||
相关下载详见 “视觉计算研究论坛”「SIGVC BBS」:http://www.sigvc.org/bbs/thread-36-1-2.html
Premise: you have got a set of
features(measurement) of samples.
•identify those variables that do not contribute to the classification task.
•find a transformation from the p measurements to a lower-dimensional feature space.
•select those d variables that contribute most to discrimination.
•Feature selection criteria: error rate, probabilistic distance, recursive calculation of separability measurement, criteria based on scatter matrices.
• PCA方法现阶段的应用?现阶段的计算能力上再讨论PCA还有没有意义?
•降维还有没有必要?
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-9 07:10
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社