||
上一讲我们得到 learning can happen with target distribution $P(y|x)$ and low $E_{in}$ w.r.t. error measure.
1. Linear Regression Problem
linear regression hypothesis: $h(x) = w^T x$, $h(x)$: like perceptron, but without the $sign$.
linear regression: find lines/hyperplanes with small residuals.
The Error Measure:
popular/historical error measure: squared error $err(\hat{y}; y) = (\hat{y} - y)^2$.
2. Linear Regression Algorithm
practical suggestion: use well-implemented $y$ routine instead of $(X^T X)^{-1} X^T$ for numerical stability when almost-singular.
Linear Regression Algorithm:
3. Generalization Issue
4. Linear Regression for Binary Classification
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-24 16:45
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社