"No Two Snowflakes the Same" Likely True, Research Reveals, National Geographic News, February 13, 2007.
Charles Q. Choi, "Scientist: Maybe Two Snowflakes are Alike", LiveSciecne, January 19, 2007.
Scientists discover snowflake identical to one which fell in 1963, NewsBiscuit, December 3, 2010.
雪花史,科学松鼠会,2008年12月25日.
J. Kepler, "Strena Seu de Nive Sexangula," 1611. Translated as"The
Six-Cornered Snowflake," trans. Colin Hardie, Clarendon Press, Oxford,
1966.
R. Descartes, "Les M' et' eores," 1637; ' ed. Adam et Tannery, Paris, Vrin, t. IV, 1965.
R. Hooke, "Micrographia," 1665; Dover, 2003.
U. Nakaya, "Snow Crystals: Natural and Artificial," Harvard University Press, 1954.
C. Magono and C. Lee, Meteorological classification of natural snow crystal , J. Fac. Sci.Hokkaido 2 (1966), 321-335.
H. von Koch, Sur une courbe continue sans tangente, obtenue par une
construction g' eom' etrique ' el' ementaire, Arkiv f矣r Mathematik,
Astronomi och Fysik 1 (1904), 681-702.
N. H. Packard, Lattice models for solidification and aggregation,
Institute for Advanced Study preprint, 1984. Reprinted in "Theory and
Application of Cellular Automata," S.Wolfram, editor, World Scientific,
1986, pp. 305-310.
S. Wolfram, "A New Kind of Science," Wolfram Media, 2002.
S. Levy, "Artificial Life: The Quest for a New Creation," Pantheon Books, 1992.
K. Libbrecht, Morphogenesis on ice: The physics of snow crystals, Engineering and Science 1 (2001), 10-19.
K. Libbrecht, Explaining the formation of thin ice crystal plates
with structure-dependent attachment kinetics, Journal of Crystal Growth
258 (2003), 168-175.
K. Libbrecht, The physics of snow crystals, Reports on Progress in Physics 65 (2005), 855-895.
K. Libbrecht, Observations of an Edge-enhancing Instability in Snow Crystal Growth near -15 C, arXiv:1111.2786 (2011).
K. Libbrecht, "Field Guide to Snowflakes," In preparation, 2006.
K. Libbrecht, P. Rasmussen, "The Snowflake: Winter' s Secret Beauty." Voyageur Press, 2003.
绝美雪花显微照片:形状各异结构精细,新浪科技,2008年12月11日.
R. Fisch, J. Gravner, D. Griffeath, Metastability in the
Greenberg-Hastings model. Ann. Appl. Prob. 3 (1993), 935-967. (Special
Invited Paper.)
J. Gravner, D. Griffeath, Multitype threshold voter model and
convergence to Poisson─Voronoi tessellation. Ann. Appl. Prob. 7 (1997),
615-647.
J. Gravner, D. Griffeath, Cellular automaton growth on Z2: theorems,
examples and problems, Advances in Applied Mathematics 21 (1998),
241-304.
J. Gravner, D. Hickerson, Asymptotic density of an automatic sequence is uniform, in preparation.
J. Gravner, D. Griffeath, Random growth models with polygonal shapes, Annals of Probability 34 (2006), 181-218.
J. Gravner, D. Griffeath, Modeling snow crystal growth I: Rigorous
results for Packard' s digital snowflakes, Experimental Mathematics 15
(2006) 421-444.
J. Gravner, D. Griffeath, Modeling Snow Crystal Growth II: A
mesoscopic lattice map with plausible dynamics. Physica D: Nonlinear
Phenomena 237 (2008), 385-404.
J. Gravner, D. Griffeath, Modeling snow crystal growth III: 3d snowfakes, in preparation.arXiv:0711.4020.
J. Gravner and D. Griffeath, Robust periodic solutions and evolution
from seeds in one-dimensional edge cellular automata, in review.
J. W. Barrett, H. Garcke and R. Nurnberg, Numerical computations of
facetted pattern formation in snow crystal growth, arXiv:1202.1272v1
(2012).
J. W. Barrett, H. Garcke and R. Nurnberg, On stable parametric
finite element methods for the Stefan problem and the Mullins-Sekerka
problem with applications to dendritic growth, J. Comput. Phys. 229
(2010), 6270- 6299
J. W. Barrett, H. Garcke and R. Nurnberg, Finite element
approximation of one-sided Stefan problems with anisotropic,
approximately crystalline, Gibbs--Thomson law, arXiv:1201.1802v1 (2012).
J. W. Barrett, H. Garcke and R. Nurnberg, On the parametric finite
element approximation of Evolving hypersurfaces in R3, preprint.
H. Garcke, Kepler, Crystals and Computers - How mathematics and
computer simulation help understanding of crystal growth, preprint.