||
2023年1月30日,中山大学生命科学学院的庄诗美教授和方坚鸿副教授团队在Cancer Research杂志上发表了题为“Fructose metabolism in tumor endothelial cells promotes angiogenesis by activating AMPK signaling and mitochondrial respiration” 的研究论文。该研究发现肿瘤低氧微环境会上调肝癌内皮细胞中果糖转运蛋白以及多个果糖代谢酶的表达,果糖代谢通过激活内皮细胞中的AMPK信号来上调线粒体呼吸,进而增强内皮细胞的迁移和增殖能力,最终促进肝癌血管生成和转移。
研究背景
近几十年来,由于饮料和加工食品中高果糖玉米糖浆(HFCS)的使用,果糖的消费量显著增加,过量的果糖消费越来越被认为是肥胖和相关的心脏代谢性疾病的新流行因素。肝脏作为果糖代谢的主要场所,可能受高果糖摄入的影响最大。最近的三项研究表明,过量果糖刺激DNL和肝脏脂肪沉积,从而引起非酒精性脂肪性肝病( NAFLD )、脂肪性肝炎甚至肝癌。此外,转移至肝脏的结直肠癌细胞通过增强果糖代谢快速生长,以适应富含果糖的肝脏微环境。迄今为止,果糖能否被肿瘤内皮细胞( TECs )利用,以及果糖代谢在血管生成和血源性转移中的作用尚未见报道。
研究结果
首先,作者为了寻找调控肝癌血管生成的未知代谢途径,对16对肝癌组织及其相应的癌旁组织的内皮细胞转录组进行了基因集富集分析(GSEA),发现包括果糖代谢在内的多条代谢途径显著富集于TECs。考虑到果糖在肝脏中富集,其在肿瘤血管生成中的作用尚未被报道,因此,作者将研究重点放在果糖代谢。他们进一步验证果糖转运蛋白SLC2A5和果糖代谢酶酮己糖激酶(KHK)的蛋白水平在肝癌内皮细胞中上调。
作者进一步利用肝原位移植瘤和高压尾静脉注射Myc/sgp53表达质粒诱导自发肝癌两个体内模型,研究发现:与对照组相比,果糖饲喂小鼠的肝癌的血管数量更多,生长和转移能力也显著更强。而且,利用SLC2A5的抑制剂治疗小鼠,可以显著地削弱果糖的促进作用。那么,果糖是如何促进肿瘤血管生成呢?作者利用基质胶栓塞实验,发现与对照组相比,含有果糖的基质胶中血管的数量更多;更进一步,作者使用载有simKHK的内皮细胞特异靶向纳米颗粒,特异地敲低小鼠内皮细胞中的KHK表达水平,能够显著阻断果糖对肿瘤血管生成的促进作用。以上小鼠体内实验提示,果糖的过量摄入可能通过促进内皮细胞的果糖代谢,增强肿瘤的血管生成。
随后的机制研究中,作者发现果糖处理显著促进内皮细胞的增殖、迁移和管形成,并增强了线粒体呼吸和ATP的产生。然后,作者从能量调节中枢分子AMPK和mTOR出发,发现果糖处理激活内皮细胞AMPK信号,但是对mTOR通路无明显作用,并进一步证实内皮细胞的果糖代谢通过活化AMPK,促进线粒体呼吸能力,从而促进血管生成。
最后,作者探究了肝癌内皮细胞中果糖代谢酶的表达是如何被上调的,发现肿瘤低氧微环境以HIF1α依赖的方式,显著提高了内皮细胞中SLC2A5和KHK等果糖代谢通路基因的mRNA和蛋白水平。
综上,该研究率先揭示了果糖代谢在肿瘤血管生成中的促进作用,并鉴定了其调控机制。该研究结果提示,限制果糖摄入或靶向果糖代谢通路可能是抑制肝癌血管生成和肝癌进展的潜在策略。
摘要
Angiogenesis is vital for tumor growth and metastasis. Emerging evidence suggests that metabolic reprogramming in endothelial cells (EC) may affect angiogenesis. Here, we showed that multiple regulators in the fructose metabolism pathway, especially fructose transporter SLC2A5 and fructose-metabolizing enzyme ketohexokinase (KHK), were upregulated in tumor endothelial cells from hepatocellular carcinoma (HCC). In mouse models with hepatoma xenografts or with Myc/sgp53-induced liver cancer, dietary fructose enhanced tumor angiogenesis, tumor growth, and metastasis, which could be attenuated by treatment with an inhibitor of SLC2A5. Furthermore, vessel growth was substantially increased in fructose-containing Matrigel compared with PBS-Matrigel. Inhibiting fructose metabolism in EC cells in vivo using EC-targeted nanoparticles loaded with siRNA against KHK significantly abolished fructose-induced tumor angiogenesis. Fructose treatment promoted the proliferation, migration, and tube formation of ECs and stimulated mitochondrial respiration and ATP production. Elevated fructose metabolism activated AMPK to fuel mitochondrial respiration, resulting in enhanced EC migration. Fructose metabolism was increased under hypoxic conditions as a result of HIF1α-mediated upregulation of multiple genes in the fructose metabolism pathway. These findings highlight the significance of fructose metabolism in ECs for promoting tumor angiogenesis. Restricting fructose intake or targeting fructose metabolism is a potential strategy to reduce angiogenesis and suppress tumor growth.
Significance: Fructose metabolism in endothelial cells fuels mitochondrial respiration to stimulate tumor angiogenesis, revealing fructose metabolism as a therapeutic target and fructose restriction as a dietary intervention for treating cancer.
DOI: https://doi.org/10.1158/0008-5472.CAN-22-1844
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-27 09:08
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社