Dr jiapu ZHANG分享 http://blog.sciencenet.cn/u/jiapuzhang

博文

[转载] 斐波那契数: 从 [曼德博集合] 中找

已有 4056 次阅读 2019-12-7 17:39 |系统分类:科普集锦|文章来源:转载

曼德博集合可以用复二次多项式来定义:

  • f_c(z) = z^2 + c \,

其中 c 是一个复数參数。

z = 0 开始对 f_c(z) 进行迭代

  • z_{n+1} = z_n^2 + c, n=0,1,2,...

  • z_0 = 0 \,

  • z_1 = z_0^2 + c = c \,

  • z_2 = z_1^2 + c = c^2 + c \,

  • ........

Examples:

(1) c=  1:                        0, 1, 2, 5, 26, 677, 458330, ....

(2) c=  0:                        0, 0, 0, ...

(3) c= -3:                        0, -3, 6, 33, 1086, 1179393, ...

(4) c= -1:                        0, -1, 0, -1, 0, -1, 0, ...

(5) c=1/4:                      0, 0.25, 0.31.., 0.34.., 0.37.., 0.38.., ...

(6) c=1/2:                      0, 0.5, 0.75, 1.06.., 1.62.., 3.15.., ...

(7) c=-0.125-0.75i:         0, -0.125+0.75i, -0.672+0.563i, 0, -0.125+0.75i, ....

.......

(Source:  https://www.youtube.com/watch?v=4LQvjSf6SSw, https://www.bilibili.com/video/av37982028/)  


References: 

[1] 大自然的分形几何学 最新修订本 Mandelbrot, 1997 (Freely downloaded from https://icaredbd.com:449/verify/verify_reCAPTHA.php)

[2] https://www.youtube.com/watch?v=4LQvjSf6SSw, https://www.bilibili.com/video/av37982028/

[3] https://en.wikipedia.org/wiki/Mandelbrot_set:

Fibonacci sequence in the Mandelbrot set

It can be shown that the Fibonacci sequence is located within the Mandelbrot Set and that a relation exists between the main cardioid and the Farey Diagram. Upon mapping the main cardioid to a disk, one can notice that the amount of antennae that extends from the next largest Hyperbolic component, and that is located between the two previously selected components, follows suit with the Fibonacci sequence. The amount of antennae also correlates with the Farey Diagram and the denominator amounts within the corresponding fractional values, of which relate to the distance around the disk. Both portions of these fractional values themselves can be summed together after {\frac {1}{3}}to produce the location of the next Hyperbolic component within the sequence. Thus, the Fibonacci sequence of 1, 2, 3, 5, 8, 13, and 21 can be found within the Mandelbrot set.

Freshman's sum (https://en.wikipedia.org/wiki/Mediant_(mathematics)):

"freshman's dream" also sometimes refers to the theorem that says that for a prime number p, if x and y are members of a commutative ring of characteristic p, then (x + y)p = xp + yp.  (https://en.wikipedia.org/wiki/Freshman%27s_dream)

Sophomore's dream:

Sophomore's_dream.jpg 

(https://en.wikipedia.org/wiki/Sophomore%27s_dream)

[4] http://mathcubic.org/article/article/index/id/422.html  混沌与分形(二):分形的奇迹——分数维的曲线 (https://mp.weixin.qq.com/s?__biz=MzI3MzE3OTI0Mw==&mid=2247492489&idx=1&sn=1b2c4b501c109a3a199a6514d9668bc6&chksm=eb25948ddc521d9be14ff22bcb836876ea0efa0ec197f6793596364763e4632e8ebd731657af&mpshare=1&scene=1&srcid=0121NibBM0R9bKKLajwWPwHp#rd)

[5] 分形 —— 故事之外: https://www.ee.cityu.edu.hk/~gchen/pdf/FractalsStories.pdf

[6] 自然的奥秘:混沌与分形: http://www.global-sci.org/v1/mc/issues/3/no3/freepdf/35s.pdf


fobinicc.jpg



https://blog.sciencenet.cn/blog-498408-1209137.html

上一篇:[转载] 斐波那契数 -- 对自家的脸,玫瑰花的分析
下一篇:[转载]<<Molecular Structures and Structural Dynamics of PrP>>12月书评
收藏 IP: 103.105.219.*| 热度|

0

评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

全部作者的精选博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-20 00:41

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部