||
从上一讲我们得出结论:learning happens if finite $d_{VC}$, large $N$, and low $E_{in}$.这一讲主要介绍在有噪声情况下的学习问题以及相关损失函数。
1. Noise and Probabilistic Target
2. Error Measure
机器学习的终极目标是$g\approx f$,那么如何度量其相似度呢?
1)Pointwise Error Measure
Two Important Pointwise Error Measures
2)Learning Flow with Error Measure
3. Algorithmic Error Measure
0/1 error penalizes both types equally.
Learning Flow with Algorithmic Error Measure
4. Weighted Classification
Weighted classification: different “weight”for different (x; y).
Easily done by virtual "example copying"!
1) Minimizing Ein for Weighted Classification
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-24 18:35
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社