dzrdez的个人博客分享 http://blog.sciencenet.cn/u/dzrdez

博文

第11届蛋白质组学大会随感

已有 751 次阅读 2021-10-17 15:40 |系统分类:论文交流

赵秀举,41*3915,dzrdez@163.com

中国蛋白质组学有大工程/大设施(凤凰工程和慧眼设施),生物信息学赋能显著(生物大数据与人工智能、生物信息学和生信人主持的青年科学家三个专场)。是代谢组学(不考虑表型组学)的参照。

蛋白质组学和代谢组学相互关注,和远缘的顶尖人工智能合作(生物信息学、计算生物学算近缘),进行生物数据信息智能融合,运用荟萃分析、群体学习和政策立法等切实解决数据共享不足(主要是样本和时间点)的问题,构建生物数据生态系统。

群体学习,采用对等网络和区块链,数据和模型都在本地,只交换模型参数(准确性、灵敏度、特异性、F1分数、AUROC),安全共享。德国人发表于6月《自然》,群体学习的参数不弱于组成它的最优模型。

第三代人工智能中的图计算和图数据库,框架有数据、引擎、服务、接口、应用共五层,具备实时高并发、动态剪枝、低延迟、可解释、可扩展、迁移快速泛化等特征。代表有Neo4j(国际)和Ultipa(国内)。

生物数据学,融合生物信息学(侧重变量)、生物统计学(样本推断总体)、流行病学(侧重样本和时点)和数据学/人工智能(共归一化、群体学习和图数据库),以生物时空多样性为对象,以安全发育健康营养为内容和目标;可能引领人群数据全流程和生态系统。

一家之言,欢迎讨论。

https://blog.sciencenet.cn/blog-392245-1308288.html

上一篇:第二届代谢组学年会有感
下一篇:数据分析模型评估

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2021-12-3 02:13

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部