vcitym的个人博客分享 http://blog.sciencenet.cn/u/vcitym 中国地质大学(北京)教授

博文

地学相关模型(8)

已有 5529 次阅读 2013-2-25 21:28 |个人分类:杂谈|系统分类:教学心得| 模型, 荟萃分析, 元分析

(8)  Meta-Analysis

概念

元分析,又称作整合分析、综合分析、荟萃分析、横断历史研究。

荟萃分析的概念最早是由Light 和Smith 于1971 年提出的。
第一次使用“元分析”这个概念的人是美国学者格拉斯,他在1976年美国教育研究联合会(American Education Research Association)的发言致辞中首次提出元分析概念。1976 年Glass 首次将这一概念命名为Meta-analysis(荟萃分析),并定义为一种对不同研究结果进行收集、合并及统计分析的方法。这种方法逐渐发展成为一门新兴学科--“循证医学”的主要内容和研究手段。荟萃分析的主要目的是将以往的研究结果更为客观的综合反映出来。研究者并不进行原始的研究,而是将研究已获得的结果进行综合分析。

元分析是一种定量分析手段。它运用一些测量和统计分析技术,总结和评价已有的研究。元分析过程中,最重要的是判定研究结果,即对研究结果进行统计显著性水平检验和效果量的测定。 
元分析统计方法是对众多现有实证文献的再次统计,通过对相关文献中的统计指标利用相应的统计公式,进行再一次的统计分析,从而可以根据获得的统计显著性等来分析两个变量间真实的相关关系。

元分析是一种对分析的分析,具有以下主要特点:

  (1)元分析是一种定量分析方法,它不是对原始数据的统计,而是对统计结果的再统计;

  (2)元分析应该包含不同质量的研究;

  (3)元分析寻求一个综合的结论。


原理:


元分析程序输入参数包括:各个观察到的相关系数(已有研究文献中变量间的相关关系),样本容量等。由于很多研究中并未直接给出变量间的相关系数,但给出了t检验, F检验,均值方差等统计指标,则可根据Hunter andSchmidt(1990)的转换公式将这些统计指标转化为相关系数;输出参数主要包括变量间总体相关性的未修正(r) 和经过修正的(rc)指标,以及总体相关性的标准差(SDrc)等。其中r与rc是两个主要的参数,用于衡量两个变量之间的相关系数。
元分析要求每个观察到的相关系数经过研究样本的大小的权重处理,从而产生经过权重处理的总体相关性的平均估计值。这个观察值的误差包括总体样本的真实误差,样本误差,以及测量误差。因此为了获得精确的总体相关性及其误差,需要对样本误差和测量误差等进行修正,找出“调节变量”分组研究。另外,元分析对使用的数据进行了一定的限制要求。如“一个变量在不同的研究中有多种衡量指标”出现时,需首先得将这种“异质性”进行处理(Hunter and Schmidt,1990)以保证数据来源及统计方式的一致性。


元分析缺点:

元分析可以成为跨研究评判结果的一件有力工具。即使许多研究者已经乐意接受元分析的概念了,可还有一些人基于若干理由而质疑它的有用性。本节探讨元分析的一些缺点,并为克服这些缺点而提出一些建设性的解决方法。

  评估被评论的研究的质量 在一家期刊里可见的研究之质量取决于期刊的编辑政策。有些期刊有严格的发表标准,而另一些的发表标准就不太严格。这就意味着发表的研究之质量在不同的期刊间会有很大差别。

  元分析面临的一个问题是如何处理参差不齐的研究质量。例如,在一家非同侪评审的期刊上发表的文章应该与在一家需同侪评审的期刊上发表的文章一视同仁吗?遗憾的是对这个问题没有简单的答案。Rosenthal(1984)建议按照质量来对文章加权。

  应该沿什么维度来对研究加权呢?这毫无一致意见。需一非同侪评审的维度虽然是可以的,但是你采用这个维度时也要当心,因为一家期刊是不是同侪评审的,这并不是发表的研究之质量的可靠指标。在一个新的领域里用新方法做的研究有时会被同侪评审的期刊拒绝,尽管这家期刊在方法学上是健全的,也是高质量的。类似地,在同侪评审的期刊发表的作品虽然有助于你确信该研究的质量是高的,但不保证高质量。

  可以依着而对研究加权的第二个维度是方法学上的健全性,而不考虑期刊的质量。Rosenthal(1984)提出让若干方法学专家对每项研究打质量分(可以用一个从0到l0的量表)。质量评定可以做两次:一次在单独读了方法部分之后;另一次是在读了方法和结果两部分之后(Rosenthal,1984)。这样的评定是要检查评分者间信度的,然后才用来在元分析里对每一项研究的贡献大小进行加权。

  用不同的方法合并与比较研究 对元分析的常见批评是难以理解怎么可能对材料、量器以及方法都广泛不同的诸研究做比较。这个问题通称为“苹果与桔子之争”(Glass,1978)。

  对元分析的这种批评虽常见,却无效。Rosenthal(1984)和Glass(1978)指出,比较不同的研究结果与在一个普通实验里对异质被试作平均化是毫无不同的。如果你愿意接受对被试作平均化,那也就能接受对异质研究作平均化(Glass,1978;Rosenthal,1984)。

  关键问题不是应不应该在异质研究之间做平均,而毋宁说是不同的研究方法会不会带来不同的效应规模。因此Rosenthal指出,当某一被试变量成了研究中的一个问题时,你经常会“胶着”在这个被试变量上以确定它是如何与出现的差异相关联的。同样的,如果方法学的差异显得与研究结果有关联,那么在一项元分析里,研究也要停下来考察方法学(Rosenthal,1984)。

  实际问题 元分析的工作是一项艰巨的工作。对同一问题做实验,可以使用很不同的方法与统计技术。还有,某些研究也许没有提供必要的信息可做元分析。例如Roberts(1985)只能用38项研究来做他的态度一记忆关系的元分析。有些研究因为没提供足够的信息,所以得剔除掉。Robert也报告说,当一篇文章说F值小于1(文章里经常这样做)时,他就对F赋值以零。信息不足或不准确的问题(与文件柜问题相伴)会导致你的元分析里的研究样本没有代表性。诚然,偏差也许是小的,却也是存在的。

  元分析的结果不同于传统述评的结果吗? 传统的述评产生的结果是不是与元分析的结果有质的不同?这的确是个问题。为回答这个问题,Cooper和Rosenthal(1980)直接比较了这两种方法。他们把研究生和教授随机分配于做元分析或做传统述评,材料是7篇文章,讲述被试性别对作业坚持性的影响。其中两篇研究认为女性比男性更有坚持性,而另5篇要么没有统计数据,要么显示没有显著效应。

  这一研究的结果显示了使用元分析的参与者比使用传统方法的参与者更有可能得出性别对坚持性有影响的结论。另外,比之于做元分析的参与者,做传统述评的参与者认为性别对坚持性的影响小。总起来看,使用元分析的参与者有68%愿意断言性别对坚持性有影响,而只有27%使用传统方法的参与者有此倾向。用统计学的话来说,做元分析者比传统述评者更愿意拒绝性别无影响的虚无假设。因此使用元分析来评判研究会导致Ⅱ型决策错误的降低。(Cooper&Rosenthal,1980)。

  Cooper&Rosenthal(1980)也报告说,元分析样组与传统述评样组在评判被述评研究的方法学上没有能力差别。还有,两个样组在对该领域的未来研究提出的建议方面也无差别。大部分的参与者认为该领域的研究应该继续下去。

  最后,值得注意的是,使用元分析本身要求的统计学进路与对传统实验数据做统计分析的研究策略是一样的。当我们得到一个实验的结果时,我们不会只打量(“盯着”)数据,看看是否存在什么模式或关系。相反,在大多数情况下,我们用统计分析来评判关系是否存在。同样的,与其“盯着”诸研究而猜测可能的关系,还不如把一项统计分析应用于不同研究的结果,以见是否存在有意义的关系,这会更好。


软件:

除了下列专用软件之外,通用软件如Stata、SAS、SPSS、R、Splus、WinBUGS等,也有一些模块或宏命令,能够进行元分析。


趋势:

荟萃分析在近些年得到了迅速的发展,每年发表的此类文章已经从80 年代的几十篇到2000 年的将近500 篇左右。


参考:
1、http://baike.baidu.com/view/981518.htm
2、http://baike.baidu.com/view/850687.htm
3、http://zh.wikipedia.org/wiki/%E5%85%83%E5%88%86%E6%9E%90
4、http://wiki.mbalib.com/wiki/Meta-analysis


https://blog.sciencenet.cn/blog-43347-665083.html

上一篇:科学决策基本流程
下一篇:网上流行僵尸舞
收藏 IP: 60.247.50.*| 热度|

2 胡文峰 汪梦雅

该博文允许注册用户评论 请点击登录 评论 (1 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-23 22:43

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部