="MathJax-Element-27-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">C=[<mtable rowspacing="4pt" columnspacing="1em">C<mrow class="MJX-TeXAtom-ORD">11C<mrow class="MJX-TeXAtom-ORD">12C<mrow class="MJX-TeXAtom-ORD">13000<mtd />C<mrow class="MJX-TeXAtom-ORD">22C<mrow class="MJX-TeXAtom-ORD">23000<mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">33000<mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">4400<mtd /><mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">550<mtd /><mtd /><mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">66]" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">C=C11C12C22C13C23C33000C440000C5500000C66C=[C11C12C13000C22C23000C33000C4400C550C66]
<span class="MathJax" id="MathJax-Element-28-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">S=[<mtable rowspacing="4pt" columnspacing="1em">S<mrow class="MJX-TeXAtom-ORD">11S<mrow class="MJX-TeXAtom-ORD">12S<mrow class="MJX-TeXAtom-ORD">13000<mtd />S<mrow class="MJX-TeXAtom-ORD">22S<mrow class="MJX-TeXAtom-ORD">23000<mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">33000<mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">4400<mtd /><mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">550<mtd /><mtd /><mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">66]" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">S=S11S12S22S13S23S33000S440000S5500000S66S=[S11S12S13000S22S23000S33000S4400S550S66]
<span class="MathJax" id="MathJax-Element-29-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">1<mrow class="MJX-TeXAtom-ORD">/E=S<mrow class="MJX-TeXAtom-ORD">11l14+S<mrow class="MJX-TeXAtom-ORD">22l24+S<mrow class="MJX-TeXAtom-ORD">33l34<mtd />+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">44+2S<mrow class="MJX-TeXAtom-ORD">23<mo stretchy="false">)<mo stretchy="false">(l2l3<mo stretchy="false">)2+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">55+2S<mrow class="MJX-TeXAtom-ORD">13<mo stretchy="false">)<mo stretchy="false">(l1l3<mo stretchy="false">)2+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">66+2S<mrow class="MJX-TeXAtom-ORD">12<mo stretchy="false">)<mo stretchy="false">(l1l2<mo stretchy="false">)2" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">1/E=S11l41+S22l42+S33l43+(S44+2S23)(l2l3)2+(S55+2S13)(l1l3)2+(S66+2S12)(l1l2)21/E=S11l14+S22l24+S33l34+(S44+2S23)(l2l3)2+(S55+2S13)(l1l3)2+(S66+2S12)(l1l2)2
4 四方晶系(Tetragonal system)

4.1 四方晶系 <span class="MathJax" id="MathJax-Element-30-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">4,<mrow class="MJX-TeXAtom-ORD">4<mo stretchy="false">&#x00AF;,4<mrow class="MJX-TeXAtom-ORD">/m" role="presentation" style="margin:0px;padding:0px;display:inline;font-weight:normal;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">4,4ˉ,4/m4,4ˉ,4/m

对于具有 <span class="MathJax" id="MathJax-Element-31-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">4,<mrow class="MJX-TeXAtom-ORD">4<mo stretchy="false">&#x00AF;,4<mrow class="MJX-TeXAtom-ORD">/m" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">4,4ˉ,4/m4,4ˉ,4/m 对称操作的四方晶系, 其独立矩阵元的数目为7个:

<span class="MathJax" id="MathJax-Element-32-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">C=[<mtable rowspacing="4pt" columnspacing="1em">C<mrow class="MJX-TeXAtom-ORD">11C<mrow class="MJX-TeXAtom-ORD">12C<mrow class="MJX-TeXAtom-ORD">1300C<mrow class="MJX-TeXAtom-ORD">16<mtd />C<mrow class="MJX-TeXAtom-ORD">11C<mrow class="MJX-TeXAtom-ORD">1300&#x2212;C<mrow class="MJX-TeXAtom-ORD">16<mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">33000<mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">4400<mtd /><mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">440<mtd /><mtd /><mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">66]" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">C=C11C12C11C13C13C33000C440000C44C16C16000C66C=[C11C12C1300C16C11C1300−C16C33000C4400C440C66]
<span class="MathJax" id="MathJax-Element-33-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">S=[<mtable rowspacing="4pt" columnspacing="1em">S<mrow class="MJX-TeXAtom-ORD">11S<mrow class="MJX-TeXAtom-ORD">12S<mrow class="MJX-TeXAtom-ORD">1300S<mrow class="MJX-TeXAtom-ORD">16<mtd />S<mrow class="MJX-TeXAtom-ORD">11S<mrow class="MJX-TeXAtom-ORD">1300&#x2212;S<mrow class="MJX-TeXAtom-ORD">16<mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">33000<mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">4400<mtd /><mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">440<mtd /><mtd /><mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">66]" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">S=S11S12S11S13S13S33000S440000S44S16S16000S66S=[S11S12S1300S16S11S1300−S16S33000S4400S440S66]
<span class="MathJax" id="MathJax-Element-34-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">1<mrow class="MJX-TeXAtom-ORD">/E=S<mrow class="MJX-TeXAtom-ORD">11<mo stretchy="false">(l14+l24<mo stretchy="false">)+S<mrow class="MJX-TeXAtom-ORD">33l34<mtd />+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">44+2S<mrow class="MJX-TeXAtom-ORD">13<mo stretchy="false">)<mo stretchy="false">(l12+l22<mo stretchy="false">)l32+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">66+2S<mrow class="MJX-TeXAtom-ORD">12<mo stretchy="false">)<mo stretchy="false">(l1l2<mo stretchy="false">)2<mtd />+2S<mrow class="MJX-TeXAtom-ORD">16<mo stretchy="false">(l12&#x2212;l22<mo stretchy="false">)l1l2" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">1/E=S11(l41+l42)+S33l43+(S44+2S13)(l21+l22)l23+(S66+2S12)(l1l2)2+2S16(l21l22)l1l21/E=S11(l14+l24)+S33l34+(S44+2S13)(l12+l22)l32+(S66+2S12)(l1l2)2+2S16(l12−l22)l1l2

4.2 四方晶系 <span class="MathJax" id="MathJax-Element-35-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">422,4mm,<mrow class="MJX-TeXAtom-ORD">4<mo stretchy="false">&#x00AF;2m,4<mrow class="MJX-TeXAtom-ORD">/mmm" role="presentation" style="margin:0px;padding:0px;display:inline;font-weight:normal;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">422,4mm,4ˉ2m,4/mmm422,4mm,4ˉ2m,4/mmm

对于具有 <span class="MathJax" id="MathJax-Element-36-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">422,4mm,<mrow class="MJX-TeXAtom-ORD">4<mo stretchy="false">&#x00AF;2m,4<mrow class="MJX-TeXAtom-ORD">/mmm" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">422,4mm,4ˉ2m,4/mmm422,4mm,4ˉ2m,4/mmm 对称操作的四方晶系, 独立矩阵元的数目仅为6个:

<span class="MathJax" id="MathJax-Element-37-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">C=[<mtable rowspacing="4pt" columnspacing="1em">C<mrow class="MJX-TeXAtom-ORD">11C<mrow class="MJX-TeXAtom-ORD">12C<mrow class="MJX-TeXAtom-ORD">13000<mtd />C<mrow class="MJX-TeXAtom-ORD">11C<mrow class="MJX-TeXAtom-ORD">13000<mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">33000<mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">4400<mtd /><mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">440<mtd /><mtd /><mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">66]" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">C=C11C12C11C13C13C33000C440000C4400000C66C=[C11C12C13000C11C13000C33000C4400C440C66]
<span class="MathJax" id="MathJax-Element-38-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">S=[<mtable rowspacing="4pt" columnspacing="1em">S<mrow class="MJX-TeXAtom-ORD">11S<mrow class="MJX-TeXAtom-ORD">12S<mrow class="MJX-TeXAtom-ORD">13000<mtd />S<mrow class="MJX-TeXAtom-ORD">11S<mrow class="MJX-TeXAtom-ORD">13000<mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">33000<mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">4400<mtd /><mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">440<mtd /><mtd /><mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">66]" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">S=S11S12S11S13S13S33000S440000S4400000S66S=[S11S12S13000S11S13000S33000S4400S440S66]
<span class="MathJax" id="MathJax-Element-39-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">1<mrow class="MJX-TeXAtom-ORD">/E=S<mrow class="MJX-TeXAtom-ORD">11<mo stretchy="false">(l14+l24<mo stretchy="false">)+S<mrow class="MJX-TeXAtom-ORD">33l34<mtd />+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">44+2S<mrow class="MJX-TeXAtom-ORD">13<mo stretchy="false">)<mo stretchy="false">(l12+l22<mo stretchy="false">)l32+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">66+2S<mrow class="MJX-TeXAtom-ORD">12<mo stretchy="false">)<mo stretchy="false">(l1l2<mo stretchy="false">)2" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">1/E=S11(l41+l42)+S33l43+(S44+2S13)(l21+l22)l23+(S66+2S12)(l1l2)21/E=S11(l14+l24)+S33l34+(S44+2S13)(l12+l22)l32+(S66+2S12)(l1l2)2
5 三方晶系(Trigonal system)

5.1 三方晶系 <span class="MathJax" id="MathJax-Element-40-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">3,<mrow class="MJX-TeXAtom-ORD">3<mo stretchy="false">&#x00AF;" role="presentation" style="margin:0px;padding:0px;display:inline;font-weight:normal;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">3,3ˉ3,3ˉ

三方晶系 <span class="MathJax" id="MathJax-Element-41-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">3,<mrow class="MJX-TeXAtom-ORD">3<mo stretchy="false">&#x00AF;" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">3,3ˉ3,3ˉ 的独立矩阵元的数目为7个.

<span class="MathJax" id="MathJax-Element-42-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">C=[<mtable rowspacing="4pt" columnspacing="1em">C<mrow class="MJX-TeXAtom-ORD">11C<mrow class="MJX-TeXAtom-ORD">12C<mrow class="MJX-TeXAtom-ORD">13C<mrow class="MJX-TeXAtom-ORD">14C<mrow class="MJX-TeXAtom-ORD">150<mtd />C<mrow class="MJX-TeXAtom-ORD">11C<mrow class="MJX-TeXAtom-ORD">13&#x2212;C<mrow class="MJX-TeXAtom-ORD">14&#x2212;C<mrow class="MJX-TeXAtom-ORD">150<mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">33000<mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">440&#x2212;C<mrow class="MJX-TeXAtom-ORD">15<mtd /><mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">44C<mrow class="MJX-TeXAtom-ORD">14<mtd /><mtd /><mtd /><mtd /><mtd /><mrow class="MJX-TeXAtom-ORD">C<mrow class="MJX-TeXAtom-ORD">11&#x2212;C<mrow class="MJX-TeXAtom-ORD">122]" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">C=C11C12C11C13C13C33C14C140C44C15C1500C44000C15C14C11C122C=[C11C12C13C14C150C11C13−C14−C150C33000C440−C15C44C14C11−C122]
<span class="MathJax" id="MathJax-Element-43-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">S=[<mtable rowspacing="4pt" columnspacing="1em">S<mrow class="MJX-TeXAtom-ORD">11S<mrow class="MJX-TeXAtom-ORD">12S<mrow class="MJX-TeXAtom-ORD">13S<mrow class="MJX-TeXAtom-ORD">14S<mrow class="MJX-TeXAtom-ORD">150<mtd />S<mrow class="MJX-TeXAtom-ORD">11S<mrow class="MJX-TeXAtom-ORD">13&#x2212;S<mrow class="MJX-TeXAtom-ORD">14&#x2212;S<mrow class="MJX-TeXAtom-ORD">150<mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">33000<mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">440&#x2212;S<mrow class="MJX-TeXAtom-ORD">15<mtd /><mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">44S<mrow class="MJX-TeXAtom-ORD">14<mtd /><mtd /><mtd /><mtd /><mtd />2<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">11&#x2212;S<mrow class="MJX-TeXAtom-ORD">12<mo stretchy="false">)]" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">S=S11S12S11S13S13S33S14S140S44S15S1500S44000S15S142(S11S12)S=[S11S12S13S14S150S11S13−S14−S150S33000S440−S15S44S142(S11−S12)]
<span class="MathJax" id="MathJax-Element-44-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">1<mrow class="MJX-TeXAtom-ORD">/E=S<mrow class="MJX-TeXAtom-ORD">11<mo stretchy="false">(l14+l24+2l12l22<mo stretchy="false">)+S<mrow class="MJX-TeXAtom-ORD">33l34<mtd />+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">44+2S<mrow class="MJX-TeXAtom-ORD">13<mo stretchy="false">)<mo stretchy="false">(l12+l22<mo stretchy="false">)l32+2S<mrow class="MJX-TeXAtom-ORD">14<mo stretchy="false">(3l12&#x2212;l22<mo stretchy="false">)l2l3+2S<mrow class="MJX-TeXAtom-ORD">15<mo stretchy="false">(l12&#x2212;3l22<mo stretchy="false">)l1l3<mtd />=S<mrow class="MJX-TeXAtom-ORD">11<mo stretchy="false">(1&#x2212;l32<mo stretchy="false">)2+S<mrow class="MJX-TeXAtom-ORD">33l34<mtd />+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">44+2S<mrow class="MJX-TeXAtom-ORD">13<mo stretchy="false">)<mo stretchy="false">(1&#x2212;l32<mo stretchy="false">)l32+2S<mrow class="MJX-TeXAtom-ORD">14<mo stretchy="false">(3l12&#x2212;l22<mo stretchy="false">)l2l3+2S<mrow class="MJX-TeXAtom-ORD">15<mo stretchy="false">(l12&#x2212;3l22<mo stretchy="false">)l1l3" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">1/E=S11(l41+l42+2l21l22)+S33l43+(S44+2S13)(l21+l22)l23+2S14(3l21l22)l2l3+2S15(l213l22)l1l3=S11(1l23)2+S33l43+(S44+2S13)(1l23)l23+2S14(3l21l22)l2l3+2S15(l213l22)l1l31/E=S11(l14+l24+2l12l22)+S33l34+(S44+2S13)(l12+l22)l32+2S14(3l12−l22)l2l3+2S15(l12−3l22)l1l3=S11(1−l32)2+S33l34+(S44+2S13)(1−l32)l32+2S14(3l12−l22)l2l3+2S15(l12−3l22)l1l3

5.2 三方晶系 <span class="MathJax" id="MathJax-Element-45-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">32,3m,<mrow class="MJX-TeXAtom-ORD">3<mo stretchy="false">&#x00AF;m" role="presentation" style="margin:0px;padding:0px;display:inline;font-weight:normal;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">32,3m,3ˉm32,3m,3ˉm

三方晶系 <span class="MathJax" id="MathJax-Element-46-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">32,3m,<mrow class="MJX-TeXAtom-ORD">3<mo stretchy="false">&#x00AF;m" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">32,3m,3ˉm32,3m,3ˉm 独立矩阵元的数目为6个.

<span class="MathJax" id="MathJax-Element-47-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">C=[<mtable rowspacing="4pt" columnspacing="1em">C<mrow class="MJX-TeXAtom-ORD">11C<mrow class="MJX-TeXAtom-ORD">12C<mrow class="MJX-TeXAtom-ORD">13C<mrow class="MJX-TeXAtom-ORD">1400<mtd />C<mrow class="MJX-TeXAtom-ORD">11C<mrow class="MJX-TeXAtom-ORD">13&#x2212;C<mrow class="MJX-TeXAtom-ORD">1400<mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">33000<mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">4400<mtd /><mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">44C<mrow class="MJX-TeXAtom-ORD">14<mtd /><mtd /><mtd /><mtd /><mtd /><mrow class="MJX-TeXAtom-ORD">C<mrow class="MJX-TeXAtom-ORD">11&#x2212;C<mrow class="MJX-TeXAtom-ORD">122]" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">C=C11C12C11C13C13C33C14C140C440000C440000C14C11C122C=[C11C12C13C1400C11C13−C1400C33000C4400C44C14C11−C122]
<span class="MathJax" id="MathJax-Element-48-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">S=[<mtable rowspacing="4pt" columnspacing="1em">S<mrow class="MJX-TeXAtom-ORD">11S<mrow class="MJX-TeXAtom-ORD">12S<mrow class="MJX-TeXAtom-ORD">13S<mrow class="MJX-TeXAtom-ORD">1400<mtd />S<mrow class="MJX-TeXAtom-ORD">11S<mrow class="MJX-TeXAtom-ORD">13&#x2212;S<mrow class="MJX-TeXAtom-ORD">1400<mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">33000<mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">4400<mtd /><mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">44S<mrow class="MJX-TeXAtom-ORD">14<mtd /><mtd /><mtd /><mtd /><mtd />2<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">11&#x2212;S<mrow class="MJX-TeXAtom-ORD">12<mo stretchy="false">)]" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">S=S11S12S11S13S13S33S14S140S440000S440000S142(S11S12)S=[S11S12S13S1400S11S13−S1400S33000S4400S44S142(S11−S12)]
<span class="MathJax" id="MathJax-Element-49-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">1<mrow class="MJX-TeXAtom-ORD">/E=S<mrow class="MJX-TeXAtom-ORD">11<mo stretchy="false">(l14+l24+2l12l22<mo stretchy="false">)+S<mrow class="MJX-TeXAtom-ORD">33l34<mtd />+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">44+2S<mrow class="MJX-TeXAtom-ORD">13<mo stretchy="false">)<mo stretchy="false">(l12+l22<mo stretchy="false">)l32+2S<mrow class="MJX-TeXAtom-ORD">14<mo stretchy="false">(3l12&#x2212;l22<mo stretchy="false">)l2l3<mtd />=S<mrow class="MJX-TeXAtom-ORD">11<mo stretchy="false">(1&#x2212;l32<mo stretchy="false">)2+S<mrow class="MJX-TeXAtom-ORD">33l34<mtd />+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">44+2S<mrow class="MJX-TeXAtom-ORD">13<mo stretchy="false">)<mo stretchy="false">(1&#x2212;l32<mo stretchy="false">)l32+2S<mrow class="MJX-TeXAtom-ORD">14<mo stretchy="false">(3l12&#x2212;l22<mo stretchy="false">)l2l3" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">1/E=S11(l41+l42+2l21l22)+S33l43+(S44+2S13)(l21+l22)l23+2S14(3l21l22)l2l3=S11(1l23)2+S33l43+(S44+2S13)(1l23)l23+2S14(3l21l22)l2l31/E=S11(l14+l24+2l12l22)+S33l34+(S44+2S13)(l12+l22)l32+2S14(3l12−l22)l2l3=S11(1−l32)2+S33l34+(S44+2S13)(1−l32)l32+2S14(3l12−l22)l2l3
6 六方晶系(Hexagonal system)

六方晶系共有5个独立的矩阵元.

<span class="MathJax" id="MathJax-Element-50-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">C=[<mtable rowspacing="4pt" columnspacing="1em">C<mrow class="MJX-TeXAtom-ORD">11C<mrow class="MJX-TeXAtom-ORD">12C<mrow class="MJX-TeXAtom-ORD">13000<mtd />C<mrow class="MJX-TeXAtom-ORD">11C<mrow class="MJX-TeXAtom-ORD">13000<mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">33000<mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">4400<mtd /><mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">440<mtd /><mtd /><mtd /><mtd /><mtd /><mrow class="MJX-TeXAtom-ORD">C<mrow class="MJX-TeXAtom-ORD">11&#x2212;C<mrow class="MJX-TeXAtom-ORD">122]" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">C=C11C12C11C13C13C33000C440000C4400000C11C122C=[C11C12C13000C11C13000C33000C4400C440C11−C122]
<span class="MathJax" id="MathJax-Element-51-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">S=[<mtable rowspacing="4pt" columnspacing="1em">S<mrow class="MJX-TeXAtom-ORD">11S<mrow class="MJX-TeXAtom-ORD">12S<mrow class="MJX-TeXAtom-ORD">13000<mtd />S<mrow class="MJX-TeXAtom-ORD">11S<mrow class="MJX-TeXAtom-ORD">13000<mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">33000<mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">4400<mtd /><mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">440<mtd /><mtd /><mtd /><mtd /><mtd />2<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">11&#x2212;S<mrow class="MJX-TeXAtom-ORD">12<mo stretchy="false">)]" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">S=S11S12S11S13S13S33000S440000S44000002(S11S12)S=[S11S12S13000S11S13000S33000S4400S4402(S11−S12)]
<span class="MathJax" id="MathJax-Element-52-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">1<mrow class="MJX-TeXAtom-ORD">/E=S<mrow class="MJX-TeXAtom-ORD">11<mo stretchy="false">(l14+l24+2l12l22<mo stretchy="false">)+S<mrow class="MJX-TeXAtom-ORD">33l34+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">44+2S<mrow class="MJX-TeXAtom-ORD">13<mo stretchy="false">)<mo stretchy="false">(l12+l22<mo stretchy="false">)l32<mtd />=S<mrow class="MJX-TeXAtom-ORD">11<mo stretchy="false">(1&#x2212;l32<mo stretchy="false">)2+S<mrow class="MJX-TeXAtom-ORD">33l34+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">44+2S<mrow class="MJX-TeXAtom-ORD">13<mo stretchy="false">)<mo stretchy="false">(1&#x2212;l32<mo stretchy="false">)l32" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">1/E=S11(l41+l42+2l21l22)+S33l43+(S44+2S13)(l21+l22)l23=S11(1l23)2+S33l43+(S44+2S13)(1l23)l231/E=S11(l14+l24+2l12l22)+S33l34+(S44+2S13)(l12+l22)l32=S11(1−l32)2+S33l34+(S44+2S13)(1−l32)l32
7 立方晶系(Cubic system)

立方晶系是所有晶系中对称度最高的晶系, 其独立矩阵元数目仅为3个, <span class="MathJax" id="MathJax-Element-53-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">C<mrow class="MJX-TeXAtom-ORD">11,C<mrow class="MJX-TeXAtom-ORD">12,C<mrow class="MJX-TeXAtom-ORD">44" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">C11,C12,C44C11,C12,C44

<span class="MathJax" id="MathJax-Element-54-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">C=[<mtable rowspacing="4pt" columnspacing="1em">C<mrow class="MJX-TeXAtom-ORD">11C<mrow class="MJX-TeXAtom-ORD">12C<mrow class="MJX-TeXAtom-ORD">12000<mtd />C<mrow class="MJX-TeXAtom-ORD">11C<mrow class="MJX-TeXAtom-ORD">12000<mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">11000<mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">4400<mtd /><mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">440<mtd /><mtd /><mtd /><mtd /><mtd />C<mrow class="MJX-TeXAtom-ORD">44]" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">C=C11C12C11C12C12C11000C440000C4400000C44C=[C11C12C12000C11C12000C11000C4400C440C44]
<span class="MathJax" id="MathJax-Element-55-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">S=[<mtable rowspacing="4pt" columnspacing="1em">S<mrow class="MJX-TeXAtom-ORD">11S<mrow class="MJX-TeXAtom-ORD">12S<mrow class="MJX-TeXAtom-ORD">12000<mtd />S<mrow class="MJX-TeXAtom-ORD">11S<mrow class="MJX-TeXAtom-ORD">12000<mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">11000<mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">4400<mtd /><mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">440<mtd /><mtd /><mtd /><mtd /><mtd />S<mrow class="MJX-TeXAtom-ORD">44]" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">S=S11S12S11S12S12S11000S440000S4400000S44S=[S11S12S12000S11S12000S11000S4400S440S44]
<span class="MathJax" id="MathJax-Element-56-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">1<mrow class="MJX-TeXAtom-ORD">/E=S<mrow class="MJX-TeXAtom-ORD">11<mo stretchy="false">(l14+l24+l34<mo stretchy="false">)+<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">44+2S<mrow class="MJX-TeXAtom-ORD">12<mo stretchy="false">)<mo stretchy="false">(l12l22+l12l32+l22l32<mo stretchy="false">)<mtd />=S<mrow class="MJX-TeXAtom-ORD">11&#x2212;2<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">11&#x2212;S<mrow class="MJX-TeXAtom-ORD">12&#x2212;<mrow class="MJX-TeXAtom-ORD">S<mrow class="MJX-TeXAtom-ORD">442<mo stretchy="false">)<mo stretchy="false">(l12l22+l22l32+l12l32<mo stretchy="false">)" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">1/E=S11(l41+l42+l43)+(S44+2S12)(l21l22+l21l23+l22l23)=S112(S11S12S442)(l21l22+l22l23+l21l23)1/E=S11(l14+l24+l34)+(S44+2S12)(l12l22+l12l32+l22l32)=S11−2(S11−S12−S442)(l12l22+l22l32+l12l32)
杨氏模量的极值

对于立方晶体, 我们可以用与[100], [010], [001]三个晶向的方向余弦来表示任意方向的杨氏模量, 结果如下

<span class="MathJax" id="MathJax-Element-57-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"><mrow class="MJX-TeXAtom-ORD">1E=S<mrow class="MJX-TeXAtom-ORD">11&#x2212;2<mo stretchy="false">(S<mrow class="MJX-TeXAtom-ORD">11&#x2212;S<mrow class="MJX-TeXAtom-ORD">12&#x2212;<mrow class="MJX-TeXAtom-ORD">S<mrow class="MJX-TeXAtom-ORD">442<mo stretchy="false">)<mo stretchy="false">(l12l22+l22l32+l32l12<mo stretchy="false">)<mtd />=S<mrow class="MJX-TeXAtom-ORD">11+<mo stretchy="false">(1&#x2212;A<mo stretchy="false">)S<mrow class="MJX-TeXAtom-ORD">44<mo stretchy="false">(l12l22+l22l32+l32l12<mo stretchy="false">)A=2<mrow class="MJX-TeXAtom-ORD">S<mrow class="MJX-TeXAtom-ORD">11&#x2212;S<mrow class="MJX-TeXAtom-ORD">12S<mrow class="MJX-TeXAtom-ORD">44<mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">S=<mrow class="MJX-TeXAtom-ORD"><mi mathvariant="bold">C<mrow class="MJX-TeXAtom-ORD">&#x2212;1" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">1EAS=S112(S11S12S442)(l21l22+l22l23+l23l21)=S11+(1A)S44(l21l22+l22l23+l23l21)=2S11S12S44=C11E=S11−2(S11−S12−S442)(l12l22+l22l32+l32l12)=S11+(1−A)S44(l12l22+l22l32+l32l12)A=2S11−S12S44S=C−1

其中 <span class="MathJax" id="MathJax-Element-58-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">S<mrow class="MJX-TeXAtom-ORD">11,S<mrow class="MJX-TeXAtom-ORD">12,S<mrow class="MJX-TeXAtom-ORD">44" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">S11,S12,S44S11,S12,S44 分别为立方晶体的三个独立的弹性柔顺系数, 柔顺矩阵 <span class="MathJax" id="MathJax-Element-59-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">S" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">SS 与弹性矩阵 <span class="MathJax" id="MathJax-Element-60-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">C" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">CC 的矩阵互为逆矩阵. <span class="MathJax" id="MathJax-Element-61-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">l1,l2,l3" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">l1,l2,l3l1,l2,l3 为空间某一方向与晶体主轴的方向余弦. <span class="MathJax" id="MathJax-Element-62-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">A" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">AA 为各向异性值. 因此, 知道了三个柔顺弹性常数的值, 即可求得空间任一方向的杨氏模量 <span class="MathJax" id="MathJax-Element-63-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">E" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">EE, <span class="MathJax" id="MathJax-Element-64-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">E" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">EE 的大小只与方向有关.

由于 <span class="MathJax" id="MathJax-Element-65-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">l12+l22+l32=1,l1,l2,l3&#x2208;<mo stretchy="false">[0,1<mo stretchy="false">]" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">l21+l22+l23=1,l1,l2,l3[0,1]l12+l22+l32=1,l1,l2,l3∈[0,1], 可以知道杨氏模量的两个极值为

<span class="MathJax" id="MathJax-Element-66-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML" display="block"><mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true">E1=<mrow class="MJX-TeXAtom-ORD">1S<mrow class="MJX-TeXAtom-ORD">11E2=<mrow class="MJX-TeXAtom-ORD">1S<mrow class="MJX-TeXAtom-ORD">11+<mrow class="MJX-TeXAtom-ORD">13<mo stretchy="false">(1&#x2212;A<mo stretchy="false">)S<mrow class="MJX-TeXAtom-ORD">44" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">E1E2=1S11=1S11+13(1A)S44E1=1S11E2=1S11+13(1−A)S44

前者对应于坐标轴方向, 后者对应于体对角线方法. 根据各向异性值 <span class="MathJax" id="MathJax-Element-67-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">A" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">AA 与1的大小不同, 相应于极小或极大值.

对于其他晶系杨氏模量的极值, 不易得到解析公式, 直接使用数值方法搜索即可.

杨氏弹性模量各向异性的图示

为了直观地表达弹性模量的各向异性, 人们常常将其用三维图来表示. 这种各向异性的直观图示方法具有一般性, 在科学数据可视化中经常遇到. 量子化学中常用的原子轨道的角度分布图就是一例. 具体原理是, 在球坐标系 <span class="MathJax" id="MathJax-Element-68-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">(r,&#x03B8;,&#x03D5;<mo stretchy="false">)" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">(r,θ,ϕ)(r,θ,ϕ)中, 对仅依赖于方向的函数 <span class="MathJax" id="MathJax-Element-69-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">F<mo stretchy="false">(&#x03B8;,&#x03D5;<mo stretchy="false">)" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">F(θ,ϕ)F(θ,ϕ) 中, 做曲面 <span class="MathJax" id="MathJax-Element-70-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">r=F<mo stretchy="false">(&#x03B8;,&#x03D5;<mo stretchy="false">)" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">r=F(θ,ϕ)r=F(θ,ϕ). 显然, 当 <span class="MathJax" id="MathJax-Element-71-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">F" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">FF 为常数时, 此曲面为球面, 各个方向函数值相同, 不存在各向异性; 当 <span class="MathJax" id="MathJax-Element-72-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">F" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">FF<span class="MathJax" id="MathJax-Element-73-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">(&#x03B8;,&#x03D5;<mo stretchy="false">)" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">(θ,ϕ)(θ,ϕ) 变化时, 曲面便可表示出函数值的变化.

mathematica中可使用球坐标绘图函数SphericalPlot3D来做出这种图, 很多文献中的图就是利用这个函数做的, 请参考这个函数的说明和相应的弹性模量示例.

考虑到Matlab使用更广泛些, 下面给出基于Matlab的绘图方法.

利用Matlab绘制各向异性图时, 有两种实现方法. 一种是利用球坐标绘图, 像mathematica那样. 虽然Matlab没有球坐标绘图函数, 但可以先将球坐标转换为直角坐标然后再绘图, 也不是很麻烦. 另一种方法是直接使用直角坐标, 利用等值面函数, 绘制函数 <span class="MathJax" id="MathJax-Element-74-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">r&#x2212;E=0" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;text-align:left;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">rE=0r−E=0 的等值面.

下面的代码绘制几种金属的杨氏模量三维各向异性曲面, 弹性常数来源于这里.

matlab
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
functionAniso clc;clear;close all; %% 处理数据, 计算矩阵以及弹性模量的极值% 单斜晶系测试% C=zeros(6);% C(1,1)=125;C(1,2)=87; C(1,3)=90; C(1,4)=0; C(1,5)=-9;C(1,6)=0;%            C(2,2)=169;C(2,3)=105;C(2,4)=0; C(2,5)=-7;C(2,6)=0;%                       C(3,3)=128;C(3,4)=0; C(3,5)=11;C(3,6)=0;%                                  C(4,4)=53;C(4,5)=0; C(4,6)=-0.6;%                                            C(5,5)=36;C(5,6)=0;%                                                      C(6,6)=48;% for i=2:6; for j=1:i-1; C(i,j)=C(j,i); end; end% 立方晶系 C11=240.20; C12= 125.60; C44= 28.20; % Nb% C11=522.40; C12= 160.80; C44=204.40; % W% C11=107.30; C12=  60.90; C44= 28.30; % Al% C11=346.70; C12= 250.70; C44= 76.50; % Pt% C11=231.40; C12= 134.70; C44=116.40; % Fe% C11=124.00; C12=  93.40; C44= 46.10; % Ag% C11= 49.50; C12=  42.30; C44= 14.90; % Pb% C11= 13.50; C12=  11.44; C44=  8.78; % Li C=zeros(6); C(1:3,1:3)=C12; fori=1:3; C(i,i)=C11; endfori=4:6; C(i,i)=C44; end S=inv(C); S11=S(1,1); S12=S(1,2); S13=S(1,3); S14=S(1,4); S15=S(1,5); S16=S(1,6); S22=S(2,2); S23=S(2,3); S24=S(2,4); S25=S(2,5); S26=S(2,6); S33=S(3,3); S34=S(3,4); S35=S(3,5); S36=S(3,6); S44=S(4,4); S45=S(4,5); S46=S(4,6); S55=S(5,5); S56=S(5,6); S66=S(6,6); % 立方晶系极值公式 A=2*(S11-S12)/S44; Emax=1/S11; Emin=1/(S11+(1-A)*S44/3); if(A>1); Emin=1/S11; Emax=1/(S11+(1-A)*S44/3); end fprintf('A=%9.4f Emin=%9.4f Emax=%9.4fn', A, Emin, Emax);%% 使用球坐标作图 [theta, phi]=meshgrid( linspace(0,pi), linspace(0,2*pi) ); L1=sin(theta).*cos(phi); L2=sin(theta).*sin(phi); L3=cos(theta); % 三斜晶系杨氏模量公式, 可用于任意晶系 E=S11 * L1.^4+ S22 * L2.^4+ S33 * L3.^4...+ (S44+2*S23) * (L2.*L3).^2+ (S55+2*S13) * (L1.*L3).^2+ (S66+2*S12) * (L1.*L2).^2...+2*((S14+S56) * L1.^2+ S24 * L2.^2+ S34 * L3.^2) .* L2.*L3 ...+2*( S15 * L1.^2+ (S25+S46) * L2.^2+ S35 * L3.^2) .* L1.*L3 ...+2*( S16 * L1.^2+ S26 * L2.^2+ (S36+S45) * L3.^2) .* L1.*L2; % 立方晶系% E=S11+(1-A)*S44*( (L1.*L2).^2+(L2.*L3).^2+(L3.*L1).^2 ); E=1./E; x=E.*L1; y=E.*L2; z=E.*L3; % 或使用函数转为直角坐标% [x,y,z] = sph2cart(v, pi/2-u,E); surf(x,y,z, E, 'FaceColor','interp', 'EdgeColor','none'); % 作模量的某一切面图% [X,Y,Z]=meshgrid(linspace(-Emax,Emax));% contourslice(X,Y,Z,X,x,y,z,[0 0])%% 或使用直角坐标等值面方法作图% [x,y,z]=meshgrid(linspace(-Emax,Emax));% r=sqrt(x.^2+y.^2+z.^2);% L1=x./r; L2=y./r; L3=z./r;%% % 立方晶系% E=S11+(1-A)*S44*( (L1.*L2).^2+(L2.*L3).^2+(L3.*L1).^2 );% E=1./E;% v=r-E;%% p=patch(isosurface(x,y,z,v,0));% isocolors(x,y,z,E,p);% isonormals(x,y,z,v,p);% set(p,'FaceColor','interp','EdgeColor','none');%% 设置图片格式, 输出图片 axis tight; title 'Nb A=0.5'; view(45,30); daspect([111]); camlight; lighting phong; colormap jet; % 低版本Matlab默认的填色模式 cbar=colorbar; title(cbar, 'GPa'); set(gca,'position',[0.12,0.05, 0.6,0.85]); set(gcf,'position',[20,20, 1000,900]); set(gcf, 'PaperPositionMode', 'auto'); print(gcf,'-dpng','-r300','Nb.png') end

注意

  1. matlab默认的渲染颜色取决于Z轴大小, 这不符合我们的要求, 因为我们需要用颜色表示E的大小, 这样图形更直观.

  2. matlab球坐标转换函数使用的球坐标采用数学约定, 与物理上常用的不同, 使用仰角El, 而非俯视角 <span class="MathJax" id="MathJax-Element-75-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">&#x03B8;" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">θθ, <span class="MathJax" id="MathJax-Element-76-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML">El+&#x03B8;=&#x03C0;<mrow class="MJX-TeXAtom-ORD">/2" role="presentation" style="margin:0px;padding:0px;display:inline;line-height:normal;word-spacing:normal;word-wrap:normal;float:none;direction:ltr;max-width:none;max-height:none;min-width:0px;min-height:0px;border:0px;position:relative;">El+θ=π/2El+θ=π/2

  3. 不同晶系杨氏模量的表达式不同, 只要把代码里E的表达式修改成相应的方程即可.

  4. 杨氏模量在某一平面内的截面图形可利用极坐标或直角坐标绘制, 原理类似.

为了让大家有一个更直观的了解, 我们把具有不同各向异性值的立方金属选取具有代表性几个, 列于下表

几种金属的弹性数据(单位: GPa)
金属C11C12C44S11S12S44AEminEmax
铌Nb240.20125.6028.200.0065-0.00220.03550.4980.01153.95
钨W522.40160.80204.400.0025-0.00070.00621.13446.71493.65
铝Al107.3060.9028.300.0158-0.00570.03531.2263.2075.57
铂Pt346.70250.7076.500.0073-0.00310.01311.59136.29210.51
铁Fe231.40134.70116.400.0076-0.00280.00862.41132.28283.34
银Ag124.0093.4046.100.0229-0.00980.02173.0143.75120.44
铅Pb49.5042.3014.900.0951-0.04380.06714.1410.5240.23
锂Li13.5011.448.780.3328-0.15260.11398.523.0021.23

相应的三维杨氏模量图如下

参考资料

  1. T. C. T. Ting; On Anisotropic Elastic Materials for which Young’s Modulus E(n) is Independent of n or the Shear Modulus G(n,m) is Independent of n and m; J Elasticity 81(3):271-292, 2006; 10.1007/s10659-005-9016-2

  2. Kevin M. Knowles, Philip R. Howie; The Directional Dependence of Elastic Stiffness and Compliance Shear Coefficients and Shear Moduli in Cubic Materials; J Elast 120(1):87-108, 2014; 10.1007/s10659-014-9506-1

  3. Matlab绘图高级部分

  4. 科学计算可视化: 三维流场绘图

  5. Applied Mechanics of Solids: Constitutive Models Relations between Stress and Strain

  6. 球坐标



https://blog.sciencenet.cn/blog-548663-786478.html

上一篇:正则表达式基础知识
下一篇:希腊字母与拉丁字母的对应
收藏 IP: 130.184.197.*| 热度|

1 李长宝

该博文允许注册用户评论 请点击登录 评论 (11 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-23 17:22

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部