ppn029012的个人博客分享 http://blog.sciencenet.cn/u/ppn029012

博文

机器学习 --- 2.从最大似然再看线性回归

已有 6701 次阅读 2013-5-10 01:43 |个人分类:机器学习|系统分类:科研笔记| 机器学习, mle

1. 线性回归的回顾

上一节我们尝试解决“房价与房子大小”之间关系的时候,使用了线性回归去拟合一个线性的方程,使得这个线性方程与所获得的房价房大小数据最大限度地吻合。

所以,我们的问题的解决思路是,

  • 把数据当成事实

  • 用一个特定的模型(e.g.线性方程或非线性方程)去匹配数据

这些数据被当成了上帝,而让我们用模型去匹配他们。数据就是事实,当误差很大时,只能说明模型不够好,仍需努力来匹配我们的数据。


2. 换个角度看线性回归

刚才是数据是事实,换个角度来看,数据应该是事实的一个表现。也就是”房价数据”应该是“房价与房子大小关系”的一个表现。现在假设北京某地房价和房子大小之间关系已经确定了

房价=房子大小*500,

但是我们不知道,现在拿到了5个数据,

(500, 1),   (502, 1), (1510, 3), (1120, 2), (1500, 2). 会发现这5个数据并不符合关系。这是为什么,这是因为这些数据里面并不仅仅包含了"房价”与"房子大小”之间的关系,还很可能包含了, "房价”与“新旧”,“房屋”与“朝向”,“房屋”与“小区环境”...等等各种因素,而且这些因素很可能是可以观察到,也有可能是观察不到的。


所以说想完美准确的预测房价与房子大小的关系是有可能的!! 只要找出所有影响房价的因素.

找到所有影响房价的因素这是不可能的!! 所以我们可能勉为其难,只需要一个最近似的关系就好了,所以只要把其他因素都看成是一些与房子大小无关的小噪声就好了。于是,


y就是我们的房价,f(x)就是房价与房子大小之间的关系,epsilon就是一些与房子大小无关的小噪声,当然,因为epsilon是一个随机的东西,我们可以用随机变量E来表示它,




3.最大似然

无论如何, 现在我们有了一串X,Y,就可以尝试地找出一个最有可能的f(x)去拟合数据了。

什么叫最有可能?

假如有M个f(x), 那么我们需要评估哪个模型最有可能产生这一串数据D (Y, X). 可能性应该用概率来表示,

是f(x)的参数, 如果这些数据与数据之间是独立的,就有


下面这个方程,表示了模型产生数据X,Y的可能性


因为X,Y已经确定了,现在要使得可能性最大,我们只能通过调整的值了。

对任意一个数据,(xi, yi),我们可以计算



现在要计算一个模型产生数据的可能性,我们只要知道这个模型预测值与实际值之间的误差,和这个噪声随机变量E的分布就可以了。

解决最大似然问题的流程

到这,问题已经可以解决了,也就是,对于已有的数据D(X,Y)和任意一个参数为的f(x),找到最好的参数我们需要,

  1. 选择一个模型f(x), 和初始化其参数

  2. 估测噪声随机变量E的分布情况(e.g. 均匀分布,高斯分布...), 得到Likelihood表达式

  3. 计算Likelihood函数, 并调整使得Likelihood达到最大

调整的方法可以使用像前一章中介绍的“导数下降法”,当然也可以直接找极值点(导数为0)来得到其极大极小值。


Likelihood 函数会随着模型f(x)的选择和噪声随机变量E的选择出现不同的情况。下面就由我展示一下,最大似然怎么与前面两位回归(线性回归(Linear Regression)和分类回归(Logistic Regression))联系起来的吧!


4. 最大似然变身线性回归

这时候,模型我选 f(x) = ax + b,  噪声随机变量 E一个正态分布N(0,2).



要让Likelihood最大,只需要把最小化就好了。啊啊啊!这个公式熟悉么? 这正是前面线性回归的cost函数吗?原来线性回归只是最大似然的一种特殊情况!


5. 最大似然与分类

这时候,模型我选f(x)=, 这时随机噪声变量的分布就不再是高斯分布了,是一个极其复杂的分布。但是幸运的是,我们可以得到Likelihood的表达式, 因为




统一一下这个式子,


于是有,


最后可以看到,这个Likelihood函数变成了,分类回归中的cost函数的取负。所以最大化Likelihood就等同于最小化分类回归中的cost函数。


以上两类问题,线性回归和分类回归,都可以由最大似然估计法推导而来,说明了最大似然估计法是一种更普适的描述模型匹配的方法。





https://blog.sciencenet.cn/blog-427701-688354.html

上一篇:机器学习 --- 1. 线性回归与分类, 解决与区别
下一篇:版本控制 --- 1. 你干嘛要用Git(单人寂寞版)
收藏 IP: 138.37.217.*| 热度|

2 陈筝 唐常杰

该博文允许注册用户评论 请点击登录 评论 (1 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-13 15:07

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部