||
2024年9月28日,国际知名能源期刊《Nano Energy》在线发表了云南师范大学能源与环境科学学院杨培志教授课题组、段良飞副教授等的最新研究成果《Multiphase soft metal enabled high-erformance fabric-based wearable energy harvesting》。云南师范大学能源与环境科学学院为第一单位兼通讯作者单位,杨培志教授和段良飞副教授为通讯作者。
文章报道了:基于多相软金属的高性能织物型可穿戴能量收集。在这项研究中,研究人员提出了一种新颖的策略,成功实现并展示了一种基于织物的高性能可穿戴摩擦纳米发电机(TENG)结构。他们将镓(Ga)、铋(Bi)、铟(In)和锡(Sn)按照特定质量比混合,在液相中转化形成室温多相软金属 GaBiInSn。这种材料具有金属和流体的双重特性以及多相结构。研究人员将 GaBiInSn 材料直接沉积在聚四氟乙烯(PTFE)层和无纺布之间,建立了多级导电和摩擦界面,形成电荷转移和固液混合介电层,从而制造出薄膜型摩擦纳米发电机(LM - P - TENGs)。这种发电机可以集成到织物上,且不影响织物的透气性、舒适性和柔韧性。在人体肢体机械触发条件下,LM - P - TENG 展现出优异的性能,其开路电压最高可达 900V,短路电流密度峰值为 43.3 mA/m²,功率密度高达 12.56 W/m²。该研究不仅展示了室温多相软材料在柔性可穿戴电源中的应用潜力,还为可穿戴电子设备引入了一种新的供电模式。此外,LM - P - TENG 在自供电可穿戴设备、医疗生物传感系统、人机交互系统、近眼显示系统等柔性电子领域也具有应用前景。
Abstract
Highly efficient and flexible power sources have always been the focus and goal in the field of wearable electronics. However, the existing wearable power sources are limited by their large size, high weight, electrolyte leakage, and poor mechanical compliance, which seriously hinders their practical applications. Herein, we propose a novel strategy to achieve and demonstrate a fabric-based high-performance wearable triboelectric nanogenerator (TENG) structure. The metals of gallium (Ga), bismuth (Bi), indium (In), and tin (Sn) are mixed according to specific mass ratios, and then they are transformed in liquid phase to form room-temperature multiphase soft metals of GaBiInSn. The material exhibits both metallic and fluidic properties, and possesses a characteristic of multiphase structure. The GaBiInSn material is directly deposited between polytetrafluoroethylene (PTFE) layers and nonwoven fabrics to establish multi-level conductive and frictional interfaces, creating charge transfer and solid-liquid hybrid dielectric layers. Therefore, the thin film-type triboelectric nanogenerators with a structure of PTFE/GaBiInSn/nonwoven fabric (LM-P-TENGs) is manufactured. The LM-P-TENGs can be integrated onto fabrics without compromising their breathability, comfortableness, and flexibility. Particularly, LM-P-TENGs efficiently convert the mechanical energy of human limb movements into sustainable electrical energy output. Under the human limb mechanical triggering conditions, LM-P-TENG achieves a champion specific open-circuit voltage up to 900 V, peak short-circuit current density of 43.3 mA/m2, and high power density of 12.56 W/m2. This work demonstrates the application potential of room-temperature multiphase soft materials in flexible wearable power sources, while introducing a novel power supply mode for wearable electronics. Additionally, the LM-P-TENGs also present applications in self-powered wearables, medical biosensing systems, human-machine interaction systems, near-eye display systems, etc. for the flexible electronics.
扩展阅读:
云师大能环学院杨培志教授在top期刊《Rare Metals》上发表最新研究成果
云师大能环学院杨培志教授在top期刊《Carbon》上发表最新研究成果
云师大能环学院杨培志教授课题组在《Advanced Functional Materials》上发表最新研究成果
云师大能环学院杨培志教授课题组与山东科技大学段加龙和唐群委合作在《Carbon Energy》上发表最新研究成果
云师大杨培志教授课题组在top期刊《Chemical Engineering Journal》发表最新研究成果
云师大杨培志教授与中国海洋大学合作在《NANO ENERGY》上刊文
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-22 08:36
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社