||
2017年,Hen等人在近代物理综述上给出了一个综述《核子核子关联、短寿命激发和原子核中的夸克》,强调了EMC效应和短距离关联之间的联系,这个进展是Weinstein等人在2011年做出的,极大的加深了我们对于核力的理解。我这段时间,一直在读这篇综述,虽然里边的理论计算我并不清楚,实验也不是很明白,但是一些结论对我的启发非常大。这里就一些关键的结论,做一些摘录和解释。
In 1932 Chadwick discovered a neutral particle of about the same mass as the proton that he called the neutron. This discovery allowed scientists to understand that the binding energy accounted for less than 1% of the nuclear mass. Thus it is natural to say that the nucleus is made of neutrons and protons.
1932年,查德威克发现了和质子的质量差不多的中性粒子(质量实际上会稍微大一些),他称为中子。这个发现允许科学家理解核子间的束缚能大约占据不到原子核质量的1%。这样一来,很自然的就可以说,原子核是由质子和中子构成的。(质子和中子黏连在一起构成了原子核,结合能很小)
In 1935 Yukawa suggested a theory of the strong force to explain how the nucleus holds together. In the Yukawa interaction a virtual particle, later called a meson, mediated a force between nucleons.
1935年汤川秀树提出了一个强力的理论来解释核子是如何黏连在一起的。在汤川秀树作用中,一个虚粒子,后来称为介子,传递着核子之间的作用力。(这是第一个核力的理论,为汤川秀树带来了1949年的诺贝尔自然科学奖)
This basic picture has been studied for many years. Early models treated heavy nuclei, which could contain hundreds of nucleons, as classical liquid drops.
这个基本的图景(汤川秀树的介子理论)已经研究了很多年。早期的模型对待重核,包含了几百个核子,看作为经典的液滴模型。(类比中性分子的范德瓦尔斯力形成的液滴,比如水,这时表面张力会导致原子核的表面为球形。这个模型后来发展为几何模型,也就是对表面的振动量子化,现在可以看到,这个模型存在本质性的不足)
Many studies were devoted to understanding how the liquid-drop model, with its collective features, could be consistent with the shell model.
许多研究集中在理解,液滴模型,具有集体特征,如何和壳模型一致。(现在已经知道,两个模型都有问题,壳模型所基于的平均场实际上比较特殊)
After the single-particle shell model, the natural next step in describing nuclei is including the effects of two-nucleon correlations. The strong short-ranged nucleon-nucleon force that is averaged to make the mean-field G matrix also causes a significant nucleon-nucleon correlation function.
在单粒子壳模型之后,理解原子核的自然的一步就是包括两核子关联的效应。强的短距离核子核子力(汤川秀树提出的核力,以及更短距离的作用力),一方面平均掉成为了平均场的G矩阵,另一方面导致了重要的核子核子关联。(平均场之外剩余的作用力)
Deep inelastic scattering (DIS) on nucleons led to the discovery that the nucleons are made of quarks. However, due to the small (≤ 1%) nuclear binding energy and the idea of quark-gluon confinement, it was thought that quarks had no explicit role in the nucleus and that therefore nuclei could still be described in terms of nucleons and mesons. The simple and compelling nucleon-meson picture of the nucleus was shaken to its core by the 1982 discovery by the European Muon Collaboration (EMC) of the nontrivial dependence of the per nucleon lepton deep inelastic scattering cross section on the specific nuclear target.
原子核上的深度非弹性散射(DIS)导致了一个这样的发现,核子是由夸克构成的。(物理学中最重要的发现之一)但是,由于小的(≤ 1%)原子核的束缚能,以及夸克胶子禁闭的想法(色作用的作用看起来很少),曾经以为在原子核中夸克不会有什么能观测到的作用,因此原子核可以通过核子和介子来描述。(色作用和色禁闭都不会起作用)原子核中这种简单但是支配地位的核子介子图景在1982年被EMC的发现动摇了核心。他们发现,单个核子的轻子深度非弹性散射截面的非平凡的依赖性,与特定的原子核靶有关。
The observation of this reduction, caused by the nucleus, showed that the quarks have a small but definite role in the nucleus.
观察到的由原子核导致的约化,显示出在原子核中,夸克有一个小的但是确定的角色。
The non-nucleonic admixture in these correlations is at most about 10%, leading to a 2% non-nucleonic contribution. However, the EMC effect is about 15%, so that one needs to find an enhancement mechanism.
关联中的非核子的混合差不多有10%,导致了2%的非核子贡献。但是EMC效应为15%(看上图),所以需要找到一种增加机制。(我认为就是色禁闭)
Models need to include nucleon modification to account for the EMC effect. These models can modify the structure of any of the following: (i) Predominantly mean-field nucleons, which are modified by momentum-independent inter actions, (ii) predominantly nucleons belonging to SRC pairs, or (iii) both mean-field and SRC nucleons.
为了解释EMC效应,模型需要加入核子修正。这些模型可以修正如下这些结构(i)主要的平均场的核子,可以被与动量无关的相互作用修正,(ii)主要的属于SRC对的核子,(iii)同时包括平均场和SRC的核子。(EMC效应的发现,意味着原子核中的核子和自由的核子是不一样的,里面的夸克胶子分布不同)
Interference effects between nucleonic and non-nucleonic components are responsible for the EMC effect.
核子和非核子之间的干涉效应为EMC效应负责。(色禁闭分布在核子中,以及原子核中,会有干涉作用)
Corrections to the shell model can be classified broadly in terms of the relevant distances needed to describe the various phenomena. There are both long-ranged (similar to the size of the nucleus) and short-ranged (similar to the size of the nucleon) phenomena.
对于壳模型的修正,可以根据所描述的不同现象的相关距离来粗糙的分类。包括长距离的(原子核的尺度),以及短距离的(核子的尺度)现象。(核子之间的关联,分为大尺度的关联,和小尺度的关联)
Only about 60%–70% of the expected valence nucleon strength was observed. The missing strength implies the existence of collective effects (long-range correlations) and short-range correlations in nuclei.
在预期观测到的价核子强度只有60%-70%的部分被观测到。(这是平均场的强度)缺失的强度意味着原子核中存在集体效应(大尺度关联)和短距离关联。(这是实验观测的结果。如果大尺度和小尺度没有联系,那么这个平均场就是长距离作用的直接结果。但是如果有联系,还与小尺度的作用有关)
Since the short-ranged nature of the strong nuclear forces implies that nucleons must be influenced by nearby nucleons. There is no fundamental one-body potential in the nucleus, unlike the central one-body Coulomb potential that binds electrons to form the structure of the atom.
因为强的核力的短距离的本性意味着核子必然会受到临近核子的作用。在原子核中,根本就不存在一个单体势场,不像中心单体的库仑势,把电子束缚起来形成了原子的结构。(平均场的出现一直是一个问题)
Indeed, since the NN forces are short ranged, the fact that the shell-model approximation has any relevance is somewhat surprising. In the early days of nuclear physics, the fundamental question of nuclear physics was: how does the very successful shell model of the nucleus emerge in spite of the strong short-ranged interactions between nucleons?
实际上,由于核子核子力是短距离的,这个事实,壳模型近似的确很好使,是有些让人惊奇的。(这个事情我也很好奇)在原子核物理的早期阶段,原子核物理的基本问题就是:原子核中的这个如此成功的壳模型,是怎么出来的?尽管核子之间的强的短距离相互作用。(这个问题一直都存在,但是很多研究者没有考虑过它)
Chiral effective field theory provides a low-energy version of QCD, guided by chiral symmetry. The advantage gained is that different parts of the potential are divided between more easily understood long-ranged contributions and presumably unknown short-ranged contributions.
手征有效场理论提供了QCD的一个低能版本,由手征对称性引导而得到。所获得的优点是,势场的不同部分可以根据更容易理解的长距离贡献和假定的还不知道的短距离的贡献分开。(手征有效场理论是当下核力的核心理论,但是把大尺度的和小尺度的分开了,两个尺度之间没有联系了)
Occasionally (20%–25% in medium or heavy nuclei) two nucleons get close enough to each other so that temporarily their singular short-range interaction cannot be well described by a mean-field approximation.
偶尔(中重核中20%-25%)两个核子会彼此距离的非常近,暂时的,它们之间的奇异短程作用不能用平均场近似所描述。(在这个综述中,没有考虑长程关联,因为在他们所讨论的问题,这个似乎不需要)
Two distinct regions are visible: below the Fermi momentum where no angular correlation is observed, and above the Fermi momentum where a clear back to-back correlation is seen.
可以看到两个不同的区域。在费米动量以下,没有观测到角关联,而在费米动量以上,一个清晰的背对背关联可以看到。(这是可以分开的原因,两个不同的区域)
In the conventional momentum-space picture, the momentum distribution for all nuclei and nuclear matter can be divided into two regimes, above and below the Fermi momentum. The region below the Fermi momentum accounts for about 80% of the nucleons in medium and heavy nuclei (i.e., A ≥ 12) and can be described using mean-field approximations. The region with momenta greater than the Fermi momentum accounts for about 20%–25% of the nucleons and is dominated by nucleons belonging to NN-SRC, predominantly pn-SRC.
在传统的动量空间的图景中,所有原子核和核物质的动量分布可以分为两个区域,费米动量之上或之下。费米动量之下的区域占据了中重核中核子的80%左右,并且可以被平均场近似来描述。(长程关联太小了)而费米动量更大的动量的区域占据了20%-25%左右的核子,并且主要是属于核子核子短距离强关联的核子,主要是pn对。
It occurred to many experimentalists that MeV-scale nuclear effects should be negligible at GeV-scale momentum and energy transfers and that therefore they could increase their experimental statistics by using nuclear targets. Surprisingly, the CERN European Muon Collaboration found that the per nucleon cross section ratio of iron to deuterium was not unity.
对于许多的实验者来说,MeV能级的原子核效应,对于GeV能级的动量和能量转移来说,是可以忽略的。因此在DIS中,用别的原子核来替代轻核和氘核,只是增加了实验的统计性。令人惊奇的是,EMC发现,每个核子的散射截面,相对于氘核的比值不是1.
The effect had a universal shape, increased with nuclear mass number A.
这个EMC的效应有一个普适的形状,(看第二个图)随着质量数A的增大而增大。(这个结果非常有意思,一个小尺度的效应是普适的。但是大尺度的效应出现了幻数,也就是周期性。这个小尺度的效应是普适的,一定是相对于一个更大的能标来说的,所以一定与色禁闭有关。)
The structure of a nucleon bound in a nucleus significantly differs from that of a free nucleon. The medium modifies the nucleon.
束缚在原子核中的核子的结构显著的和自由核子不同。介质修正了核子。(这是这个研究的主要结论)
What is the origin of the medium modification? This question is more deeply to the very nature of confinement.
介质修正的起源是什么呢?这个问题深深的与色禁闭的本性有关。(这个色禁闭的想法是有的,但是不清楚究竟发生了什么)
This momentum reduction leads, via the uncertainty principle, to the notion that quarks in nuclei are confined in a larger volume than that of a free nucleon.
这个动量约化导致,通过不确定原理,这样的概念,原子核中的夸克被禁闭在了一个比自由核子更大的体积中。(色禁闭有了一个更大的体积,但是究竟有多大,有没有扩大到整个与原子核?SU3-IBM给出了肯定的回答)
Since only about 20% of nucleons belong to SRC pairs , 5 times more nucleons would be modified by mean field effects than by nucleon-nucleon interactions at close range.
由于只有大于20%的核子属于短距离关联对,约有5倍的核子将会被平均场效应所修正,而不是短距离的核子核子作用。(这个结论非常重要,原子核中的核子,小部分被核子对修正,但修正的很强,大部分被平均场修正,但修正的很弱)
The connection between the EMC effect and nucleon nucleon correlations is very profound. Although the binding energy of a nucleon is less than 1% of its mass, the fact that the nucleon is made of quarks and gluons is manifest in two distinct sets of phenomena, via experiments that have been repeated several times. The direct influence of the quark presence in nuclei is now established.
EMC效应和核子核子关联之间的联系是非常深刻的。尽管核子之间的束缚能不到质量的1%,核子由夸克和胶子构成的事实可以在两个完全不同的现象中证实,已经被实验重复了很多次。当下原子核中的夸克的直接影响已经建立。(所以,对于低能有没有影响是重要了,对于平均场都有影响,怎么会对低能的大尺度关联没有影响呢?)
This presence is a subtle effect as it must be, given the generally small deviation of R from unity, and does not arise via the usual low-energy, low-momentum transfer nuclear physics observables: binding energy, spectra, radii, electroweak transition rates, etc. Nonetheless, the quark presence cannot be denied. We expect that a deeper understanding of the EMC and SRC connection will ultimately lead to an improved under standing of the nature of confinement of light quarks.
这个事实是一个微妙的效应,EMC中的R对于1的一般小的偏离,并没有在低能低动量转移的核物理中观测到:束缚能、能谱、半径、电弱跃迁率等。(老的观念是非常顽固的,无法想象平均场的存在,幻数的存在,都是色禁闭的证明)但是,夸克的存在是不能否定的。我们期待一个关于EMC和短距离关联的更深入的理解将会最终增加我们对于轻夸克禁闭的本性的理解。(最终这句话非常正确)
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-23 10:52
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社