天空中的一个模式分享 http://blog.sciencenet.cn/u/jiangxun 本博将以数学杂文为主,科技杂文为辅,其它杂文为补。

博文

美的无理,美的超越

已有 5744 次阅读 2014-10-1 08:16 |个人分类:谈数学|系统分类:教学心得| 数学, 近似, 数学常数, 欧拉数

作者:蒋迅

用数字1到9,每个只能用一次,我们需要得到一个e的近似值。知道为什么它会特别近似吗?这个问题的答案在这里,但有网友表示被墙了。现在我转贴如下。标题借用网友的评论。


Shared publicly  -  Sep 22, 2014

 
Approximating e using the digits 1─9

The number e (approximately 2.718281828459045) is one of the most important irrational numbers in mathematics, being the base of the natural logarithm. Remarkably, it is possible to get a stunningly accurate approximation to e using the digits 1 up to 9, exactly once each, together with the standard operations of addition, negation, multiplication and exponentiation. According to the formula in the picture, e is close to
(1 + 9^{─4^{7x6}})^{3^{2^{85}}}.

So why does this work? The key to understanding what is going on is the number N=3^{2^{85}}, an astronomically huge number. The number N appears more subtly in another place in the formula, because 4^{7x6}, or 4^{42}, is equal to 2^{84}. Since 9 is 3^2, it follows that 9^{4^{7x6}} is equal to {3^2}^{2^{84}}, which is equal to 3^{2x(2^{84})}, or 3^{2^{85}}. This means that 9^{─4^{7x6}} is equal to 1/N.

In summary, the formula in the picture is equal to (1+1/N)^N for a really large value of N. The limit of this formula, as N tends to infinity, is well known to be exactly equal to e.

I'd be interested to know where this formula originally came from. I found it on twitter via Colin Beveridge and Chris Smith. Chris Smith says that the approximation is accurate to over 1.8x10^{25} decimal places. I haven't checked this, but it is certainly a very accurate approximation.

Wikipedia has much more about the number e here: http://en.wikipedia.org/wiki/E_(mathematical_constant)

#mathematics

万精油墨绿(YOU志平):赞一个。这个公式利用(1+1/n)^n 的极限是 e 这个特性。漂亮。最重要的是这个近似不是一般的近似,已经到了不可思议的地步。准确位数是1.8X10^25。注意,不是25位数,是10^25位数。全世界的纸用光也印不出这么多位数。

查了一下,前面那个近似公式来自于一个趣味数学题。要求用数字1到n近似e。第九个公式就是前面微博那个。第八也是用的(1+1/n)^n。七以前都是乱凑。有人问这有什么意思?趣味数学嘛,以趣味为主,如果再有点别的用处当然更好,没有也不强求。有趣就是它的意义。科学的进步很多都是从有趣开始。

我说那式子精确度是1.8X10^25。有很多人问,既然全世界的纸用完都写不出那么多位数,你也不能算到那么多位,你是怎么知道的。有定理说用(1+1/n)^n逼近e,其误差与e/n同阶,这里n=3^(2^85),取对数即可。这就是数学的强大。运筹于帷幄之中,决胜于千里之外。



https://blog.sciencenet.cn/blog-420554-832212.html

上一篇:一道平面几何数学题的解答
下一篇:【数学都知道】2014年10月2日
收藏 IP: 23.118.54.*| 热度|

26 李颖业 蔡小宁 文克玲 王春艳 徐传胜 侯沉 武夷山 杨正瓴 张忆文 林涛 戴德昌 罗帆 王芳 张云 靖新 赵序茅 白图格吉扎布 李宇斌 强涛 zoujinkexue11 erdos jijiao biofans wangqinling impulse johnnashzhang

该博文允许注册用户评论 请点击登录 评论 (11 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-23 17:02

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部